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Although obesity is typically associated with metabolic dysfunction and cardiometabolic diseases, some people with
obesity are protected from many of the adverse metabolic effects of excess body fat and are considered “metabolically
healthy.” However, there is no universally accepted definition of metabolically healthy obesity (MHO). Most studies define
MHO as having either 0, 1, or 2 metabolic syndrome components, whereas many others define MHO using the
homeostasis model assessment of insulin resistance (HOMA-IR). Therefore, numerous people reported as having MHO
are not metabolically healthy, but simply have fewer metabolic abnormalities than those with metabolically unhealthy
obesity (MUO). Nonetheless, a small subset of people with obesity have a normal HOMA-IR and no metabolic syndrome
components. The mechanism(s) responsible for the divergent effects of obesity on metabolic health is not clear, but
studies conducted in rodent models suggest that differences in adipose tissue biology in response to weight gain can
cause or prevent systemic metabolic dysfunction. In this article, we review the definition, stability over time, and clinical
outcomes of MHO, and discuss the potential factors that could explain differences in metabolic health in people with MHO
and MUO — specifically, modifiable lifestyle factors and adipose tissue biology. Better understanding of the factors that
distinguish people with MHO and MUO can produce new insights into mechanism(s) responsible for obesity-related
metabolic dysfunction and […]
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Introduction
Obesity is often associated with a constellation of metabolic abnor-
malities, including insulin resistance, prediabetes, atherogenic dys-
lipidemia (high plasma triglyceride [TG] and low HDL-cholesterol 
[HDL-C] concentrations), nonalcoholic fatty liver disease, and the 
metabolic syndrome, which are important risk factors for type 2 
diabetes (T2D) and cardiovascular diseases (CVDs) (1, 2). Howev-
er, not all people with obesity have metabolic complications, rais-
ing the question of whether those who are metabolically healthy 
represent a unique subset of people with obesity or are simply a 
group that is in transition to developing metabolically unhealthy 
obesity (MUO) later. In this article, we explore the premise that 
very few people with obesity are truly metabolically healthy, and 
evaluate putative modifiable factors (diet, physical activity, and 
sleep) and adipose tissue factors involved in determining the met-
abolic effects of excessive adiposity. To this end, we will provide a 
background to review the definition, prevalence, stability, and clin-
ical outcomes of metabolically healthy obesity (MHO), followed by 
a discussion of potential factors that could explain the differences 
in metabolic health in people with MHO and MUO.

Definition of metabolically healthy obesity
There is no universally accepted standard for defining MHO, and 
more than 30 different definitions have been used in different 
studies (ref. 3 and Table 1). In most studies, MHO was defined as 

having ≤2 of the following five metabolic syndrome components: 
high systolic and diastolic blood pressures, high plasma TG con-
centration, low HDL-C concentration, high fasting blood glu-
cose, and a large waist circumference; or ≤1 abnormal component 
excluding waist circumference (4). Additional criteria, including 
high plasma total cholesterol, LDL-cholesterol, and C-reactive 
protein concentrations, 2-hour blood glucose concentrations 
during an oral glucose tolerance test, and indices of insulin sen-
sitivity/resistance (based on the homeostasis model assessment 
of insulin resistance [HOMA-IR] score [ref. 5], the Matsuda index 
[an index of whole-body insulin sensitivity] [ref. 6], the glucose 
infusion rate during a hyperinsulinemic-euglycemic clamp pro-
cedure [HECP] [ref. 7], and the insulin suppression test [ref. 8]), 
have also been used to determine MHO (9–24). In some studies, 
even people with impaired glucose tolerance, T2D, and history of 
CVD were considered metabolically healthy because they did not 
have a sufficient number of the specified metabolic abnormalities 
to be identified as MUO (15, 25–28). Accordingly, people who are 
reported as having MHO are often not truly healthy, but simply 
have fewer cardiometabolic abnormalities than those defined as 
MUO. Therefore, a more rigorous and universally accepted defini-
tion of MHO is needed to determine the true prevalence and long-
term consequences of MHO and to conduct studies elucidating 
the mechanisms that protect some people with obesity from the 
adverse metabolic effects of excess body fat.

We propose a set of robust criteria to identify people with 
MHO (Table 2), based on (a) the absence of cardiometabolic 
diseases, (b) a healthy cardiometabolic blood profile, (c) normal 
blood pressure, (d) normal intrahepatic TG content, and (e) nor-
mal insulin sensitivity. We have divided these criteria into those 
that can be readily obtained in a typical outpatient clinical setting 
(basic criteria) and those that require more sophisticated testing 
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Table 1. Examples of variability in criteria used to identify metabolically healthy obesity

Cutoff for abnormal values Wildman  
(9)

Karelis  
(10)

Aguilar-Salinas  
(12)

Lynch  
(183)

Meigs  
(11)

Meigs  
(11)

Calori  
(17)

Blood pressure (mmHg)
 ≥130/85 X – – – X – –
 >130/85 – – – X – – –
 >140/90 – – X – – – –
Blood pressure medications X – X X X – –
Fasting TG (mg/dL)
 ≥150 X X – – X – –
Total cholesterol (mg/dL)
 ≥200 – X – – – – –
LDL-cholesterol (mg/dL)
 ≥130 – X – – – – –
HDL-cholesterol (mg/dL)
 <40 in men or <50 in women X – – – X – –
 <50 in men and women – X – – – – –
 <40 in men and women – – X – – – –
Lipid medications X – – X – – –
Fasting TG/HDL-cholesterol ratio
 >1.65 in men or >1.32 in women – – – X – – –
Fasting glucose (mg/dL)
 ≥100 X – – – – – –
 >100 – – – X – – –
 ≥126 – – X – – – –
 100–125 – – – – X – –
Glucose 2-h into oral glucose tolerance test (mg/dL)
 ≥200 – – X – – – –
Diabetes medications X – X X – – –
Waist circumference (cm)
 >102 in men or >88 in women – – – – X – –
HOMA-IR
 ≥75th percentile in study population – – – – – X –
 >1.95 – X – – – – –
 ≥2.5 – – – – – – X
 >5.13 (i.e., ≥90th percentile in study population) X – – – – – –
C-reactive protein (mg/L)
 ≥90th percentile in study population X – – – – – –
Metabolically healthy ≤1 of above ≤1 of above 0 of above 0 of above ≤2 of above 0 of above 0 of above

Examples of other criteria used to identify MHO include: (a) Absence of hypertension, dyslipidemia, type 2 diabetes, and cardiovascular disease (82). (b) ≤2 
of the National Cholesterol Education Program (NCEP) adult treatment panel (ATP) III metabolic syndrome criteria: waist circumference >102 cm in men 
and >88 cm in women; systolic blood pressure ≥135 mmHg or diastolic blood pressure ≥85 mmHg; fasting plasma glucose concentration ≥110 mg/dL; HDL-C 
concentration <40 mg/dL in men and <50 mg/dL in women; fasting plasma TG concentration ≥150 mg/dL; or treatment with antihypertensive, lipid-
lowering, or glucose-lowering medications (4). (c) ≤2 of the NECP ATP III metabolic syndrome criteria revised by the American Heart Association/National 
Heart, Lung, and Blood Institute (AHA/NHLBI) scientific statement (184) to redefine abnormal fasting glucose concentration as ≥100 mg/dL. (d) ≤2 of the 
AHA/NHLBI metabolic syndrome criteria revised to define waist circumference cutoff values based on population and country-specific standards (185). 
(e) ≤1 metabolic syndrome criteria excluding waist circumference (33, 38). (f) Zero metabolic syndrome components, except for waist circumference (50, 
186). (g) Plasma C-reactive protein concentration <3 mg/L in addition to different metabolic syndrome components with or without criteria for HOMA-IR 
and LDL-cholesterol (16, 60). (h) HOMA-IR values: ≤2.7 (16), lowest tertile in participants with obesity (187), <25th percentile (HOMA-IR ≤1.27) (43) or <90th 
percentile (47) of participants without diabetes. (i) “Insulin sensitive,” defined as OGTT-derived Matsuda index (6) >2.1 (18); or as ≥75th percentile of people 
with obesity (19); or as glucose infusion rate during a hyperinsulinemic-euglycemic clamp procedure of >8 mg/kg lean body mass/min at insulin infusion 
rate of 40 mU/m2 body surface area/min (20), >70 μmol/kg body mass/min at insulin infusion rate of 40 mU/m2 body surface area/min (21), ≥ upper tertile 
(≥10.5 mg/kg fat-free mass/min) at insulin infusion rate of 50 mU/m2 body surface area/min (22), or ≥ upper quartile (≥12.62 mg/kg fat-free mass/min) 
at insulin infusion rate of 75 mU/m2 body surface area/min (23) of people with obesity in the study; or as steady-state glucose concentration <100 mg/dL 
during fixed-rate infusion of octreotide, glucose, and insulin (24).
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Supplemental Tables 1–4. The prevalence of MHO, 
defined as “normal” insulin sensitivity (based on the 
HOMA-IR score) and absence of any metabolic syn-
drome components (excluding waist circumference), 
is approximately 7%, whereas half of all people with 
obesity can be classified as MHO when defined as ≤2 
metabolic syndrome components (including waist cir-
cumference). However, it is likely that these results 
overestimate the prevalence of MHO in the general 
population, because many studies excluded people 
with existing cardiometabolic diseases, such as T2D 
and CVD (9, 11, 13, 28, 42–44).

Stability of metabolically healthy 
obesity over time
The normal decline in metabolic health associated with 
increasing age, the metabolic insult of prolonged excess 
adiposity, and the tendency to gain weight throughout 
middle age likely influence the stability of MHO. The 
data from longitudinal studies suggest that approxi-
mately 30% to 50% of people with MHO convert to 
MUO after 4 to 20 years of follow-up (25, 28, 42, 45–

48). The major factors associated with the conversion of MHO to 
MUO are a decline in insulin sensitivity and an increase in fasting 
blood glucose (49). The risk of transitioning from MHO to MUO 
is greater in those with a high BMI, older age, evidence of more 
severe metabolic dysfunction (i.e., number of abnormal metabolic 
criteria and values that are closer to the upper limit of the normal 
range, and the presence of hepatic steatosis) (28, 50–52), a poor 
lifestyle index (a composite of diet composition, leisure time phys-
ical activity, and cigarette smoking) (53), and weight gain during 
the observation period (54, 55).

Clinical outcomes of metabolically healthy 
versus unhealthy obesity
In general, the risks of T2D, CVD, and all-cause mortality are 
greater in people with MUO than in those with MHO and greater 
in those with MHO than in those who are metabolically healthy 
and lean (MHL) (14, 28, 56–60). Moreover, the risks of these 
adverse outcomes are directly related to the number and severity 
of metabolic abnormalities (57, 61–66).

Type 2 diabetes
The data from most studies show that the risk of developing T2D 
is 5- to 20-fold greater in people with MUO than in those who are 
MHL (56). The risk of developing T2D is much lower in those with 
MHO than MUO, but is still about 4-fold greater than in those 
who are MHL (56), and is directly related to the number of met-
abolic abnormalities at baseline (61–63). In studies with a 6-year 
follow-up, the risk of developing T2D relative to MHL individu-
als was still increased in people with MHO without any metabolic  
syndrome components at baseline (61), but was not increased 
when metabolic status remained stable throughout the study (67).

Cardiovascular disease
The risk of CVD events (new-onset angina, fatal and nonfatal 
myocardial infarction, sudden cardiac death, fatal and nonfatal 

available in a research setting (advanced criteria). We propose a 
lower plasma TG concentration “cut-point” than that used for 
diagnosing the metabolic syndrome (i.e., <95 mg/dL vs. <150 
mg/dL), based on the plasma TG concentration that marks the 
point of transition from large buoyant LDL particles to highly 
atherogenic, small, dense LDL particles (29). We also propose 
the inclusion of an assessment of insulin sensitivity, defined as 
the glucose infusion rate needed to maintain euglycemia during 
an HECP, because many people with obesity who are resistant 
to insulin can have a normal fasting plasma glucose concentra-
tion and normal oral glucose tolerance due to a compensatory 
increase in plasma insulin (30). We chose a glucose infusion rate 
cutoff value that was used previously to define MHO (20) and is 
similar to the mean value reported in people with a BMI of 25 kg/
m2 who are metabolically healthy (31).

Prevalence of metabolically healthy obesity
The prevalence of MHO depends on the criteria used to define 
metabolic health, whether people with T2D or CVD were exclud-
ed from the cohort a priori, and the sex, age, BMI range, and 
racial or ethnic background of the study population. Differences 
in these variables are likely responsible for the large variability in 
reported prevalence, ranging from 6% (32) to 60% (33) of adults 
with obesity when the criteria for metabolic health were based on 
measured variables (see Supplemental Tables 1–4; supplemental 
material available online with this article; https://doi.org/10.1172/
JCI129186DS1), and up to 75% when based primarily on self- 
reported data (34). In general, MHO is more common in women 
than in men (35–38), in younger than in older adults (35, 36, 39), 
in people with BMIs less than 35 kg/m2 than in people with BMIs 
of 35 kg/m2 or higher (40), and in people of European ancestry 
than in those from Africa, South America, and South Asia (Indian 
ancestry) (39, 41). An estimate of the prevalence of MHO based 
on the stringency of selection criteria from studies conducted in 
North American and European cohorts is shown in Figure 1 and 

Table 2. Proposed criteria for defining metabolically healthy obesity

Basic criteria:
Absence of diagnosis or therapy of 
cardiometabolic diseases

Absence of prediabetes, T2D, hypertension, dyslipidemia,  
NAFLD, CKD, or CVD; or treatment with blood pressure,  
lipid, or diabetes medications

Healthy cardiometabolic profile:
Fasting TG <95 mg/dL
HDL-C ≥40 mg/dL in men and ≥50 mg/dL in women
Fasting glucose <100 mg/dL
2-hour OGTT glucose <140 mg/dL
Blood pressure <130/85 mmHg

Advanced criteria:
Intrahepatic lipid content (for those not  
already diagnosed as having NAFLD)

<5% of liver volume by imaging or  
<5% of hepatocytes with intracellular TG by histology

Insulin sensitivity GIR >8 mg/kg FFM/min during an HECP  
(insulin infusion rate: 40 mU/m2/min)

CKD, chronic kidney disease; CVD, cardiovascular disease; FFM, fat-free mass; GIR, 
glucose infusion rate; NAFLD, nonalcoholic fatty liver disease; HECP, hyperinsulinemic-
euglycemic clamp procedure; OGTT, oral glucose tolerance test; T2D, type 2 diabetes.
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Selected characteristics of metabolically healthy 
and unhealthy obesity
The characteristics that have been associated with MUO are 
shown in Figure 2. Among these features, multiorgan insulin resis-
tance (impaired insulin-mediated suppression of hepatic glucose 
production, suppression of adipose tissue lipolytic activity, and 
stimulation of muscle glucose uptake) is likely the most important 
underlying factor responsible for the development of cardiometa-
bolic diseases (68). In people without diabetes, whole-body insu-
lin sensitivity, assessed with the HECP, is inversely correlated 
with BMI; however, there is considerable heterogeneity in insulin 
sensitivity at any given BMI value so that a small subset of people 
with obesity are as insulin sensitive as people who are lean (31, 69). 
Insulin sensitivity is greater in people with MHO than in those with 
MUO, and many participants identified as having MHO are more 
insulin resistant than those who are MHL, manifested by greater 
fasting plasma insulin concentrations, blood glucose concentra-
tions during an oral glucose tolerance test, and HOMA-IR values 
(9, 27, 70–72). The factors responsible for the greater preservation 
of insulin action in people with MHO than in those with MUO are 
not clear, but could be related to differences in potentially modifi-
able lifestyle factors and alterations in adipose tissue biology (73). 
In this section we review each of these areas with a major focus on 
adipose tissue biology.

Lifestyle factors
Diet. The relationship between dietary intake and metabolic 
health has been evaluated in large population studies by using the 
food frequency questionnaires or 24-hour dietary recall data. The 
ability of these methods to reliably assess dietary intake has been 
questioned (74, 75). The results from most studies do not show a 
difference in total dietary energy intake or macronutrient distri-
bution between people with MHO and MUO (76–78). In addition, 
data from the US National Health and Nutrition Examination 
Survey showed no difference in diet quality, assessed as the con-
sumption of Mediterranean-style and DASH-style diets, between 
people with MHO and MUO (79). A higher total Healthy Eating 
Index score, which assesses diet quality in relation to the 2005 
US National Dietary Guidelines, was found in MHO than in MUO 
women who were 19–44 years old, but this score was not different 
in women with MHO and MUO who were 45–85 years old or in 
adult men with MHO and MUO (80). There is evidence from some 
(76, 77, 80–82) but not all (27, 77) studies that the consumption of 
specific types of foods differs between MHO and MUO groups; 
MHO was associated with a lower intake of sugar, sugar-sweet-
ened beverages, and saturated fat and a higher intake of whole 
fruits, whole grains, and protein from vegetable sources.

Physical activity and cardiorespiratory fitness. Increased phys-
ical activity improves insulin sensitivity and metabolic syndrome 
abnormalities (83). The amount and intensity of physical activity 
in MHO and MUO populations have been studied by the doubly 
labeled water method, accelerometry, and activity questionnaires. 
No differences in total daily energy expenditure or energy expend-
ed during physical activity, measured by the doubly labeled water 
method, were detected between people with MHO and MUO 
(20, 84). In contrast, studies that measured physical activity by 
using accelerometers or questionnaires showed that people with 

heart failure, and peripheral vascular disease) is lower in people 
with MHO than in those with MUO, but is still higher in people 
with MHO than in those who are MHL (57–59). A meta-analysis 
that pooled data from 18 studies followed over a median of 10 
years found that the risk of CVD events was about 50% greater in 
people with MHO at baseline than in people who were MHL (14). 
The risk of developing CVD events is directly associated with the 
number of metabolic abnormalities at baseline (57) and whether 
the MHO phenotype remains stable or converts to MUO (28). For 
example, in one study, the risk of CVD events in participants who 
maintained a stable MHO phenotype over a median of 12 years 
was not different from that in participants who were MHL (28).

All-cause mortality
The risk of all-cause mortality is less in people with MHO than in 
people with MUO (60). The risk of all-cause mortality in people 
with MHO relative to those who are MHL depends on the num-
ber and severity of metabolic abnormalities and the stability of 
metabolic health (64–66). The combined data from five large 
cohort studies that followed participants for an average of 13 
years found that people with MHO and no metabolic syndrome 
components (excluding waist circumference) did not have an 
increased risk of all-cause mortality compared with the MHL 
group; however, the risk of all-cause mortality was greater in 
participants with MHO versus MHL when participants with one 
abnormal metabolic risk factor (excluding waist circumference) 
were included in the MHO group (66).

Figure 1. Estimated prevalence of metabolically healthy and metabol-
ically unhealthy obesity among people with obesity in North America 
and Europe based on the number of metabolic syndrome criteria and an 
assessment of insulin sensitivity (using the homeostasis model assess-
ment of insulin resistance [HOMA-IR] score). Data were derived from 33 
studies involving a total of 123,548 people with obesity as described in 
the Supplemental Material (available online with this article; https://doi.
org/10.1172/JCI129186DS1).
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ic markers of inflammation; (f) affects adipocyte lipolytic activity 
and the rate of release of fatty acids into the circulation; and (g) 
alters the production of adiponectin, the major adipocyte secreto-
ry protein involved in regulating insulin sensitivity.

Body composition. Percentage body fat is not different in peo-
ple with MHO and MUO when the groups are matched on BMI 
and sex (19–21, 23, 94). However, there are marked differences in 
adipose tissue distribution and intrahepatic TG content between 
MHO and MUO cohorts. People with MHO have less intra- 
abdominal adipose tissue (IAAT) than people with MUO (21, 23, 
76, 95–97), but still have two to three times more IAAT than people 
who are MHL (19, 22). Although women with MHO tend to have a 
greater amount of lower-body (subcutaneous thigh or leg) fat mass 
than women with MUO (20, 48, 95, 96), lower-body fat mass is 
not different between men with MHO and MUO (48, 96). Intra-
hepatic TG content is greater in people with MUO than in those 
with MHO (98), and those with steatosis have greater multior-
gan insulin resistance (99) and higher plasma TG concentrations 
(100) than those with normal intrahepatic TG content, even when 
matched on BMI, percentage body fat, and IAAT volume (101). 
Taken together, these data show that excess adiposity per se is not 
responsible for the differences in metabolic health between peo-
ple with MHO and MUO, but differences in adipose tissue distri-
bution distinguish between MHO and MUO phenotypes.

Adipogenesis and lipogenesis. Studies that assessed adipogen-
esis/lipogenesis in people with MHO and MUO have focused 
primarily on the subcutaneous abdominal adipose tissue (SAAT) 

MHO spend more time in moderate to vigorous physical activities 
and less time in sedentary activities than people with MUO (35, 
85–87). The results from a meta-analysis that pooled data from 
15 studies found that cardiorespiratory fitness, assessed as maxi-
mum oxygen consumption during exercise, was greater in people 
with MHO than in those with MUO (87), but the average differ-
ence between groups was very small (1–2 mL/kg/min).

Sleep. Insufficient sleep duration and poor sleep quality have 
adverse effects on metabolic function (88) and are associated 
with obesity (89, 90). The results from nearly all studies that have 
assessed sleep duration and quality in people with MHO and MUO 
are not adequate to reliably evaluate potential differences between 
people with MHO and MUO, because the data are derived from 
questionnaires rather than direct assessments of sleep duration 
and quality. In general, sleep duration and the proportion of short 
sleepers (<7 hours per day) were not significantly different in peo-
ple with MHO and those with MUO (72, 85, 91–93).

Adipose tissue biology
The expansion of adipose tissue and TG mass with weight gain 
(a) is not uniformly distributed among different adipose tissue 
depots and the liver; (b) is due to an increase in adipocyte size or 
adipocyte number, or both; (c) requires adequate blood supply to 
maintain tissue oxygenation; (d) promotes extracellular matrix 
(ECM) remodeling to provide the scaffolding needed to support 
the expanded adipocyte mass; (e) causes an increase in adipose 
tissue–resident immune cells and both adipose tissue and system-

Figure 2. Putative characteristics of people with metabolically unhealthy obesity that are distinct from those of people with metabolically healthy 
obesity. However, the evidence to support a difference in many of these characteristics between people with MUO and MHO is not definitive because of 
inadequate data or conflicting results from different studies.
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depot. The relationship between adipogenesis (i.e., prolifera-
tion and differentiation of preadipocytes) in SAAT and metabol-
ic health is unclear. Adipogenic capacity in SAAT, assessed by in 
vitro differentiation assays and expression of genes involved in 
preadipocyte proliferation and differentiation, is greater in people 
with MHO than in those with MUO (102–105). However, adipo-
cyte proliferation rates, determined in vivo by measurement of the 
incorporation of ingested deuterium into the DNA of adipocytes 
isolated from SAAT, have been reported as either not different 
(106) or lower (107) in people who were overweight/obese and 
insulin sensitive than in people who were overweight/obese and 
insulin resistant. The capacity for lipogenesis in SAAT, assessed 
as expression of genes involved in lipogenic pathways (CD36, 
GLUT4, ChREBP, FASN, and MOGAT1), is greater in people with 
MHO than MUO (101, 102, 108, 109). Moreover, the expression 
of these genes is positively correlated with insulin sensitivity (108, 
109), and increases more after moderate weight gain in people 
with MHO than MUO (110). Collectively, these data refute the 
notion that impaired adipogenesis contributes to insulin resist-
ance in people with MUO (111), but demonstrate that increased 
adipose tissue gene expression of lipogenic pathways is associated 
with metabolic health.

Adipocyte size. Adipocyte size is typically measured by one of 
three methods: (a) histological analysis of adipose tissue; (b) col-
lagenase digestion of adipose tissue to generate free adipocytes 
that are measured by microscopy; and (c) adipose tissue osmium 
tetroxide fixation and cell size analysis using microscopy or a Mul-
tisizer Coulter Counter. The median adipocyte diameters in SAAT 
measured by each of these methods correlate with whole-body 
adiposity (112). However, the frequency of small cells (20–50 μm 
range) varies considerably among the three methods (112). The 
highest frequency of these small cells, which are believed to be 
immature or differentiating adipocytes, but could be large lipid- 
laden macrophages (113), is observed when cell size is assessed by 
the osmium fixation method (112, 114). The results from several 
studies show an inverse correlation between average or peak sub-
cutaneous abdominal adipocyte size and insulin sensitivity, and 
that adipocyte size is greater in people with MUO than in those 
who are metabolically healthier (21, 114–118). However, other 
studies did not detect a difference in average subcutaneous adipo-
cyte size in MHO and MUO participants (102, 105, 119). Two stud-
ies identified two distinct populations of adipocytes based on size 
and found a higher ratio of small to large subcutaneous abdominal 
adipocytes in people who were insulin resistant than in those who 
were insulin sensitive (102, 114). In summary, the majority of stud-
ies show that mean adipocyte size is smaller in people with MHO 
than MUO. However, the observation that adipose tissue con-
tains distinct small- and large-cell populations with variable cell 
numbers confounds the interpretation of overall mean cell size. 
Accordingly, more sophisticated analytical methods that quantify 
adipocyte cell sizes and number are needed.

Oxygenation. The oxygenation of adipose tissue depends on 
the balance between the rate of oxygen delivery to adipose tissue 
cells (adipocytes, preadipocytes, mesenchymal stem cells, fibro-
blasts, vascular endothelial cells, and immune cells) and their rate 
of oxygen consumption. The delivery of oxygen to adipose tissue 
is likely lower in people with obesity than in people who are lean 

because of decreased systemic arterial oxygen content associated 
with pulmonary dysfunction (120, 121), decreased adipose tissue 
capillary density and perfusion (122–125), an increased number of 
interstitial immune cells (126), and possibly greater oxygen diffu-
sion distance due to hypertrophied adipocytes and increased ECM 
content (127). However, the adequacy of adipose tissue oxygen-
ation in people with obesity is not clear, because interstitial adi-
pose tissue oxygen partial pressure (pO2), not intracellular pO2, is 
measured and because of conflicting data from different studies 
depending on the method used (120, 123–125, 128–130). Studies 
that used a Clark-type electrode or a fiber optic system to assess 
interstitial SAAT pO2 in situ found that pO2 was lower in people 
who are obese than in those who are lean (123, 124, 128, 129). In 
contrast, studies that used an optochemical sensor to measure pO2 
in SAAT interstitial fluid extracted by microdialysis ex vivo found 
that pO2 was higher in people with obesity than in those who were 
lean despite decreased adipose tissue blood flow in people with 
obesity, suggesting decreased adipose tissue oxygen consumption 
in the obese group (125, 130). A direct assessment of arteriove-
nous oxygen balance across SAAT demonstrated that both oxygen 
delivery and consumption were decreased in people with obesity 
compared with those who were lean or overweight; however, obe-
sity was not associated with evidence of adipose tissue hypoxia, 
assessed as oxygen net balance and the plasma lactate-to-pyru-
vate ratio across SAAT (120). We are aware of three studies that 
evaluated interstitial SAAT pO2 in people with MHO and MUO. 
Two studies measured pO2 in situ and found that pO2 was great-
er (128), or not different (129), in the MHO compared with MUO 
groups. The third study measured pO2 ex vivo in SAAT interstitial 
fluid extracted by microdialysis and found it was lower in MHO 
than in MUO (130). We are not aware of any studies that evaluat-
ed metabolic indicators of adipose tissue hypoxia, namely adipose 
tissue HIF1α protein content, in people with MHO and MUO. In 
summary, currently there is not adequate evidence to conclude 
there is a physiologically important decrease in adipose tissue oxy-
genation in people with MUO compared with MHO.

ECM remodeling and interstitial fibrosis. The ECM of adipose 
tissue is composed of structural proteins (primarily collagens I, III, 
IV, V, and VI) and adhesion proteins (fibronectin, elastin, laminin, 
and proteoglycans). Compared with people who are lean, peo-
ple with obesity have increased expression of genes for collagen 
I, IV, V, and VI and histological evidence of increased fibrosis, 
particularly pericellular fibrosis in omental adipose tissue and 
SAAT (131–135). In addition, we recently found that adipose tissue 
expression of connective tissue growth factor (CTGF), a matricel-
lular protein that regulates tissue fibrosis, is positively correlated 
with body fat mass and inversely correlated with indices of whole-
body, liver, and skeletal muscle insulin sensitivity (136). Adipose 
tissue expression of collagen genes and collagen content are also 
inversely correlated with insulin sensitivity in people with obesity, 
and decrease with weight loss (129, 137–139). These data support 
the notion that adipose tissue fibrosis is associated with MUO, as 
has been demonstrated in rodent models (140).

Immune cells and inflammation. Obesity is typically associated 
with chronic, low-grade, noninfectious inflammation, which has 
been purported to be a cause of insulin resistance (141, 142). It 
has been proposed that alterations in adipose tissue immune cells 

https://www.jci.org
https://www.jci.org
https://www.jci.org/129/10


The Journal of Clinical Investigation   REVIEW SERIES:  MECHANISMS UNDERLYING THE METABOLIC SYNDROME

3 9 8 4 jci.org   Volume 129   Number 10   October 2019

are an important cause of the chronic inflammation and insulin 
resistance associated with obesity (141, 143). Macrophages are the 
most abundant immune cell in adipose tissue, and adipose tissue 
macrophage content is increased in people with obesity compared 
with people who are lean (126). Moreover, adipose tissue macro-
phage content and crown-like structures (macrophages surround-
ing an extracellular lipid droplet) are greater in both SAAT and 
IAAT in people with MUO than in those with MHO; the increase 
in macrophage content is primarily due to an increase in M1-like 
(proinflammatory) macrophages (21, 144–147). Differences in adi-
pose tissue proinflammatory CD4+ T lymphocytes between people 
with MHO and MUO have also been reported. The percentages of 
total CD4+ T cells that are proinflammatory Th17 and Th22 cells 
are lower in both SAAT and IAAT in people with MHO than MUO 
(22, 148). In addition, in one study, antiinflammatory CD4+ Th2 
cells in both SAAT and IAAT correlated directly with insulin sensi-
tivity, assessed by the insulin suppression test (149).

In conjunction with the alterations in adipose tissue immune 
cells, adipose tissue expression of inflammation-related genes is 
also greater in people with MUO than in those with MHO (21, 129, 
145, 146, 150, 151), but there is inconsistency in the specific genes 
that are upregulated among studies, and the differences in gene 
expression markers between MUO and MHO groups are often 
small (21, 129, 145, 146, 150, 151). Plasma concentrations of mark-
ers of inflammation, primarily C-reactive protein, plasminogen 
activator inhibitor-1 (PAI-1), IL-6, and TNF-α, are either higher in 
those with MUO than MHO (21, 23, 42, 96, 152–154) or not differ-
ent between the two groups (155–157). The variability in results is 
likely related to the definitions used to identify MUO and MHO, the 
specific inflammatory markers evaluated in different studies, and 
the sample size needed for adequate statistical power because of 
small mean differences in plasma concentrations between groups.

The variability and small difference in adipose tissue expres-
sion of inflammatory markers in people with MHO and MUO and 
both the variability and small differences in plasma markers of 
inflammation between people with MUO and MHO question the 
importance of adipose tissue production and secretion of inflam-
matory cytokines in mediating the difference in systemic insulin 
resistance observed in people with MUO and MHO. Nonetheless, 
it is possible that other immune cell–related mediators, such as 
adipose tissue macrophage-derived exosomes (158), are involved 
in the pathogenesis of metabolic dysfunction.

Lipolytic activity. Acute experimental increases in plasma free 
fatty acid (FFA) concentration, induced by infusion of a lipid emul-
sion, impair insulin-mediated suppression of hepatic glucose pro-
duction and insulin-mediated stimulation of glucose disposal in 
a dose-dependent manner (159, 160). However, the influence of 
endogenous adipose tissue lipolytic activity and plasma FFA con-
centration on insulin sensitivity in people with obesity is not clear 
because of conflicting results from different studies. Specifically, 
the basal rates of FFA release into the systemic circulation and plas-
ma FFA concentration have been reported as either greater (21, 161, 
162) or not different (101, 163, 164) in people who are overweight/
obese and insulin resistant compared with those who are insulin 
sensitive. The importance of circulating FFA as a cause of insulin 
resistance in MUO is further questioned by studies that found no 
difference in basal, postprandial, and 24-hour plasma FFA concen-

trations in people with obesity compared with those who are lean 
and more insulin sensitive (122, 165). The reason(s) for the dif-
ferences between studies are not clear, but could be related to the 
considerable individual day-to-day variability in FFA kinetics and 
plasma FFA concentration and differences in compensatory hyper-
insulinemia and insulin-mediated suppression of adipose tissue 
lipolytic rate in people with insulin resistance (122, 165, 166). Differ-
ences in the percentage of women between study cohorts will also 
affect the comparison of FFA kinetics and concentrations between 
MHO and MUO groups, because the rate of the appearance of FFA 
in the bloodstream in relationship to fat-free mass or resting energy 
expenditure is greater in women than in men (167, 168), yet muscle 
(169) and liver (170, 171) insulin sensitivity are greater in women. 
Taken together, these studies suggest that differences in subcutane-
ous adipose tissue lipolytic activity do not explain the differences in 
insulin sensitivity between people with MHO and MUO. However, 
it is still possible that differences in lipolysis of IAAT and portal vein 
FFA concentration (172) or differences in the effect of FFA on tissue 
(muscle or liver) insulin action contribute to the differences in insu-
lin resistance between the two groups.

Adiponectin. Adiponectin, the most abundant protein secreted 
by adipose tissue, is inversely associated with percentage body fat 
and directly associated with insulin sensitivity in both men and 
women (173). Plasma adiponectin concentrations are often higher 
in people with MHO than MUO (12, 174–176). The reasons for the 
lower adiponectin concentration in MUO than MHO are unclear 
but could be related to chronic hyperinsulinemia in people with 
MUO, which suppresses adipose tissue adiponectin production 
(177, 178), thereby generating a feed-forward cycle of decreased 
adiponectin secretion caused by insulin resistance and increased 
insulin resistance caused by decreased adiponectin secretion.

Conclusions
There is considerable heterogeneity in the metabolic complica-
tions associated with obesity. About 50% of people with obesity 
are metabolically healthy when healthy is defined as the absence 
of the metabolic syndrome, whereas only approximately 5% are 
metabolically healthy when healthy is defined as the absence of 
any metabolic syndrome components and normal insulin sensitiv-
ity assessed by HOMA-IR. The risk of developing cardiometabolic 
diseases in people with obesity is directly related to the number 
and severity of metabolic abnormalities. Accordingly, people with 
MHO are at lower risk of future T2D and CVD than people with 
MUO, but most people with MHO are at a higher risk than peo-
ple who are MHL. However, people with MHO who do not have 
any metabolic abnormalities and remain MHO over time might 
not have an increased risk of developing cardiometabolic diseases 
compared with those who are MHL. These findings support the 
need for a rigorous and universal definition of MHO (proposed in 
Table 2) to allow reliable integration of data from different studies 
and facilitate research needed to identify the factor(s) involved in 
protecting some people with obesity from the adverse metabolic 
effects of excess adiposity.

The precise mechanisms responsible for preserved metabol-
ic health in people with MHO are not known. The studies to date 
have not demonstrated important differences in lifestyle factors 
(diet composition, physical activity, and sleep) between MHO and 
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the current era of precision medicine and cost-effectiveness. The 
classification of obesity by BMI status alone does not provide ade-
quate insight into current health status, the potential risk of future 
adverse clinical outcomes, or who might benefit most from weight 
loss therapy. The available data suggest that more intensive, and 
presumably more expensive, weight management therapies 
should be prioritized for those with MUO over those with MHO. 
However, this approach requires a more robust diagnosis of MHO 
and additional data to understand the relationship between MHO 
and the risk of other obesity-related complications, beyond meta-
bolic outcomes alone.
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MUO. However, this does not mean that lifestyle is not an import-
ant regulator of metabolic health, but rather underscores the lim-
itations in the assessment of lifestyle factors and in the definition 
of MHO in the current studies. It is likely that there is an important 
genetic contribution to the metabolic phenotype in people with 
obesity. Although GWAS have identified genetic variants that are 
associated with increased adiposity in conjunction with a healthy 
metabolic profile (179), a better understanding of the genetic 
aspects of MHO will likely provide new insights into the mech-
anisms responsible for metabolic disease. The influence of the 
gut microbiome on metabolic health is a rapidly emerging area of 
research. The potential for adverse and beneficial effects of the gut 
microbiome on metabolic health could be related to the composi-
tion and diversity of the microbiota and the ability of the gut bar-
rier function to prevent leakage of bacteria and bacterial products 
across the intestine (180–182). In addition, studies conducted in 
human subjects demonstrate an increase in markers of inflamma-
tion and interstitial fibrosis in adipose tissue in people with MUO 
compared with MUO. However, these studies are not able to deter-
mine whether these abnormalities are a cause or a consequence of 
insulin resistance and related metabolic dysfunction.

The heterogeneity in the metabolic complications associated 
with obesity has important clinical implications, particularly in 
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