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Introduction
Eukaryotic genome duplication relies on 3 B-family DNA poly-
merases: polymerase α, polymerase ε, and polymerase δ (1). 
Polymerase α is known to have primase activity (2), whereas poly-
merase ε is thought to synthesize DNA at the leading strand (3) 
and polymerase δ at the lagging strand (4, 5). More recently, poly-
merase δ has been shown to also be proficient in leading-strand 
DNA synthesis (6). Beyond DNA replication, the polymerase δ 
complex has emerged as a central element in the safeguarding 
of genome integrity by controlling processes such as break-in-
duced replication (7) and homologous recombination (HR) (8). 
The catalytic subunit of DNA-dependent polymerase complexes 
associates with several accessory subunits in multiprotein assem-
blies. The mammalian polymerase δ complex is a heterotetramer 

consisting of the catalytic subunit POLD1 and the accessory sub-
units POLD2, POLD3, and POLD4 (9), which regulate the activity 
of the complex and have specialized roles in stabilization of the 
complex, establishment of protein-protein interactions, and regu-
lation of the cell cycle (10, 11). The specific function of the POLD2 
subunit has been poorly explored, despite its central structural 
role in interacting with both POLD1 and POLD3 (12). Interesting-
ly, POLD2 and POLD3 participate in translesion synthesis (TLS) 
via their interaction with the polymerase ζ complex, a translesion 
polymerase complex comprising the catalytic subunit REV3L and 
the accessory subunit REV7 (13, 14).

The catalytic subunit POLD1 and the accessory subunits 
POLD2 and POLD3 have been shown to be essential in mam-
malian cellular systems using CRISPR/Cas9 and haploid genetic 
screens (15, 16). In yeast, POLD1 and POLD2 are also essential 
(17). This requirement has constrained the generation of poly-
merase δ–knockout cell lines or model organisms. A recent study 
in mice demonstrated that haploinsufficiency of POLD3 leads to 
polymerase δ complex instability and replication stress in vivo 
(18). In humans, heterozygous germline mutations in the proof-
reading domain of polymerase δ and polymerase ε have been asso-
ciated with familial cancer predisposition through a hypermutator 
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get enrichment sequencing for a panel of IEI genes (23) revealed 
3 heterozygous variants in the POLD1 gene (NM_002691) encod-
ing the catalytic subunit of polymerase δ (Figure 1, D and E). 
Subsequent exome sequencing did not reveal other candidate 
biallelic variants in P2. The variants p.Gln684His (CADD score 
of 26), located in the catalytic domain, and p.Ser939Trp (CADD 
score of 34) in an interdomain region, were inherited in cis on 
the same allele of maternal origin, whereas the p.Arg1074Trp 
variant (CADD score of 34) located to the CysB domain on the 
paternal allele. The POLD1Gln684His and POLD1Arg1074Trp mutations 
have been reported in the ExAc database, but no homozygotes 
are present, and the population allele frequency of both vari-
ants is below 0.001%. The POLD1Ser939Trp mutation is absent 
from ExAC and 1,000 Genomes databases. Moreover, we used 
pLI and pRec scores, computed by ExAC (24), to estimate the 
likelihood of tolerance to loss of a single or both alleles, respec-
tively, of POLD1 and POLD2. Both genes show low pLI scores of 
0.001 and 0.044, respectively, indicating a predicted tolerance 
to the loss of a single allele, and high pRec scores of 0.998 and 
0.950, respectively, indicating a predicted high intolerance for a 
complete loss of function (24). The tolerance scores for loss of a 
single allele for POLD1 and POLD2 indicate that both genes are 
not predicted to present a haploinsufficient phenotype, despite 
previously reported autosomal-dominant phenotypes (19–22). In 
familial colorectal cancer, this could be explained by the hyper-
mutator phenotype, in which POLD1 loss of function leads to a 
functional gain of function (increased mutation rate) (7, 8). Here, 
we describe 2 patients with biallelic mutations in the POLD1 and 
the POLD2 subunits of polymerase δ who presented with devel-
opmental defects and immunodeficiency.

We assessed the protein levels of the POLD1, POLD2 and 
POLD3 subunits of polymerase δ in anti-CD3– and anti-CD28–
stimulated PBMCs from both P1 and P2. We observed markedly 
reduced expression of all 3 subunits (Figure 1F), despite mRNA 
levels of the corresponding subunits that were comparable to 
those of healthy controls (Supplemental Figure 1, G and H). We 
did not evaluate POLD4 levels, because of the lack of a satisfacto-
ry antibody. Notably, these cells also showed a decrease in the S/
G2 cell-cycle phase marker cyclin A (CYCA), indicating a reduced 
fraction of actively cycling cells. In addition, we analyzed pro-
tein levels in primary dermal fibroblasts from P1, which showed 
reduced levels of POLD1, POLD2, and, to a lesser extent, POLD3. 
This was independent of CYCA levels, as seen upon enrichment 
of actively cycling cells (CYCA+) by thymidine or aphidicolin 
synchronization (Figure 1G). Overall, our results suggest that the 
identified patient mutations may affect the stability of the poly-
merase δ complex.

Mutations in POLD1 and POLD2 affect the stability, intrinsic 
enzymatic activity, and formation of the polymerase δ complex. The 
structure of human POLD2 has been found to be in complex with 
POLD3 (25), which binds its partner via its N-terminal domain 
(26). To assess the effect of the POLD2Asp293Asn mutant, we mod-
eled the mutant structure and predicted disruption of electrostatic 
interactions in the vicinity of Asp293 (Figure 2A). Moreover, we 
modeled POLD1 mutants using the yeast POLD1 structure (27), 
which bears a high sequence similarity to human POLD1. Our pre-
dictions showed that the POLD1Gln684His/Ser939Trp allele could com-

phenotype (19, 20). Moreover, heterozygous mutations affecting 
the polymerase and CysB domains of POLD1 have been found to 
cause autosomal-dominant mandibular hypoplasia, deafness, and 
progeroid features (MDP) syndrome (21, 22). Here, we report bial-
lelic mutations in POLD1 and POLD2 leading to reduced function-
ality of the polymerase δ complex as the underlying cause of an 
autosomal-recessive syndromic immunodeficiency.

Results
Identification of biallelic mutations affecting the polymerase δ com-
plex. Patient 1 (P1), a 17-year-old male born to consanguineous 
parents, presented with recurrent upper and lower respiratory 
tract infections as frequently as 2 to 3 times per month, leading 
to bronchiectasis since the age of 6 months. He has had chronic 
molluscum contagiosum–associated lesions on his face since 3 
years of age (Figure 1A). At 5 years of age, he started to experi-
ence skin abscesses requiring monthly hospitalization. At 4 years 
of age, the patient had short stature and severe intellectual dis-
ability as determined by the Denver test and apparent by speech 
impairment, attention deficit, and hyperactivity. After starting on 
regular intravenous Ig (IVIG) replacement, prophylactic antibiot-
ic, and antifungal (trimethoprim-sulfamethoxazole and itracon-
azole) therapy at 7 years of age, he experienced a reduction in the 
number of episodes of respiratory infections and skin abscesses. 
Immunological analyses showed CD4+ T, B, and NK cell lympho-
penia (Figure 1B). Patient 2 (P2) is a 24-year-old male born to non-
consanguineous parents. He presented with chronic bronchitis 
resulting in bronchiectasis and skin warts that were negative for 
common papilloma virus strains (Figure 1C). The patient had short 
stature, microcephaly, a low IQ (approximately 70), and hearing 
impairment. Immunological analyses showed persistent CD4+ T, 
B, and NK cell lymphopenia (Figure 1B). The patient receives sub-
cutaneous Ig (scIG) treatment, as well as antibiotic and antifungal 
prophylactic therapy. In-depth immunophenotyping of the main 
lymphocyte subsets showed a high frequency of CCR7–CD45RA+ 
TEMRA (effector memory cells reexpressing CD45RA) CD8+ T cells 
in P1 (Supplemental Figure 1A; supplemental material available 
online with this article; https://doi.org/10.1172/JCI128903DS1), 
concomitant with high expression of the CD95 activation mark-
er in CCR7+CD45RA+ naive CD8+ T cells in both P1 and P2 (Sup-
plemental Figure 1B). Despite a reduction in B cell numbers, we 
found that B cell maturation was largely normal, as judged by the 
presence of class-switched B cells (CD27+IgD–) (Supplemental 
Figure 1C) and normal somatic hypermutation (SHM) patterns in 
the IgA and IgG loci of P1, analyzed by Ig repertoire sequencing 
(Supplemental Figure 1, D–F). The shared syndromic phenotype 
in P1 and P2 (Supplemental Table 1), including developmental and 
immune abnormalities, led us to assume an underlying, undefined 
syndromic inborn error of immunity (IEI).

Genetic analysis of P1 by exome sequencing revealed a 
homozygous missense variant (p.Asp293Asn; combined annota-
tion–dependent depletion [CADD] score of 28.1) in the POLD2 
gene (NM_006230), which displayed perfect segregation under 
the assumption of autosomal-recessive inheritance (Figure 1D). 
The POLD2Asp293Asn mutation lies in the phosphodiesterase (PDE) 
domain (Figure 1E) and is absent from the ExAC and 1,000 
Genomes Project public databases. Genetic analysis of P2 by tar-
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residue lies in close proximity to a conserved cysteine that medi-
ates interaction with POLD2 in yeast and therefore prompted us to 
consider interaction defects in the human system (29). In addition, 
all 4 residues affected by patient mutations show high conserva-
tion across eukaryotic evolution (Supplemental Figure 2, B and C). 
Given the essentiality of the polymerase δ complex, we reasoned 
that the identified mutants may be hypomorphic in nature through 

promise catalytic domain integrity, given that the Gln684 residue 
is buried within the catalytic domain and that it resides close to the 
DNA binding site (Figure 2B), but does not directly affect the cata-
lytic site itself, as the previously described mouse Leu606 mutant 
showed (ref. 28 and Supplemental Figure 2A). The POLD1Arg1074Trp 
mutation lies at the C-terminal region of the protein, which is 
absent from the POLD1 structure model. However, the Arg1074 

Figure 1. Identification of hypomorphic mutations affecting the polymerase δ complex in patients presenting with syndromic combined immunode-
ficiency. (A) Molluscum contagiosum skin infection in P1. (B) Longitudinal peripheral blood CD4+ T cell, CD8+ T cell, B cell, and NK cell counts in P1 and P2. 
Dotted lines represent the range of reference values. (C) Viral skin warts in P2. (D) Familial segregation of the identified POLD1 and POLD2 mutations in 
the families of P1 and P2, indicating an autosomal-recessive pattern of inheritance. (E) Domain structure of POLD1 showing the polymerase domain, the 
exonuclease domain, the nuclear localization signal (NLS) domain, and the cysteine-rich, metal-binding domains CysA and CysB. Domain structure of 
POLD2 depicting the PDE and oligonucleotide binding (OB) domains. Mutation sites are indicated in red. (F) Protein levels of POLD1, POLD2, POLD3, and 
CYCA in PBMCs after anti-CD3 and anti-CD28 stimulation for 48 hours. See complete unedited blots in the supplemental material.(G) Protein levels of 
POLD1, POLD2, and POLD3 in primary fibroblasts. GAPDH was used as a loading control. Cells were untreated (Unt) or synchronized by double-thymidine 
(Thy) treatment or aphidicolin (Aph) treatment for 24 hours. α, anti.
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Figure 2. The identified mutations affect the stability, interactions, and intrinsic enzymatic activity of the polymerase δ complex. (A) Overview of the POLD2-
POLD3 structure with the indicated position Asp293 (Protein Data Bank [PDB] identifier: 3E0J). The site of the POLD2 mutation surrounding amino acid 293 
(Asp293Asn mutant protein) is shown in detail on the left and WT on the right. Polar interactions between residue 293 and nearby residues are indicated with blue 
dashed lines. Note the predicted loss of 1 interaction with Arg240 upon mutation. (B) The position of the Gln684His and Ser939Trp mutations in the structure of 
POLD1 (residues 81–984; model on yeast Pol3 PDB ID 3IAY) is shown. The areas surrounding amino acids 684 (left) and 939 (right) in POLD1 are shown in detail. 
(C and D) Immunoblot analysis of the CHX chase time course of HEK293 cell lines that were DOX-inducible for S-HA–tagged POLD2 WT and POLD2 D293N (C) as 
well as POLD1 WT, POLD1 R1074W, and POLD1 Q684H/S939W (D). GAPDH was used as a loading control. (E and F) S-HA co-IP from HEK293 cell lines that were 
DOX-inducible for S-HA–tagged POLD2 and POLD1 and the indicated mutants. (G) Primer extension assay for polymerization activity of recombinant polymerase δ 
on a radiolabeled, elongated 23-nt primer and 46-nt unlabeled template duplex DNA. The asterisk indicates a background band. CD, catalytically dead.
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response as measured by [3H]-thymidine uptake or violet prolif-
eration dye 450 (VPD450) (Figure 3, A and B) with intact upreg-
ulation of CD25 and CD95 upon T cell receptor (TCR) activa-
tion (Supplemental Figure 3A). We hypothesized that these cells 
may undergo cell-cycle arrest and therefore analyzed cell-cycle 
dynamics in T cells. Following a 48-hour TCR stimulation, the 
majority of the patients’ T cells were in G1, whereas approximate-
ly 50% of the healthy donor (HD) T cells were actively replicating 
their DNA as assessed by BrdU incorporation assay (Figure 3C). 
In P1, given the expansion of TEMRA CD8+ T cells (Supplemental 
Figure1A), which are known for their reduced proliferative capac-
ity (30), we aimed to exclude the differentiation stage as a con-
founding factor for proliferative capacity. To this end, we used in 
vitro–expanded T cells, which exhibit depleted TEMRA CD8+ T cells 
(Supplemental Figure 3B). These cells also showed a prolifera-
tive delay as compared with healthy control cells (Figure 3D) that 
was not related to a defect in proximal or distal TCR signaling, 
as phosphorylation of ERK was intact (Supplemental Figure 3C). 
We also assessed cell-cycle progression in P1 fibroblasts. P1 and 
healthy control fibroblasts were synchronized at the G1/S border 
by double-thymidine block (31), and cell-cycle status was deter-
mined upon thymidine release. Analysis of P1 fibroblasts 6 and 10 
hours after thymidine release showed slower progression through 
the S phase when compared with HD fibroblasts (Figure 3E), indi-
cating the presence of a DNA replication–associated defect.

We hypothesized that, although intrinsic enzymatic activity 
did not seem to be impaired in P1, the instability of polymerase δ, 
as an essential component of the replisome machinery, may lead 
to disturbance of replication fork dynamics in the cellular context. 
To assess the patterns of DNA replication in P1 fibroblasts, we used 
the DNA fiber–labeling technique, which allows direct visualiza-
tion of single DNA molecules undergoing replication (32). We per-
formed dual-pulse labeling of P1 fibroblasts using 5-chloro-2′-de-
oxyuridine (CldU) and 5-iodo-2′-deoxyuridine (IdU) (Figure 
3F) and observed an increase in the length of polymerized DNA 
fibers marked by IdU in progressing forks, indicating faster repli-
cation fork progression in P1 compared with HD cells (Figure 3G). 
Increased replication rates have  been reported in deficiency of 
replisome components such as GINS1 (33) and polymerase ε (34) 
and are regarded as a compensatory mechanism for the concom-
itant reduction in replication initiation events. We reasoned that 
instability of polymerase δ may interfere with replisome assembly 
and therefore lead to reduced replication origin firing. To inves-
tigate this, we determined the frequency of de novo fired origins 
(only IdU-labeled fibers) in P1 fibroblasts and found a reduced 
number of replication origin initiation events (Figure 3H). Overall, 
our findings support the hypothesis that reduced levels of poly-
merase δ compromise cell proliferation and, specifically, S-phase 
progression, as a result of a rate-limiting amount of an essential 
component of the replication machinery, leading to disturbed spa-
tiotemporal dynamics of genome duplication.

Polymerase δ mutations lead to replication-associated DNA 
lesions associated with activation of the S-phase checkpoint. The 
disturbed replication dynamics underlying cell-cycle defects in 
patients’ cells may lead to replication-associated DNA damage 
and activation of the S-phase checkpoint orchestrated by the 
Ataxia telangiectasia and Rad3-related protein (ATR) kinase (35). 

2 potential mechanisms: reduced intrinsic enzymatic activity and/
or reduced complex availability, potentially caused by increased 
degradation or disrupted assembly of the mutant complex.

To assess mutant protein stability, we used an inducible over-
expression system of each mutant and WT POLD1 and POLD2 in 
HEK293 cells and performed cycloheximide (CHX) chase exper-
iments. Our results showed that the stability of POLD2Asp293Asn 
was reduced compared with WT (Figure 2C), indicating that the 
reduced levels of polymerase δ observed in P1 cells were due to the 
identified mutation. The stability of the POLD1 mutants was pre-
served (Figure 2D). Next, we sought to evaluate whether the iden-
tified mutations affected protein-protein interactions within the 
core complex, such as the reported interactions between POLD2 
and POLD3, as well as POLD1 and POLD2. We performed co-IP 
of streptavidin-hemagglutinin–tagged (S-HA–tagged) versions 
of WT POLD2 and POLD2Asp293Asn upon inducible overexpression 
in HEK293 cells. We found a strong reduction in the interaction 
between POLD2Asp293Asn and POLD1 or POLD3 compared with WT 
POLD2 (Figure 2E). This reduced interaction was independently 
observed in a Jurkat T cell line system, in which we stably over-
expressed S-HA–tagged POLD2 WT or the POLD2Asp293Asn mutant 
and performed streptavidin-mediated pulldown using nuclear 
extracts (Supplemental Figure 2D). Collectively, our data strongly 
suggest that the interactions within the core polymerase δ complex 
subunits are probably compromised in P1.

To elucidate the effect of the POLD1 variants on the binding 
partners POLD2 and POLD3, we performed analogous experi-
ments using the HEK293-inducible overexpression system and 
co-IP WT POLD1 and the POLD1Arg1074Trp and POLD1Gln684His/Ser939Trp 
mutants (Figure 2F). In contrast to the POLD2Asp293Asn mutation, 
all POLD1 mutants showed preserved binding to the POLD2 and 
POLD3 subunits. Since we did not find aberrations at the level 
of stability or subunit interactions for any of the POLD1 mutant 
proteins, we tested whether the intrinsic enzymatic activity of 
polymerase δ complexes containing the identified mutants was 
affected. To this end, we expressed and purified WT and mutant 
heterotetrametric polymerase δ complexes in E. coli (Supplemental 
Figure 2E). Furthermore, we designed a catalytically dead mutant 
by introducing the POLD1Asp602Ala and POLD1Asp757Ala double muta-
tion affecting key aspartic acid residues involved in metal ion 
coordination. Enzymatic in vitro primer extension assays showed 
reduced polymerase activity in both examined POLD1 mutants, 
with a more severe reduction for the POLD1Gln684His/Ser939Trp mutant 
(Figure 2G). POLD2Asp293Asn showed intact activity in vitro. Collec-
tively, our results imply a defective function of the polymerase δ 
complex in P2 through loss of the polymerase activity of the com-
plex, in contrast to the POLD2Asp293Asn variant in P1, in whom loss 
of polymerase δ function results from reduced protein stability 
(Figure 2C).

Polymerase δ–deficient cells show reduced proliferation, cell-cy-
cle delay, and disturbed replication fork dynamics. As we observed 
persistent low lymphocyte counts in the patients (Figure 1B), we 
explored the connection between polymerase δ mutations and 
lymphocyte proliferation. In response to proliferative stimuli 
such as anti-CD3, anti-CD28, phytohemagglutinin (PHA), and 
PMA-ionomycin, we found that PBMC-derived polymerase δ–
deficient T cells from both patients had a reduced proliferative 
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Figure 3. Polymerase δ –deficient cells show reduced proliferation, cell-cycle delay, and disturbed replication fork dynamics. (A) T cell proliferation as mea-
sured by 48-hour thymidine incorporation upon stimulation of PBMCs with anti-CD3, PMA, PMA-ionomycin, and PHA. The hash marks separate independent 
experiments performed in P1 and P2. (B) T cell proliferation as measured by VPD450 three days after stimulation of PBMCs with anti-CD3 and anti-CD28. 
Results are representative of 2 independent experiments. (C) Cell-cycle analysis of patient and healthy control T cells as measured by BrdU incorporation. Data 
are representative of 2 independent experiments. (D) T cell proliferation as measured by VPD450 at the indicated time points after anti-CD3 and anti-CD28 
stimulation of in vitro–expanded T cells. (E) Cell-cycle analysis of patient and healthy control fibroblasts upon double-thymidine block and release. (F) Scheme 
of dual-pulse labeling in DNA fiber analysis and representative images of the fiber analysis experiment performed using patient and HD fibroblasts. Original 
magnification, ×40. Representative green tracks are marked with an asterisk. Fiber data are representative of 2 independent experiments. Number of fibers 
counted: 1859 in HDs and 1213 in P1. (G) Replication fork speed in P1 (average of 3.899 μm/min) and HD (average of 2.89 μm/min) fibroblasts as measured by 
the length of IdU tracks. Statistical significance calculated by Wilcoxon rank sum test. (H) Analysis of initiation events in P1 (12.45%) and HD (18.93%) fibro-
blasts as measured by the frequency of only IdU-labeled tracks.
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To assess whether polymerase δ deficiency leads to ATR activa-
tion, we analyzed the phosphorylation status of the ATR targets 
p-CHK1 (Ser345) and p-RPA (Ser33). CHK1 phosphorylation 
on Ser345 could be strongly induced by the replication inhibitor 
hydroxyurea, but it was already apparent under basal conditions 
in P1 primary fibroblasts (Figure 4A), indicating persistent repli-
cation stress and checkpoint activation in P1 cells at steady state. 
Furthermore, the number of p-RPA (Ser33) foci was increased 
from an average of 17 foci per nucleus in HD fibroblasts to an 
average of 26 foci in P1 fibroblasts in basal conditions (Figure 4, B 
and C). If replication stress is not processed appropriately, stalled 
forks can be converted to DNA double-stranded breaks (DSBs). To 
assess whether replication stress in P1 cells would lead to DSBs, 
we quantified γ-H2AX foci as a hallmark marker of DNA damage. 

Strikingly, in P1 fibroblasts, the average number of γ-H2AX foci 
per nucleus was increased to 18 as compared with 6 in healthy con-
trol cells under unchallenged, steady-state conditions (Figure 4, B 
and D). Polymerase δ has been reported to have a role in various 
DNA damage repair pathways such as mismatch repair (MMR), 
base excision repair (BER), nucleotide excision repair (NER), and 
DSB repair pathways (36). To determine the DNA repair capacity 
of POLD-deficient cells, we treated P1 cells with different geno-
toxic compounds. P1 fibroblasts showed no overt sensitivity to an 
array of genotoxic reagents, which suggests that, despite an unsta-
ble POLD complex, its activity was sufficient to ensure proficiency 
in specific DNA repair pathways (Supplemental Figure 4).

HR proteins such as RAD51 have well-characterized roles 
in DNA DSB repair during the S phase but have also recently 

Figure 4. Polymerase δ mutation leads to replication-related DNA lesions associated with activation of the S-phase checkpoint. (A) Immunoblot 
analysis of CHK1 phosphorylation at Ser345 in HD and P1 fibroblasts upon treatment with 2 mM hydroxyurea (HU). Total CHK1 and p-CHK1 were run on 2 
different gels. GAPDH was used as a sample-processing control. (B) Immunofluorescence staining of p-RPA (Ser33) and γH2AX in HD and P1 fibroblasts. 
Original magnification, ×40. (C) Quantification of p-RPA (Ser33) foci per nucleus. Average of p-RPA (Ser33) foci: 17.48 (HD) and 26.11 (P1). (D) Quantification 
of γH2AX foci per nucleus. Average of γH2AX foci: 5.61 (HD) and 17.71 (P1). Number of cells counted in C and D: 481 (HD) and 223 (P1). (E) Immunofluo-
rescence analysis of RAD51 foci and PCNA (S-phase marker) in HD and P1 fibroblasts. Original magnification, ×40. (F) Quantification of RAD51 foci per 
nucleus. Number of cells counted: 415 (HD) and 273 (P1). Image analysis was performed using CellProfiler, version 2.0.

https://www.jci.org
https://www.jci.org
https://www.jci.org/articles/view/128903#sd


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

8 jci.org

Polymerase δ deficiency leads to increased 53BP1 nuclear bodies 
in G1-phase cells. Under-replicated genomic loci have have been 
shown to be converted to chromatin lesions that are transmitted 
to daughter cells, resulting in G1 nuclear bodies positive for the 
DNA damage response (DDR) marker 53BP1, and these lesions 
are resolved in the next cell cycle (38, 39). Given the presence of 
replication-associated DNA damage in patients’ cells that partially 

been implicated more directly in replication processes, reveal-
ing a second role as replisome escorting factors for replica-
tion fork protection from endonucleases (37) and promotion 
of replication fork restart. Strikingly, P1 fibroblasts showed 
increased frequency of RAD51 foci (Figure 4, E and F), sug-
gesting increased activity of RAD51 under conditions of limit-
ed availability of polymerase δ.

Figure 5. Polymerase δ mutation leads to 53BP1 lesions in G1 that are rescued by transduction of WT POLD2. (A) Immunofluorescence staining of 53BP1 
and CYCA in HD and P1 fibroblasts. Original magnification, ×20. (B) Quantification of 53BP1 foci in S/G2 (CYCA+) and G1 (CYCA–) nuclei. Percentage of cells 
with more than 2 foci per nucleus, S phase: 18.3% (HD) and 42.5% (P1); G1 phase: 10.6% (HD) and 28.2% (P1). Data are representative of 3 independent 
experiments. (C) Immunofluorescence staining of 53BP1 foci and CYCA in expanded T cells from HDs, P1, and P2. Original magnification, ×20. (D) Quantifi-
cation of 53BP1 foci per nucleus from C, unstimulated or 48 hours or 72 hours after anti-CD3 and anti-CD28 stimulation. (E and F) Quantification of 53BP1 
foci in (E) S/G2 (CYCA+) and (F) G1 (CYCA–) nuclei of HD and P1 fibroblasts upon transduction with WT POLD2 or GFP control (mock). Number of cells count-
ed: 75 (HD plus mock), 192 (HD plus POLD2), 58 (P1 plus mock), and 213 (P1 plus POLD2). Data are representative of 2 independent experiments. Image 
analysis was performed using CellProfiler 2.0.

https://www.jci.org
https://www.jci.org


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

9jci.org

Since DNA instability syndromes are classically associated 
with cancer predisposition, it could be expected that the reported 
patients are likely to develop malignancies. No malignant trans-
formation has been detected in the patients described here, pos-
sibly because of largely intact monitorization of genome integri-
ty, which may instead predispose polymerase δ–deficient cells to 
cell-cycle arrest and senescence. Notably, though, T cell immu-
nodeficiency has a well-established impact on cancer risk due to 
compromised antitumour immunity and an inability to efficiently 
clear cancer-associated virus infections (42). Moreover, recent 
studies on mutational signatures across various cancer entities 
have identified a distinct mutational signature linked to the relat-
ed polymerase ε (43). Therefore, despite the cancer-free history of 
the patients described here, it is quite possible that polymerase δ 
complex–deficient patients are at heightened risk of cancer devel-
opment, and we would recommend that patients be monitored 
closely for any neoplastic changes. A reliable and quantitative 
assessment of cancer predisposition in human POLD deficiency 
will require larger cohort sizes and longer clinical follow-up.

In our study, we reveal 2 different mechanisms leading to 
polymerase δ deficiency. On the one hand, the identified POLD2 
mutant leads to severe polymerase δ complex instability, a find-
ing reminiscent of Pold3+/– heterozygous mice (18) and Pole4-null 
mice and recently reported in POLE1-deficient patients (34). The 
reduction in polymerase δ availability may restrict replication by 
interfering with the assembly of replisomes. On the other hand, 
the identified POLD1 mutants did not affect protein stability 
but affected the intrinsic polymerase activity of the complex. As 
shown in Figure 2B and Supplemental Figure 2A, both mutations 
(p.Q684H and p.S939W) found in cis were located in the vicin-
ity of, but not directly at, the polymerase active site. Our exper-
iments addressed the effect of the combined allele and not the 
relative contribution of each mutation to the POLD1 catalytic 
activity. While, presumably, the p.Q684H mutant, residing close 
to the DNA binding site, may contribute to a larger extent to cat-
alytic inactivity, such mutations may not exhibit the same severe 
phenotype as a mutation located exactly at the active site, such 
as the mouse Leu604Gly/Lys mutation. Equivalent to Leu606 
in humans, this mutation was described as homozygously lethal 
in utero in Venkatesan et al. (28) (Supplemental Figure 2A), and, 
similarly, homozygous human mutations directly affecting the 
active site of the POLD1 polymerase domain are likely to be non-
viable because of the essentiality of DNA replication.

At the cellular level, we observed increased replication fork 
speed and reduced origin firing in patients’ fibroblasts. A rela-
tionship between reduced origin activation and a compensatory 
higher fork speed has been suggested before in cells of GINS1-de-
ficient patients (33) and polymerase ε–deficient patients (34). Pre-
vious reports of patients with deficiency of the replication factor 
MCM4 did not explore the dynamics of the replication fork (44, 
45). Moreover, in our study, the S-phase checkpoint was found to 
be activated in the patients’ cells to ensure completion of faith-
ful DNA replication with limited polymerase δ complex. Stalled 
replication forks that fail to restart can be converted to DSBs. In 
our patients’ cells, DSB repair was activated through HR, appar-
ent by increased RAD51 foci. Besides its well-characterized role 
in HR, RAD51 has also been recently implicated directly in repli-

colocalized with the 53BP1 in S phase (Supplemental Figure 5A), 
we hypothesized that P1 cells may have under-replicated regions 
that would persist in G1 cells as nuclear bodies. We co-immunos-
tained cells with antibodies against 53BP1, an established DDR 
and G1 nuclear body marker, and CYCA. We observed increased 
numbers of 53BP1 nuclear bodies in G1 (CYCA–) fibroblasts from P1 
compared with HD cells (Figure 5A). We also noted that the num-
ber of cells with more than 2 foci per nucleus in P1 cells increased 
in the S and G1 phases by 42.5% and 28.2%, respectively, as com-
pared with 18.3% and 10.6%, respectively for HD cells (Figure 
5B). These data suggested that polymerase δ deficiency results in 
under-replicated regions that are transmitted to the next cell cycle 
as G1 nuclear bodies and are in line with the identification of poly-
merase δ as the driver of mitotic DNA synthesis, enabling com-
plete replication of under-replicated regions before cell division 
(40). We also assessed 53BP1 levels in expanded T cells from both 
patients and detected increased numbers of foci per cell in both 
patients compared with healthy controls, with a more pronounced 
effect in P1 (Figure 5, C and D). To test the direct causality of poly-
merase δ deficiency on the increased number of G1 nuclear bod-
ies, we stably overexpressed WT POLD2 in P1 fibroblasts. Over-
expression of POLD2 in P1 fibroblasts led to stabilization of the 
polymerase δ subunits POLD1 and POLD3 (Supplemental Figure 
5B) and rescued the G1 53BP1 foci (Figure 5, E and F, and Supple-
mental Figure 5C). Our results suggest that loss of polymerase δ 
leads to replication stress–associated immunodeficiency and neu-
rodevelopmental abnormalities in this syndrome.

Discussion
Polymerase δ is an essential eukaryotic replicative polymerase, 
however, the complexity of its activity and the function of its acces-
sory subunits are not well defined. Here, we report on 2 patients 
with biallelic mutations affecting the POLD1 and POLD2 subunits 
of polymerase δ, who presented with developmental defects and 
combined immunodeficiency (CID).

Heterozygous germline mutations in the exonuclease domain 
of POLD1 have been identified in familial colorectal cancer (19, 
41). These exonuclease domain mutations lead to the so-called 
mutator phenotype found in many human cancers (20). Fur-
thermore, heterozygous mutations in the polymerase domain of 
POLD1 have been identified in individuals presenting with MDP 
syndrome (21, 22). POLD1, consequently, has been classified as 
a tier 1 cancer gene (COSMIC database; https://cancer.sanger.
ac.uk/cosmic) with both germline and somatic variants with 
documented activity in cancer. Functionally validated somat-
ic POLD2 variants are absent from databases such as COSMIC, 
and, to our knowledge, no mutation has previously been associ-
ated with human disease. Loss-of-function intolerance scores 
for POLD1 and POLD2 indicate that both genes are not predict-
ed to present a haploinsufficient phenotype, despite the autoso-
mal-dominant phenotypes reported in the literature (19–22). In 
familial colorectal cancer, this could be explained by the hyper-
mutator phenotype, characterized by a genetic loss of function 
that leads to a functional gain of function, in which mutations in 
the proofreading domain lead to an increased mutation rate (19, 
41). However, in the case of MDP syndrome, the incomplete pen-
etrance of the syndrome remains unexplained.
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ifications (56). Generated lists of SNVs and DIVs were annotated with 
ANNOVAR (http://annovar.openbioinformatics.org/en/latest/) or 
SnpEff (SourceForge; http://snpeff.sourceforge.net/). Variants pres-
ent in 1000 Genomes Project and/or the ExAC database with a minor 
allele frequency of 0.01 or greater were excluded from further analy-
ses. We used the SIFT (57), PolyPhen-2 (58), and CADD (59) tools for 
in silico assessment of the effects of the identified mutations.

Cell culture, cell synchronization, and cell line generation. Human 
PBMCs were isolated from heparinized blood obtained from the 
patients and HDs using Ficoll-Hypaque (GE Healthcare). Expanded 
T cells were obtained upon activation of PBMCs with irradiated feed-
er cells consisting of a mixture of irradiated allogenic PBMCs and 
EBV-immortalized B cells. Expanded T cells were grown in RPMI-
1640 containing 5% human serum and IL-2 (100 U/mL). Fibroblast 
cell lines were established from skin biopsies following standard pro-
cedures. Cells were cultured at 37°C in a humidified atmosphere with 
5% CO2 in glucose-rich DMEM or RPMI-1640 containing 10%–20% 
inactivated FCS (Life Technologies, Gibco, Thermo Fisher Scientif-
ic), 50 units/mL penicillin, 50 μg/mL streptomycin, and 292 μg/mL 
l-glutamine (all from Gibco, Thermo Fisher Scientific). For cell-cycle 
synchronization, cells were grown in the presence of 2.5 mM thymi-
dine for 18 hours, released for 8 hours, and treated with 2.5 mM thymi-
dine for an additional 18 hours or treated with 0.45 μM aphidicolin for 
24 hours. pTO-SII-HA-GW vectors (60) for N-terminal S-HA–tagged 
fusion carrying human POLD2, POLD1, and mutant versions thereof 
were transfected into HEK293 Flp-In-TREx cells (Life Technologies, 
Thermo Fisher Scientific) together with a Flp recombinase expres-
sion plasmid pOG44 (Life Technologies, Thermo Fisher Scientific). 
Recombinants were selected according to the instructions supplied by 
the manufacturer, and the resulting cell lines were tested for doxycy-
cline-dependent (DOX-dependent) stable transgene expression.

Flow cytometry antibodies. The following anti-human monoclonal 
antibodies were used for flow cytometry–based immunophenotyping: 
anti–CD3-APC-H7 (clone SK7, 560176, BD Biosciences); anti–CD4-
BV605 (clone RPA-T4, 562658, BD Biosciences); anti–CD8-FITC 
(HIT8a, 555634, BD Biosciences); anti–CD45RA-AF700 (clone 
HI100, 560673, BD Biosciences); anti–CD19-PerCPCy5.5 (clone 
HIB19, 45-0199-42, Life Technologies, Thermo Fisher Scientific); 
anti–IgD-FITC (clone IA6-2, 555778, BD Biosciences); anti–CD95-PE-
Cy7 (clone DX2, 561633, BD Biosciences); anti–CD25-PE (clone 
M-A251, 555432, BD Biosciences); and anti–CCR7-PE-CF594 (clone 
150503, 562381, BD Biosciences).

Immunoblot analysis. Total protein was extracted from cell lines, 
PBMCs and primary fibroblasts from the affected subjects and healthy 
controls. Cell lysates were separated by SDS-PAGE and transferred 
onto PVDF or nitrocellulose membranes. Blots were probed overnight 
with primary antibodies. Primary antibodies (1:1000 dilution except 
if indicated otherwise) included anti-POLD1 (1:500; sc-17776, Santa 
Cruz Biotechnology); anti-POLD2 (HPA026745, MilliporeSigma); 
anti-POLD3 (A301-244A-M, Bethyl Laboratories); anti-CYCA (sc-751, 
Santa Cruz Biotechnology); anti-GAPDH (sc-32233, Santa Cruz Bio-
technology); anti-p44/42 MAPK (ERK1/2) (4695, Cell Signaling Tech-
nology); anti–p-p44/42 MAPK (ERK1/2) (Thr202/Tyr204) (4370, Cell 
Signaling Technology); anti–p-CHK1 (Ser345) (2348, Cell Signaling 
Technology); anti-CHK1 (sc-56291, Santa Cruz Biotechnology); and 
anti-HA (H6533, MilliporeSigma). Antibody binding was detected by 
ECL (Amersham Pharmacia-Biotech).

cation fork protection from endonucleases (37) and in replication 
fork restart in yeast as an alternative mechanism for polymerase 
δ–dependent fork restart (46). Therefore, these mechanisms may 
also be activated in polymerase δ deficiency.

Immunodeficiency associated with DSB repair stems, in many 
cases, from the necessity of antigen receptor rearrangement (47). 
However, a separate group of deficiencies is emerging in which 
immunodeficiency is caused by depletion of essential DNA repli-
cation factors. Of note, 2 families with mutations in the replicative 
polymerase ε have been described as presenting with a CID with 
decreased lymphocyte proliferation (48, 49). In patients with poly-
merase δ mutations, we found a reduced lymphocyte expansion 
capacity, which could be explained by activation of the S-phase 
checkpoint and an increase in replication-related DNA lesions, 
such as 53BP1 G1 nuclear bodies, which are known to localize to 
under-replicated loci. Although rapid lymphocyte expansion pro-
cesses may make them more vulnerable to replication stress, it is 
interesting to note that lymphocytes have been previously shown 
to suppress p53 and ATR during the germinal center reaction in 
order to tolerate replicative stress (50, 51), but it is unclear whether 
these mechanisms are active in expanding human peripheral lym-
phocytes. Moreover, replication timing experiments have shown 
that the replication program in lymphocytes differs significantly 
from that in fibroblastic cell lines (52).

Overall, our findings define what we believe to be a novel genet-
ic syndrome caused by polymerase δ deficiency and reveal a previ-
ously undefined role, to our knowledge, of polymerase δ in neurode-
velopment and lymphocyte biology. Future research will shed light 
on the differential regulation of checkpoint activation and replica-
tion timing in lymphocytes versus other cell types. Replisome com-
ponents have emerged as key determinants of adaptive immunity 
that should be systematically analyzed in the context of syndromic 
immunodeficiency.

Methods
SNP array genotyping. For P1, homozygosity mapping was performed 
using the Affymetrix 6.0 SNP array according to the Affymetrix 
Genome-Wide Human SNP Nsp/Sty 6.0 protocol. Genotype call-
ing was performed using Affymetrix Genotyping Console software. 
Detection and annotation of the homozygous intervals were per-
formed using HomozygosityMapper (53) and PLINK (http://pngu.
mgh.harvard.edu/~purcell/plink/) (54).

Exome sequencing and panel sequencing. For P1, exome sequencing 
was performed using the TrueSeq Exome Enrichment Kit (Illumina). 
A multiplexed pool of 12 samples was sequenced on 4 lanes of the Illu-
mina HiSeq2000 sequencing platform in 100-bp paired-end mode. 
P2 was sequenced using a custom-designed targeted enrichment 
(Haloplex) approach for a panel of 356 genes, including 248 known IEI 
genes and IEI candidate genes (design 082014) as described before 
(23). Reads were demultiplexed and aligned using Burrows-Wheeler 
Aligner (BWA) software (SourceForge; http://bio-bwa.sourceforge.
net/) to the human reference genome assembly GRCh37 (UCSC 
hg19). Insertion-deletion realignment was performed as well as reca-
libration based on Genome Analysis Toolkit (GATK) quality scores 
(55). To call single nucleotide variants (SNVs) and deletion-insertion 
variants (DIVs), UnifiedGenotyper and GATK Variant quality score 
recalibration was performed as described previously, with minor mod-
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P200 using Amicon concentrators (MilliporeSigma). WT and mutant 
amounts were normalized based on Coomassie staining.

Primer extension enzymatic assay. The reaction buffer contained 
40 mM Tris-HCl (pH 7.4), 4 mM MgCl2, 0.1 mg/mL BSA, 5 mM 
DTT, 25 μM of each dNTP and 10 nM 5′ end–labeled primer-template 
DNA duplex. Reactions were incubated for the indicated durations at 
37°C and stopped by the addition of 95% formamide. Samples were 
resolved on a 15% polyacrylamide TBE-urea gel, and reaction products 
were visualized following imaging on a PhosphorImager (Molecular 
Dynamics). The following oligonucleotides were used as a substrate 
for the reaction as described by Weedon et al. (21): 5′-CGCGC-
CGAATTCCCGCTAGCAAT-3′ and 5′-GCGCGGAAGCTTGGCTG-
CAGAAGATTGCTAGCGGGAATTCGGCGCG-3′.

Fiber assay. DNA fiber labeling was done as described previously 
(64). Briefly, patients’ and HD fibroblasts were pulsed labeled with 25 
μM CldU for 20 minutes and subsequently pulse labeled with 250 μM 
IdU for another 20 minutes. After labeling, cells were washed twice 
with ice-cold PBS, trypsinized, and harvested in cold PBS. Subsequent-
ly, cells were lysed with spreading buffer (200 mM Tris-HCl, pH 7.4, 
50 mM EDTA, 0.5% SDS) onto microscope slides that were tilted to 
allow spreading of the DNA fibers. Next, samples were fixed in metha-
nol–acetic acid for 10 minutes and air dried. Immunostaining of CldU 
and IdU on acid-treated DNA fibers was performed using rat anti-
BrdU monoclonal antibody (1:1000; AbD Serotec) and mouse anti-
BrdU monoclonal antibody (1:750; BD). Secondary antibodies used 
were Alexa Fluor 555–conjugated goat anti–rat IgG (1:500; Molecular 
Probes) and Alexa Fluor 488–conjugated goat anti–mouse IgG (1:500; 
Molecular Probers). Fibers were imaged using the Axio Imager M2-1 
(Zeiss) or a Deconvolution Microscope (Leica) with a ×63 objective. 
Image analysis was performed with ImageJ software (NIH).

Transduction of patient-derived fibroblasts with WT POLD2. The 
pMIG vector containing S-HA–tagged GFP or WT POLD2 was pack-
aged into VSV-G pseudotyped retroviral particles. Patient and healthy 
control fibroblasts were pretreated with polybrene (0.5 μg/mL; Milli-
poreSigma) and infected with retrovirus. Eighteen hours after infec-
tion, the medium was replaced with fresh culture medium, and the 
cells were monitored for GFP expression.

Co-IP. Co-IP was performed using DOX-inducible HEK293-FlpIn 
cells treated with 1ug/ml doxycycline for 24 hours. After lysis and son-
ication in buffer I (50 mM HEPES, pH 8.0, 150mM NaCl, 5 mM EDTA, 
0.5% NP-40, 50 mM NaF, 1 mM Na3VO4, 1mM PMSF) and complete 
protease inhibitor cocktail (MilliporeSigma), IP was performed with 
anti-HA beads (A 2095, Milli-poreSigma), followed by 4 washes with 
buffer I and boiling of beads in SDS-PAGE sample buffer.

For nuclear pulldown assays, stably transduced Jurkat E6.1 cells 
were subjected to subcellular fractionation essentially as described 
previously (65). Nuclear extract was used for pulldown with Strep-Tac-
tin agarose beads (2-1201-010, IBA), and bound proteins were eluted 
with 2.5 mM D-Biotin (A14207/L05109, Alfa Aesar).

Protein modeling and visualization of mutated residues. The POL-
D2Asp293Asn mutant was modeled using the POLD2-POLD3 crystal 
structure (PDB 3E0J, ref. 66) as a template, introducing the mutation 
with Coot (67). A model of human POLD1 was generated with the 
Swiss model suite (68), using as a template the yeast POL3 structure 
(PDB ID 3IAY, chain A) (27), which bears a 50% sequence identity with 
human POLD1. The resulting model comprises residues 81–984 of the 
human protein. The POLD1Q684H and POLD1S939W mutants were 

T cell proliferation assays. Thymidine incorporation assays were 
performed as described previously (61). Flow cytometric analysis of 
cell division of PBMCs was performed using BD Horizon VPD450 
according the manufacturer’s instructions.

Cell-cycle analysis. An assay for BrdU incorporation into patients’ T 
cells was performed using the FITC BrdU Flow Kit from BD Pharmin-
gen (catalog 559619) following the manufacturer’s instructions.

Immunofluorescence. Fibroblasts were seeded onto glass coverslips 
and cultured for at least 24 hours with or without 0.45 μM aphidicol-
in. After washing with PBS, cells were fixed in either methanol or 4% 
paraformaldehyde and permeabilized with PBS containing 0.1% Triton 
X-100. Cells were blocked with PBS containing 4% BSA at room tem-
perature and subsequently incubated with primary antibodies. Cells were 
incubated with primary anti-p-RPA (Ser33) (1:400; A300-246A-T, Beth-
yl Laboratories Inc), anti-γH2AX (1:400; 05-636, Millipore), anti-PCNA 
(1:400; 13110, New England Biolabs), anti-53BP1 (1:400; 612522, BD 
Biosciences), anti-RAD51 (1:400; PC130, Merck Millipore) and anti-CY-
CA (1:1000; sc-751, Santa Cruz Biotechnology) antibodies at 4°C over-
night. Cells were then washed and incubated with secondary antibod-
ies for 1 hour (Alexa Fluor 488–conjugated goat anti–rabbit IgG, Alexa 
Fluor 555–conjugated goat anti–mouse IgG and Alexa Fluor 647-con-
jugated goat anti-rabbit IgG; Thermo Fisher Scientific). GFP-Booster 
(ATTO448; ChromoTek) was used to increase the GFP signal in trans-
duced fibroblasts. Nuclei were stained with DAPI at room temperature 
for 15 minutes. Coverslips were mounted in Fluorescent Mounting Medi-
um (Dako). Images were acquired with an Axio Imager M2-1 (Zeiss) or a 
Deconvolution Microscope (Leica) using a ×40 objective. Quantification 
of p-RPA, γH2AX, CYCA, 53BP1, and RAD51 foci was performed using 
CellProfiler image analysis software (https://cellprofiler.org/) (62).

Plasmids. For stable transduction, cDNA encoding for WT human 
POLD2 was subcloned into a bicistronic retroviral pMMP vector under 
the control of a CMV promoter coexpressing POLD2 and the eGFP 
marker gene via an internal ribosome entry site (IRES) sequence. The 
Q5 Site-Directed Mutagenesis Kit (New England Biolabs) was used 
to generate all POLD2 and POLD1 mutants in the respective plas-
mids. The vectors for bacterial expression (pET303-hpold1 and pCO-
LA-hPold234) were a gift from Yoshihiro Matsumoto (University of 
New Mexico, Albuquerque, New Mexico, USA). For inducible expres-
sion, human POLD1, POLD2, or POLD3 and mutant versions thereof, 
as well as GFP control cDNA, were subcloned into pTO-SIIHA-GW 
vectors for N-terminal S-HA–tagged fusion, using gateway recombi-
nation as described previously (63). The Q5 Site-Directed Mutagen-
esis Kit (New England Biolabs) was used to generate all POLD2 and 
POLD1 mutants in the respective plasmids.

Recombinant polymerase δ complex purification. The WT poly-
merase δ and the identified mutants were purified as follows. The 
pET303-hPOLD1 plasmid and the pCOLA-234 plasmid encoding 
POLD2, POLD3, and POLD4 were cotransformed into Rosetta2 cells 
by electroporation. Protein expression was induced in mid-log–phase 
cells grown at 16°C by the addition of 1 mM β-d-1-thiogalactopyra-
noside (IPTG), and the cells were collected 16 hours later. Cells were 
lysed using a French Press in P200 buffer (40 mM HEPES, pH 7.5, 
10% glycerol, 200 mM NaCl, 0.2 mM PMSF, 1 mM benzamidine, 0.1% 
Triton X-100), and the crude extract was incubated with nickel-NTA 
beads (QIAGEN), to which polymerase δ was bound via the polyhis-
tidine tag on the p12 subunit. Bound enzyme was eluted with P200 
supplemented with 600 mM imidazole, and buffer exchanged back to 
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formed immunoblotting, drug sensitivity, fiber assay, and immuno-
fluorescence experiments, and analyzed and interpreted the data. 
KLW performed cell fractionation and co-IP experiments. A. Krolo 
analyzed P2 genetics data. KB provided clinical data from P2 and, 
together with SB, A. Kiykim, EKA, AO, LK, and EFW, interpreted 
clinical data for both P1 and P2. EG performed protein purification 
and protein modeling studies. ES identified the POLD2 mutation 
in P1 and performed T cell signaling analysis. HI performed the Ig 
mutation analysis. WFP performed the thymidine incorporation 
assay. MVFB, GSF, JM, and JIL provided scientific input. 
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modeled with Coot. The structure representations were generated 
with PyMOL (Molecular Graphics System, version 2.0, Schrödinger).

Repertoire sequencing using next-generation sequencing. Ig heavy chain 
transcripts (IGH) were amplified from PBMC cDNA in a multiplex PCR 
and then purified and sequenced using Roche 454 sequencing as pre-
viously described (69). Sequences were demultiplexed on the basis of 
their multiplex identifier sequence, and 10 nucleotides were trimmed 
from both sides to remove the primer sequence using the ARGalaxy tool 
(70). Fasta files were uploaded into IMGT/High-V-Quest (71), and sub-
sequently, the IMGT output files were analyzed using ARGalaxy (69). 
Only productive sequences that were complete, without ambiguous 
bases, present 2 or more times, with a C subclass that could be defined, 
were included in the analysis as a single sequence.

Real time quantitative PCR. RNA was extracted from freshly isolated 
or frozen PBMCs using the RNeasy Kit (QIAGEN), and reverse transcrip-
tion was performed using Reverse Transcriptase from Promega using both 
oligo-DT and random hexamer primers. Quantitative real time PCR for 
POLD1 and POLD2 mRNA expression was performed using Kappa Sybr 
Fast qPCR MasterMix ABI Bioprism (Kapa Biosystems) on a 7900HT 
Fast Real-Time PCR System (Applied Biosciences). The intron-spanning 
primers POLD1 (5’-TCTCCTCCATCAGTGCCAG-3’ and 5’-AAACGCT-
GTTTGAAGCGG-3’) and POLD2 (5’-GCTGCAGTTCACACAGCTTC-3’ 
and 5’-TATGCCCACATTTATGCCAC-3’) were used. Relative RNA 
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