Supplementary Information

Supplementary Figure S1. TrkA reporter activity after stress fracture. (A,B) High magnification images of Xgal stained sections among TrkA-LacZ reporter animals, including (A) uninjured control and (B) callus at d14 post-injury. (C) Negative control confirming absence of staining in a LacZ⁻ fracture callus. (D) Quantification of TrkA-LacZ reporter activity, comparing d14 post-fracture to uninjured control. In graphs, each dot represents a single sample, with sample number stated below. Black scale bar: $20 \mu m$. †† P < 0.01 in comparison to uninjured control as determined using a two-way Student's t-test.

Supplementary Figure S2. Validation of 1NMPP1 inhibition of NGF mediated DRG derived dendrite growth *in vitro*. Dissociated DRG neuron cultures were established from TrkA^{F592A} animals (e13.5) and cultured for 96 h with 1NMPP1 (0.5 or 2 μM) or vehicle control (DMSO with PBST (0.25% Tween20 in PBS)) with or without recombinant Nerve growth factor (NGF, 50 ng/mL). Immunofluorescent staining for neurofilament demonstrates dendrite growth with NGF, which is completely inhibited by the presence of 1NMPP1. Experiment was performed in a single replicate.

Supplementary Figure S3. Validation of 1NMPP1 inhibition of TrkA phosphorylation within the dorsal root ganglia (DRG) *in vivo*. The small molecule 1NMPP1 (17 μg/g BW IP) or vehicle control (50% DMSO and 50% PBST (0.25% Tween20 in PBS)), was administered to TrkA^{F592A};Thy1-YFP animals (male, 15 week old). Bilateral DRG were pooled (L2-L5) from each animal and protein was immediately isolated for analysis of phospho-TrkA by Western blot. Each lane represents pooled lumbar DRGs from a single animal. Experiment was performed in two replicates.

Supplementary Figure S4. Lack of cortical bone phenotype in uninjured forelimbs of 1NMPP1-treated TrkA 592A animals. Analysis of uninjured forelimbs among TrkA^{F592A};Thy1-YFP mice treated with 1NMPP1 or vehicle control for 7 d. (**A,B**) μCT images of mid-diaphysis of uninjured forelimb of TrkA^{F592A};Thy1-YFP mice treated with 1NMPP1 or vehicle control, including (**A**) three dimensional μCT reconstruction and (**B**) axial cross-sectional images. (**C-F**) Quantitative μCT analysis of the ulnar mid-diaphysis among TrkA^{F592A};Thy1-YFP mice treated with 1NMPP1 or vehicle control, including (**C**) Bone Mineral Density (BMD), (**D**) Cortical Area (Ct.Ar), (**E**) Cortical Thickness (Ct.Th), and (**F**) polar Moment of Inertia (pMOI). For all graphs, each dot represents a single sample, with each sample number stated below. Black scale bar: 500 μm; white scale bar: 1mm. u: ulna; r: radius. No statistically significant differences as determined using a two-way Student's *t*-test.

Supplementary Figure S5. Lack of stress fracture phenotype in 1NMPP1-treated wildtype animals. (A-C) μCT images of ulnar stress fracture healing among C57BL/6J mice treated with 1NMPP1 or vehicle control at d7 post-injury. (A) μCT reconstructions, (B) coronal cross sectional images, and (C) axial cross sectional images are shown. u: ulna; r: radius. (D-F) Quantitative μCT analysis of the ulnar stress fracture after 7d among C57BL/6J mice treated with 1NMPP1 or vehicle control, including (D) Bone Volume (BV), (E) Tissue Volume (TV), and (F) Bone Mineral Density (BMD). For all graphs, each dot represents a single sample, with each sample number stated below. Black scale bar: 500 μm; white scale bar: 1mm. u: ulna; r: radius. No statistically significant differences as determined using a two-way Student's *t*-test.

Supplementary Figure S6. Paclitaxel (PTX) induces a peripheral sensory neuropathy. (A-

C) Intra-epidermal nerve fiber loss among PTX-treated animals in comparison to control, including (**A,B**) representative pan-neuronal PGP9.5 immunohistochemical staining, appearing green, and (**C**) quantification of PGP9.5⁺ nerve fiber frequency. (**D-F**) Peptidergic intra-epidermal nerve fiber loss among PTX-treated animals, including (**D,E**) representative Calcitonin gene-related peptide (CGRP) immunohistochemical staining, appearing yellow, and (**F**) quantification of CGRP⁺ nerve fiber frequency. (**G**) Thermal withdrawal latency among control-or PTX-treated animals. Immunofluorescent images are presented as Imaris surface renderings. For all graphs, each dot represents a single sample, with sample numbers stated below. † P<0.05 in comparison to control as determined using a two-way Student's t-test. White scale bar: 20 μ m.

Supplementary Figure S7. Lack of cortical bone phenotype in uninjured forelimbs of mice with Paclitaxel (PTX)-induced sensory neuropathy. Analysis of uninjured forelimbs of PTX-or control-treated mice. Analysis performed at the study endpoint using uninjured, contralateral limbs. (A,B) μCT images of mid-diaphysis of uninjured forelimb, including (A) three dimensional reconstruction and (B) axial cross-sectional images. (C-F) Quantitative μCT analysis of the ulnar mid-diaphysis among PTX- and control-treated mice, including (C) Bone Mineral Density (BMD), (D) Cortical Area (Ct.Ar), (E) Cortical Thickness (Ct.Th), and (F) polar Moment of Inertia (pMOI). For all graphs, each dot represents a single sample, with each sample number stated below. Black scale bar: 500 μm; white scale bar: 1mm. u: ulna; r: radius. No statistically significant differences as determined using a two-way Student's *t*-test.

Supplementary Figure S8. Method of screening for displaced fractures. High resolution roentgenography (XR, Faxitron Bioptics, LLC, Tucson, AZ) assessed for either a displaced ulnar fracture and/or combined radial/ulnar fracture which occurred in a small minority of cases. These were discarded without analysis. (A) Displaced and combined radial/ulnar fracture (day 7 post injury shown). (B) For comparison, normal XR appearance of ulnar stress fracture at day 7 post injury, with intact bone and a localized callus most prominent on the ulnar aspect of the middiaphysis.

Supplementary Figure S9. Validation of Thy1-YFP reporter activity without antibody detection. No antibody detection was required to visualize fine nerve fibers using the Thy1-YFP reporter animal. Incubation was performed with anti-GFP antibody on Thy1-YFP reporter sections (day 14 fracture callus), followed by confocal microscopy and spectral unmixing to detect endogenous YFP reporter activity (**A**) or the exogenous fluorophore (Alexa Fluor 488) (**B**). No difference in nerve frequency or distribution was seen. Representative images are shown, representing triplicate experimental replicates. White scale bar: 50 μm.

Supplementary Table S1. Mouse lines used.

C57BL/6J	Jackson Laboratory, Stock #000664
NGF-eGFP	Donated from Kawaja laboratory
Thy1-YFP	Jackson Laboratory, Stock #003709
TrkA-LacZ	Jackson Laboratory, Stock #004837
TrkA ^{F592A}	Donated from Ginty laboratory, Jackson Laboratory, Stock #022362

Supplementary Table S2: Loading parameters by strain

Genotype	Gender	Age	Ultimate Force	Displacement
	(M/F)	(wks)	$(\pm SD)(N)$	Constant (±SD) (mm)
C57BL/6J	M	18	-4.598 (±0.231)	-0.909 (±0.249)
NGF-eGFP	M	18	-4.616 (±0.325)	-0.945 (±0.333)
Thy1-YFP	M	18	-4.392 (±0.811)	-0.820 (±0.149)
TrkA-LacZ	M	18	-4.374 (±0.526)	-0.867 (±0.102)
TrkA ^{F592A} ;Thy1-YFP	M	18	-4.392 (±0.391)	-0.738 (±0.053)

Supplementary Table S3: Antibodies used.

Name	Vendor	Catalog No.	Concentration	
Anti-β-actin	Cell Signaling	3700S	1:2000	WB
Anti-CD31	Abcam	ab28364	1:100	IF
Anti-CD45	BioLegend	103144	1:200	IF
Anti-CD68	Abcam	ab955	1:200	IF
Anti-CD117	LSBio	C177669	1:200	IF
Anti-CGRP	Sigma Aldrich	C8198	1:200	IF
Anti-F4/80	Abcam	ab204467	1:200	IF
Anti-GFP	Invitrogen	A21311	1:200	IF
Anti-Ly-6G	BioLegend	127636	1:200	IF
Anti-Neurofilament	ThermoFisher	MA1-10041	1:1000	IF
Anti-Osteocalcin	Abcam	ab93876	1:200	IF
Anti-PDGFRα	Abcam	ab15501	1:200	IF
Anti-PDGFRß	Abcam	ab32570	1:200	IF
Anti-PGP 9.5	Biorad	7863-0504	1:200	IF
Anti-TH	EMD Millipore	e AB152	1:200	IF
Anti-TRAP	Abcam	ab212723	1:500	IF
Anti-pTrkA	Cell Signaling	4619	1:1000	WB
Anti-TUBB3	Abcam	ab18207	1:1500	IF
Anti-Vimentin	Abcam	ab194719	1:200	IF
Goat Anti-Mouse IgG	Abcam	ab150119	1:200	IF
Goat Anti-Rabbit IgG	Vector	DI-1594	1:200	IF