## **Supplemental Information:**

## Figure S1



Supplemental Figure 1. Classically activated macrophages are down-regulated in IPF BAL cells. (A) *TNF* (B) and *NOS2* mRNA expression in BAL cells from normal (n = 6-7) or IPF subjects (n = 5-6). (C) Cell differential from saline and bleomycin-exposed WT mice at indicated time points (n = 3-5 per time point). (D) TNF- $\alpha$  was measured in BALF from saline (n = 9) or bleomycin-exposed mice (n = 8). (E) *Nos2* mRNA expression in BAL cells from saline (n = 6) or bleomycin-exposed mice (n = 6). \*, p < 0.05; \*\*\*, p < 0.0001. Values shown as mean  $\pm$  S.E.M. Two-tailed *t*-test statistical analysis was utilized for a, b, d, e. One-way ANOVA followed by Tukey's multiple comparison test was utilized for c.



**Supplemental Figure 2. GGOH promotes lung fibrosis in the absence of injury.** (A) Immunoblot analysis in the cytoplasmic fraction from macrophages expressing empty or Rac1<sub>WT</sub> treated with vehicle or GGOH (50  $\mu$ M). (B) Transfected THP-1 cells were treated with vehicle or GGOH and separated into aqueous (unprenylated) or detergent (prenylated) fractions. Mitochondrial Rac1 activity in transfected THP-1 cells expressing (C) empty, Rac1<sub>WT</sub>, or Rac1<sub>C189S</sub> and (D) scramble or GGDPS siRNA and empty or Rac1<sub>WT</sub>. mRNA expression for (E) *Tgfb1* (n = 3), (F) *Retnla* (n = 3) and (G) *Pdgfb* (n = 3) in MH-S cells expressing empty or Rac1<sub>WT</sub> treated with vehicle or GGOH. Ten days after exposure of WT mice to saline or bleomycin, pumps containing vehicle or GGOH were implanted subcutaneously; mice were sacrificed 11 days later. (H) Total number of cells and (I) cell differential from BAL (n = 5 per

group). (J) Cytoplasmic Rac1 immunoblot analysis in isolated monocyte-derived macrophages. mRNA expression for (**K**) *Pdgfb*and (**L**) *Retnla* (saline, vehicle n = 4; saline, GGOH n = 6; bleomycin, vehicle n = 6; bleomycin, GGOH n = 4). (**M**) Rac1 activity and (**N**) *Tgfb1*and (**O**) *Col1a1*mRNA expression in tissue isolated from saline-exposed WT mice treated with GGOH via osmotic pumps (n = 4 per group). Hydroxyproline analysis of (**P**) liver and (**Q**) kidney (n = 5per group). WT mice were exposed to TiO<sub>2</sub> or chrysotile asbestos, pumps containing vehicle or GGOH were implanted subcutaneously 10 days after exposure; mice were sacrificed 11 days later. Rac1 immunoblot analysis in isolated monocyte-derived macrophages from (**R**) mitochondrial and (**S**) cytoplasmic fractions. (**T**) Representative lung histology with Masson's Trichrome staining (n = 5 per group) with 2.5x magnification and (**U**) hydroxyproline content (n= 4-5 per group). \*\*, p < 0.001; \*\*\*, p < 0.001. Values shown as mean ± S.E.M. One-way ANOVA followed by Tukey's multiple comparison test was utilized.



Supplemental Figure 3. GGOH-mediated lung fibrosis requires monocyte-derived macrophages. (A) Immunoblot analysis in alveolar epithelial cells (AECs) isolated from vehicle or GGOH treated mice (vehicle, n = 4; GGOH, n = 5). (B) RhoA and (C) Rac1 activity in AECs isolated from WT mice exposed to saline or bleomycin, 10 days after exposure pumps containing vehicle or GGOH were subcutaneously implanted; mice were sacrificed 11 days later. Ten days after exposure of WT mice to saline or bleomycin, pumps containing vehicle or GGOH were subcutaneously implanted; mice were sacrificed 11 days later of GGOH were subcutaneously implanted; mice were sacrificed 11 days later of GGOH were subcutaneously implanted; mice were sacrificed 11 days later of GGOH were subcutaneously implanted; mice were sacrificed 11 days later of GGOH were subcutaneously implanted; mice were sacrificed 11 days later of GGOH were subcutaneously implanted; mice were sacrificed 11 days later of GGOH were subcutaneously implanted; mice were sacrificed 11 days later of GGOH were subcutaneously implanted; mice were sacrificed 11 days later of GGOH were subcutaneously implanted; mice were sacrificed 11 days later. (D) Gating strategy used for flow

cytometry to sort monocyte populations in bleomycin-exposed WT mice treated with GGOH. (E) Rac1 and (F) Rac2 activity from F4/80<sup>+</sup>, CD11b<sup>+</sup>, and Ly6G<sup>-</sup> sorted cells from salineexposed WT mice treated with GGOH via osmotic pump (n = 4 per group). (G) MCP-1 measured in BALF (n = 5-10 per group). WT and  $CCR2^{-/-}$  mice were exposed and treated as described above. (H) Hydroxyproline in lung tissue (n = 3 per group). (I) Caspase-3 activity in isolated AECs (n = 4-6 per group). \*\*, p < 0.001; \*\*\*, p < 0.0001. Values shown as mean  $\pm$ S.E.M. One-way ANOVA followed by Tukey's multiple comparison test was utilized. Figure S4



**Supplemental Figure 4. GGOH promotes profibrotic polarization of macrophages.** (A) Immunoblot analysis in the nuclear fraction from macrophages treated with vehicle or GGOH ( $50 \mu$ M). (**B**) MtROS generation in transfected THP-1 cells treated with vehicle or GGOH (n = 3). (**C**) Immunoblot analysis in transfected MH-S cells. (**D**) Immunoblot analysis in transfected MH-S cells treated with vehicle or mitoTEMPO ( $10 \mu$ M). (**E**) *Retnla* promoter activity in transfected MH-S cells treated with vehicle or GGOH. mRNA expression for (**F**) *Retnla* (n = 3), (**G**) *Tnf*(n = 3) and (**H**) *Nos2* (n = 3) in transfected MH-S cells (n = 3). mRNA expression for (**I**) *Chil3*(n = 3), (**J**) *Arg1* (n = 3), (**K**) *Tnf* (n = 3) and (**L**) *Nos2* (n = 3) in THP-1 cells expressing scramble or GGDPS siRNA and empty or Rac1<sub>WT</sub>. \*\*, p < 0.001; \*\*\*, p < 0.0001. Values shown as mean  $\pm$  S.E.M. One-way ANOVA followed by Tukey's multiple comparison test was utilized.



Supplemental Figure 5. Inhibition of Rac1 geranylgeranylation increases GGDP levels in BAL cells. (A) Immunoblot analysis in transfected MH-S cells treated with vehicle or GGOH. (B) GGDP levels in WT and *Rac1<sup>-/-</sup>Lyz2-cre* mice exposed to saline or bleomycin (WT, saline n = 4; WT, bleomycin n = 3; *Rac1<sup>-/-</sup>Lyz2-cre*, saline n = 3; *Rac1<sup>-/-</sup>Lyz2-cre*, bleomycin n = 5). (C) Total cholesterol levels in MH-S cells treated with vehicle, GGOH, or bleomycin (n = 3). (D) Immunoblot analysis in nuclear extract of THP-1 cells expressing constitutively active Rac1 (Rac1<sub>CA</sub>) or dominant negative Rac1 (Rac1<sub>DN</sub>). \*, p < 0.05; \*\*, p < 0.001. Values shown as mean  $\pm$  S.E.M. One-way ANOVA followed by Tukey's multiple comparison test was utilized.



Supplemental Figure 6. Rac1 is expressed in AECs from *Rac1<sup>-/-</sup>Lyz2-cre* mice. Rac1 immunoblot analysis in (A) alveolar epithelial cells (AECs) and (B) neutrophils isolated from WT and *Rac1<sup>-/-</sup>Lyz2-cre* mice. (C) Ten days after exposure of WT and *Rac1<sup>-/-</sup>Lyz2-cre* mice to saline or bleomycin, pumps containing vehicle or GGOH were subcutaneously implanted; mice were sacrificed 11 days later. Rac2 activity in BAL cells (n = 5). Ten days after exposure of WT or *Akt1<sup>-/-</sup>Lyz2-cre* mice to saline or bleomycin, daily i.p. injections of simvastatin (20 mg/kg/day) were performed. Mice were sacrificed 11 days later. (D) Rac1 activity and (E) immunoblot analysis was performed in isolated BAL cells (n = 2-4 per group). (F) Hydroxyproline analysis (n = 4 per group). \*\*\*, p < 0.0001. Values shown as mean  $\pm$  S.E.M. One-way ANOVA followed by Tukey's multiple comparison test was utilized.