

2 Supplemental Figure 1. Major phenotypes of FMCD reversed by mTOR inhibitor

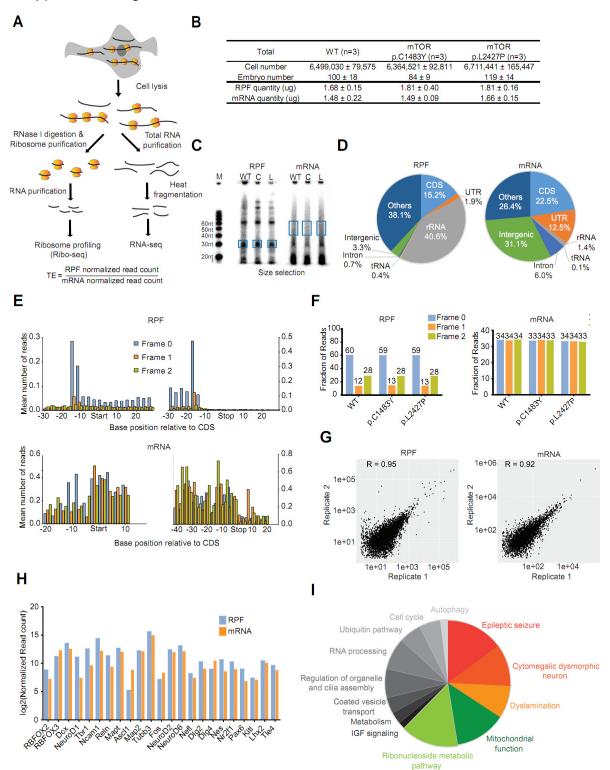
3 rapamycin in FMCD mice.

4 (A) Representative immunofluorescence images of migration of *in utero* electroporated neurons. GFP-positive cells represent mTOR WT (WT), mTOR p.C1483Y (p.C1483Y), and mTOR 5 6 p.L2427P (p.L2427P) carrying cortical neurons from vehicle-treated (top) and rapamycin-treated (bottom) FMCD mice at E18. ** P < 0.01 and *** P < 0.001 (WT-vehicle: n = 9, p.C1483Y-7 8 vehicle: n = 9, p.L2427P-vehicle: n = 11, WT-rapamycin: n = 8, p.C1483Y-rapamycin: n = 9, 9 p.L2427P-rapamycin: n = 5, one-way analysis of variance [ANOVA] with Bonferroni post-hoc 10 test). Scale bars, 200 um. Mean ± SEM. CP: cortical plate, IZ: intermediate zone, SVZ/VZ: 11 subventricular/ventricular zone.

12	(B) Cumulative graph of the percentages of spontaneous seizures elicited in the mTOR-p.C1483Y
13	(p.C1483Y) and p.L2427P (p.L2427P) FMCD mice (left) (mTOR-p.C1483Y: $n = 24$, mTOR-
14	p.L2427P: n = 29).
15	(C) Representative neocortical electroencephalographic activity of epileptic seizures in FMCD
16	adult mice (P56-P140).
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	

1 uz J

36 Supplemental Figure 2. Aberrant activation of mTOR kinase reversed by mTOR inhibitor

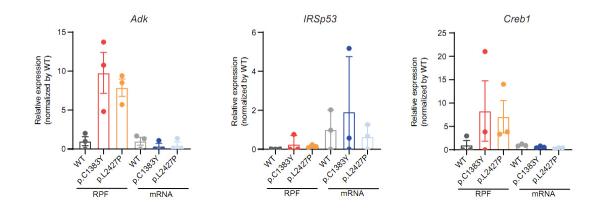

37 rapamycin in FMCD mice.

38 (A) Representative immunofluorescence staining of p-S6 (Ser240/244) and p-4E-BPs (Thr37/46) 39 in GFP-positive cells from vehicle-treated (top) and rapamycin-treated (bottom) FMCD mice at 40 E18. GFP expressing cells positive for each marker were quantified in the average of two to five representative cortical regions. *** P < 0.001 (WT-vehicle: n = 9, p.C1483Y-vehicle: n = 9, 41 p.L2427P-vehicle: n = 11, WT-rapamycin: n = 8, p.C1483Y-rapamycin: n = 9, p.L2427P-42 43 rapamycin: n =5, one-way ANOVA with Bonferroni post-hoc test). For p-S6, scale bars = 10 um 44 and for p-4E-BPs, scale bars = 25 um. 45 (B) Representative immunofluorescence staining of p-S6 (Ser240/244) and p-4E-BPs (Thr37/46) 46 in GFP-positive cells from vehicle-treated (top) and rapamycin-treated (bottom) adult FMCD mice 47 (P56-P140). GFP expressing cells positive for each marker were quantified in the average of two to five representative cortical regions. *** P < 0.001 (n = 5 in each group, one-way ANOVA with 48 49 Bonferroni post-hoc test). Scale bars, 25 um. 50

50

51

- 52
- 53
- 54
- 55
- 56
- 57

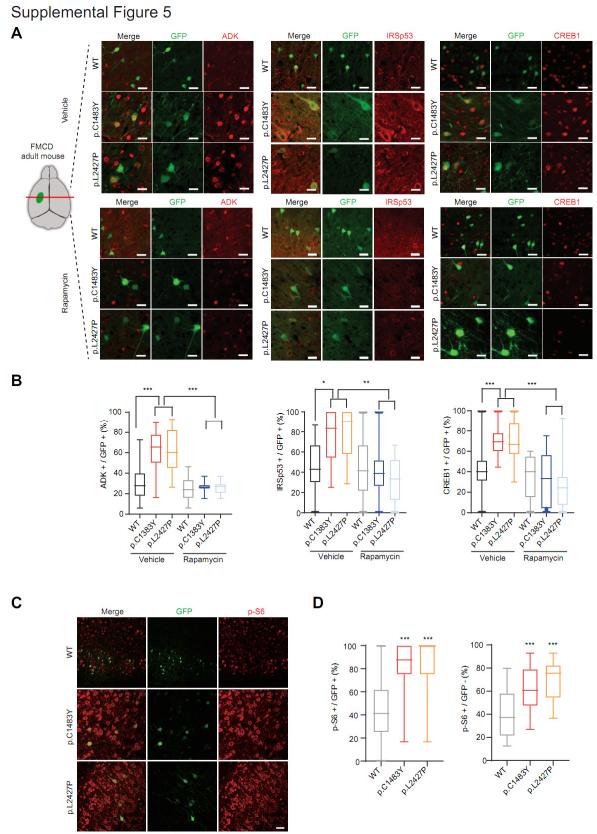


1 uge 3

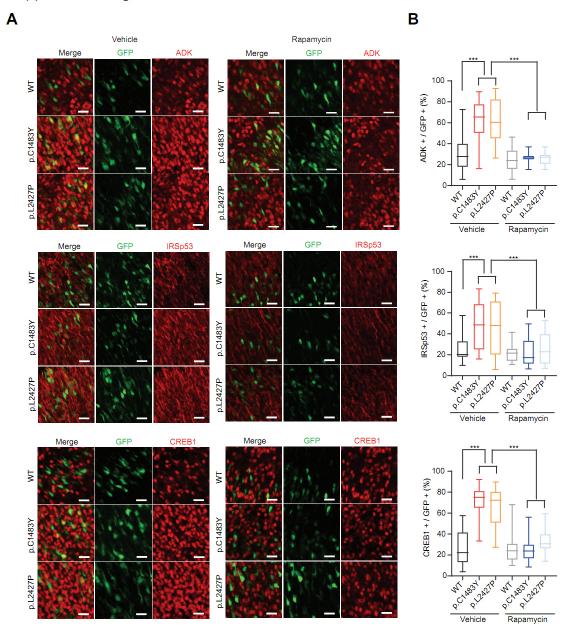
60 Supplemental Figure 3. Validation of the quality of Ribo-seq and RNA-seq library

61 preparation in WT, p.C1483Y, and p.L2427P mice.

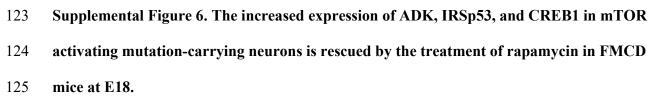
- 62 (A) Schematic diagram depicts the Ribo-seq and RNA-seq. TE was calculated by read count of
- 63 RPF normalized by read count of mRNA of each mRNA.
- 64 (B) Cell number, embryo number, and amount of RPF and mRNA used for Ribo-seq and RNA-
- 65 seq library preparation in FMCD mice.
- 66 (C) Representative images of library preparation of RPF and mRNA upon gel excision during the
- 67 process of size selection. M: marker, WT: WT mice, C: p.C1483Y mice, L: p.L2427P mice.
- 68 (D) Mapping distributions of read counts for the assigned classes in the RPF (left) and mRNA
- 69 (right) libraries.
- 70 (E) Density of RPF (top) and mRNA (bottom) reads near the translation start and stop codons.
- 71 (F) Fractions of RPF (top) and mRNA (bottom) reads mapped to each of the three nucleotides in
- the codons.
- 73 (G) Pearson's correlation of the RPF (left) and mRNA (right) libraries.
- 74 (H) The expression of neuronal markers in GFP-positive cells. Each of the neuronal markers are
- shown on the x-axis. The level of expression is presented as Log2(normalized read counts) on the
- 76 y-axis. Blue bars represent RPFs of mTOR WT mice; orange bars represent mRNA of WT mice.
- 77 (I) Pie chart representing functional classification of mTOR activation-sensitive genes in FMCD
- 78 mice.
- 79
- 80
- 81
- 82



84 Supplemental Figure 4. Translational activation of *Adk*, *IRSp53*, and *Creb1* in FMCD mice.

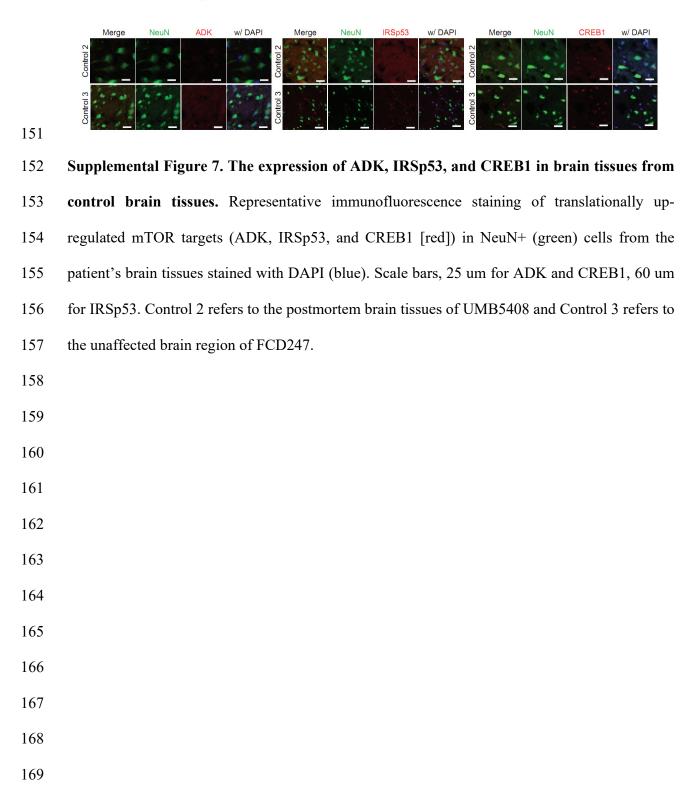

85 Bar graphs showing the fold changes in RPF and mRNA of *Adk*, *IRSp53*, and *Creb1* in the WT,

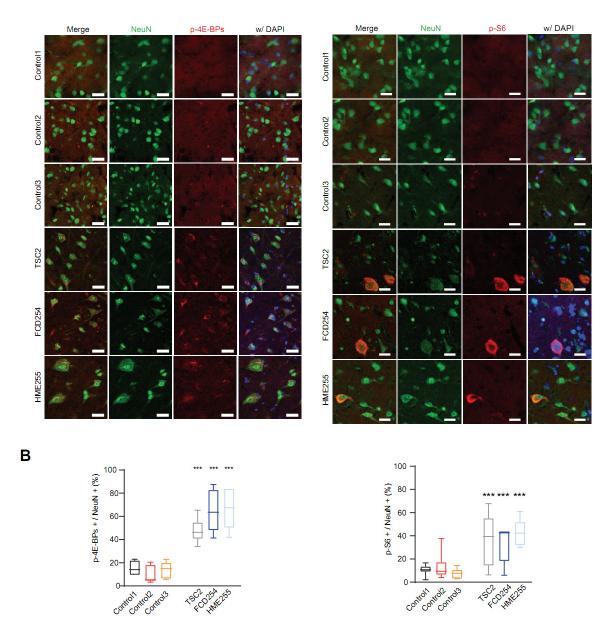
- 86 p.C1483Y, and p.L2427P mice (n = 3 in each group). Mean \pm SD.



1 uzu 3

99	Supplemental Figure 5. The increased expression of ADK, IRSp53, and CREB1 in mTOR
100	activating mutation-carrying neurons is rescued by the treatment of rapamycin in FMCD
101	adult mice.
102	(A) Representative immunofluorescence staining of mTOR activation-sensitive genes (ADK,
103	IRSp53, and CREB1 [red]) in GFP-positive cells (green) from FMCD adult (P56-P140) mice
104	treated with vehicle (top) or rapamycin (bottom). Scale bars, 25 um.
105	(B) Quantification of samples in (A). ADK-, IRSp53-, or CREB1 (red)-positivity among GFP-
106	positive cells in the average of two to five representative cortical regions of FMCD mice. * $P < 0.05$,
107	** $P < 0.01$, and *** $P < 0.001$ (n = 5 in each group, one-way analysis of variance [ANOVA] with
108	Bonferroni post-hoc test).
109	(C) Representative immunofluorescence staining of p-S6 (Ser240/244) (red) in FMCD mice (P21).
110	Scale bar, 50 um.
111	(D) Quantification of samples in (C). p-S6 (Ser240/244) (red)-positivity among GFP-positive or
112	GFP-negative cells in the average of two to five representative cortical regions of FMCD mice ***
113	P < 0.001 (relative to WT, n = 3 in each group, one-way ANOVA with Bonferroni post-hoc test).
114	
115	
116	
117	
118	
119	
120	
121	

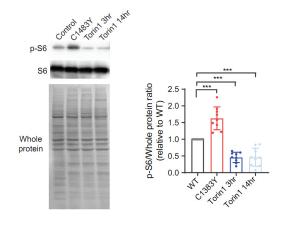


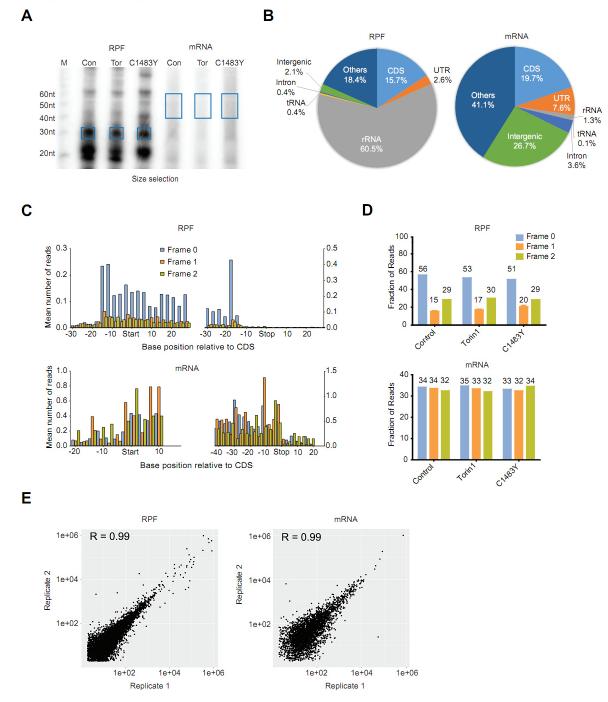

(A) Representative immunofluorescence staining of mTOR activation-sensitive genes (ADK,
 IRSp53, and CREB1 [red]) in GFP-positive cells from E18 mice expressing mTOR p.C1483Y
 Page 10

128	(p.C1483Y) or p.L2427P (p.L2427P) treated with vehicle (left) and rapamycin (right). Scale bars,
129	25 um.
130	(B) Quantification of (A). ADK-, IRSp53-, or CREB1 (red)-positivity among GFP-positive cells
131	in the average of two to five representative cortical regions of FMCD mice. *** $P < 0.001$ (n = 5
132	in each group, one-way analysis of variance with Bonferroni post-hoc test).
133	
134	
135	
136	
137	
138	
139	
140	
141	
142	
143	
144	
145	
146	
147	
148	
149	
150	

Α

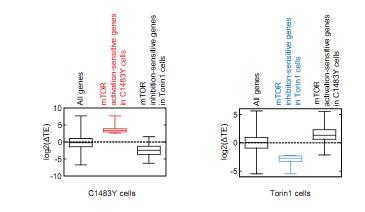
170



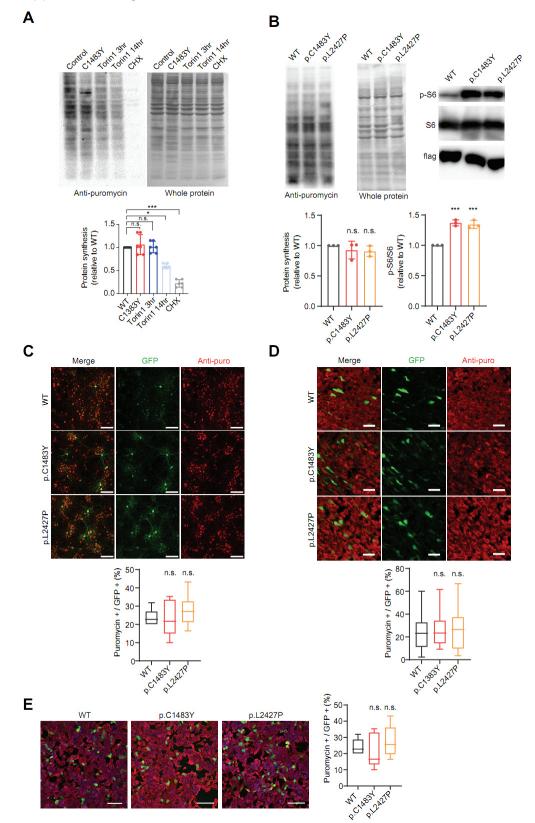

173 **FMCD** patients.

174	(A) Representative immunofluorescence staining of mTOR downstream targets p-4E-BPs
175	(Thr37/46, left) and p-S6 (Ser240/244, right) (red) in NeuN+ (green) cells from FMCD patients.
176	Scale bars, 25 um. Control 1 refers to the postmortem brain tissues of UMB5309, control 2 refers
177	to the postmortem brain tissues of UMB5408, and control 3 refers to the unaffected brain region
178	of FCD247.
179	(B) Quantification of (A). Representative cortical regions in each FMCD patient were averaged. *
180	P < 0.05, ** $P < 0.01$, and *** $P < 0.001$ (one-way analysis of variance with Bonferroni post-hoc
181	test).
182	
183	
184	
185	
186	
187	
188	
189	
190	
191	
192	
193	
194	
195	
196	

Supplemental Figure 9. The activation and inhibition of mTOR kinase in C1483Y cells and in Torin1 cells. Western blot analysis of p-S6 (Ser240/244), a major read-out of mTOR activation, in C1483Y cells (C1483Y). NIH3T3 cells treated with 200 nM Torin1 for 3 hr (Torin1 3hr) and NIH3T3 cells treated with 200 nM Torin1 for 14 hr (Torin1 14hr). EZblue staining in whole protein lysates were used as loading controls. p-S6 levels are presented as relative ratios to that in control cell lines. *** P < 0.001 (n = 9 in each group, one-way analysis of variance with Bonferroni post-hoc test). Mean \pm SD.


213

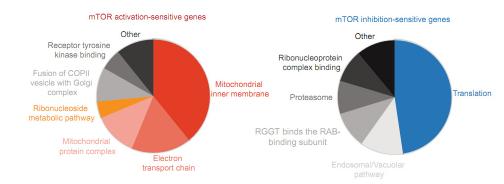
214 Supplemental Figure 10. Validation of the quality of Ribo-seq and RNA-seq library


215 preparation.

216	(A) Repro	esentative in	nages of libra	ary preparation	of Ribo-seq	and RNA-seq	upon gel	excision
-----	-----------	---------------	----------------	-----------------	-------------	-------------	----------	----------

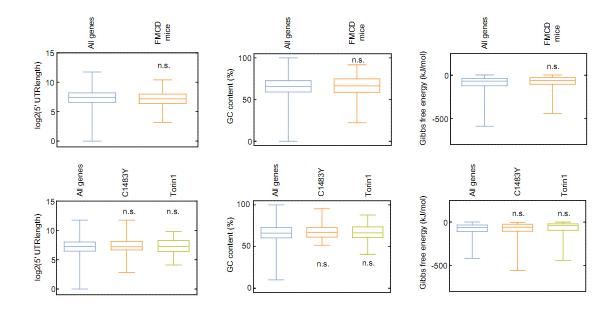
- during size selection. M: marker, Con: vehicle-treated NIH3T3 WT cells, C1483Y: C1483Y cells,
- 218 Tor: Torin1 3-hr treated NIH3T3 WT cells.
- 219 (B) Mapping distributions of read counts for the assigned classes in the RPF (left) and mRNA
- 220 (right) reads. CDS: coding sequence, UTR: untranslated region.
- 221 (C) Density of RPF (top) and mRNA (bottom) reads near the translation start and stop codons.
- 222 (D) Fractions of RPF (top) and mRNA (bottom) reads mapped to each of the three nucleotides in
- 223 the codons. Three-nucleotide periodicity reflects the movement of ribosomes along mRNA by
- three nucleotides at a time. Control: control cells, Torin1: Torin1 cells, C1483Y: C1483Y cells.
- 225 (E) Pearson's correlation of the RPF (left) and mRNA (right) library replicates.
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238

Supplemental Figure 11. Translational profile of mTOR activation-sensitive genes is distinct from that of mTOR inhibition-sensitive genes. Box plots showing the log2 ratios of fold changes $(\log 2[\Delta TE])$ in the TEs of mRNAs encoding all genes, mTOR inhibition-sensitive genes in Torin1 cells from C1483Y cells (left) and mTOR activation-sensitive genes in C1483Y cells from Torin1 cells (right) relative to control cells.

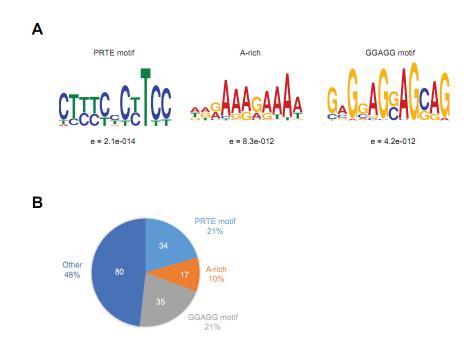


257 Supplemental Figure 12. Protein synthesis rates are not significantly affected by human

258 MTOR mutations in vitro and in vivo.

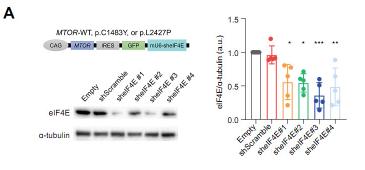

259 (A) Western blot and quantification of protein lysates from control cells (Control), C1483Y cells

- 260 (C1483Y), and Torin1 treated cells (Torin1 3 hr and Torin1 14 hr, 200 nM) to measure basal rates
- 261 of protein synthesis. EZblue staining in whole protein lysates was used as a loading control. n = 6262 in each group. Mean \pm SD.
- 263 (B) Western blot and quantification of protein lysates from flag-mTOR WT (WT), flag-mTOR
- 264 p.C1483Y (p.C1483Y), or flag-mTOR p.L2427P (p.L2427P) overexpressing HEK293T cells to
- 265 measure basal rates of protein synthesis. EZblue staining in whole protein lysates was used as a
- 266 loading control. n = 3 in each group. Mean \pm SD.
- (C) Representative immunofluorescence staining of puromycin incorporated proteins in primary
 cultured cortical neurons expressing mTOR WT (WT), mTOR p.C1483Y (p.C1483Y), or mTOR
- 269 p.L2427P (p.L2427P) with GFP-reporter. The level of puromycin incorporation is presented as
- 270 puromycin positivity in GFP-positive cells. n = 3 in each group. Scale bars, 100 um.
- 271 (D) Representative immunofluorescence staining of puromycin incorporated proteins in the
- 272 cortices of E18 mouse embryos expressing mTOR WT (WT), mTOR p.C1483Y (p.C1483Y), or
- 273 mTOR p.L2427P (p.L2427P) mice with GFP reporter. Puromycin incorporation is presented as
- puromycin positivity in GFP-positive cells. n = 5 in each group. Scale bars, 30 um.
- 275 (E) Representative immunofluorescence staining of puromycin incorporated proteins in HEK293T
- cells expressing mTOR WT (WT), mTOR p.C1483Y (p.C1483Y), or mTOR p.L2427P (p.L2427P)
- 277 with GFP reporter. The level of puromycin incorporation is presented as puromycin positivity in
- 278 GFP-positive cells. n = 3 in each group. Scale bars, 200 um.
- 279 * P < 0.05 and *** P < 0.001, one-way ANOVA with Bonferroni post-hoc test


Supplemental Figure 13. Enriched functional clusters of mTOR activation-sensitive genes is distinct from that of mTOR inhibition-sensitive genes. Pie charts represent cluster analysis results of mTOR activation-sensitive genes in C1483Y cells (135 genes with z-score ≥ 1.5 , top) and mTOR inhibition-sensitive genes in Torin1 cells (144 genes with z-score \leq -1.5, Torin1 down-regulated, bottom). Each functional cluster is significantly enriched in GO terms generated by the ClueGo app in Cytoscape. The size of the pie corresponds to the number of genes.

Supplemental Figure 14. Canonical 5' UTR features of mTOR activation- and inhibitionsensitive genes. Comparison of canonical 5' UTR features between all genes and subsets whose TEs were related with mTOR activation-sensitive genes in the FMCD mice and C1483Y cells (C1483Y) or with mTOR inhibition-sensitive genes in Torin1 cells (Torin1).

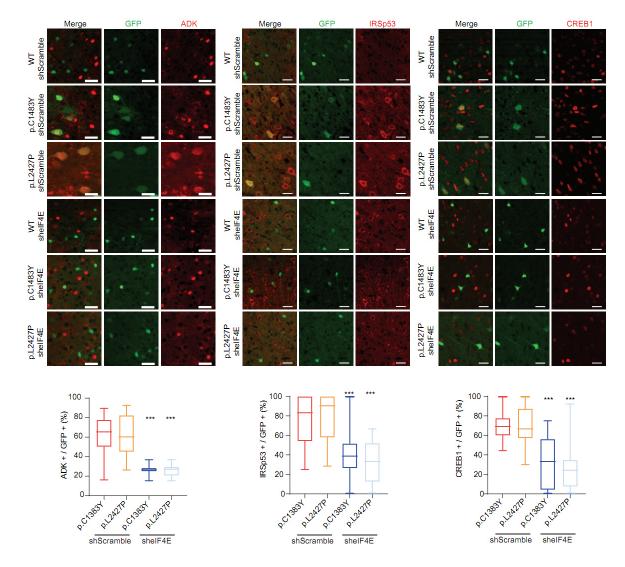
- 302
- 303
- 304
- 305
- 306
- 307308
- 309
- 207
- 310

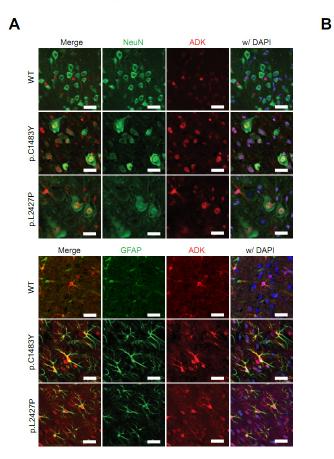

312 Supplemental Figure 15. 5' UTR motifs of mTOR inhibition-sensitive genes found in Torin

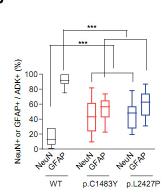
313 1 cells.

(A) MEME analysis showing consensus sequences and enrichment values (E-value) of the
pyrimidine-rich translational element (PRTE), A-rich, and GGAGG motifs of mTOR inhibitionsensitive genes found in Torin1 cells.

317 (B) Diagram illustrating the percentage and number of mTOR inhibition-sensitive genes318 containing a PRTE, A-rich, or GGAGG motifs.

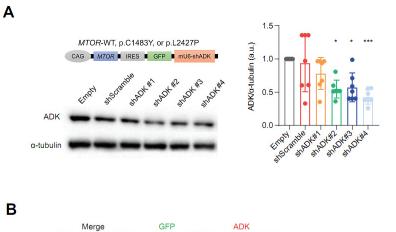

- 320
- 321
- 322
- 323

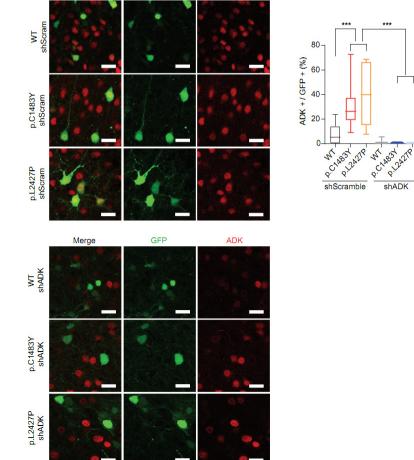

325 Supplemental Figure 16. The efficient knockdown of eIF4E in FMCD mice.


326	(A) Western blot analysis of eIF4E in sheIF4E RNAs expressing Neuro2A cells. sheIF4E#2 was
327	used for further analysis. Quantification of Western blots relative to empty vector, * $P < 0.05$, **
328	P < 0.01, and *** $P < 0.001$ (n = 5 in each case, one-way ANOVA with Bonferroni post-hoc test).
329	Mean ± SD.
330	(B) Representative images of eIF4E (red) knockdown in GFP-positive cells from P7 FMCD mice
331	electroporated with shScramble (top) or sheIF4E (bottom) RNA expressing vectors. *** $P < 0.001$
332	(n = 5 in each case, one-way ANOVA with Bonferroni post-hoc test). Scale bar = 20 um. Mean \pm
333	SEM.
334	
335	
336	
337	
338	
339	
340	
341	
342	
343	
344	
345	
346	
347	
348	

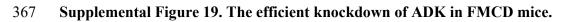
349

Supplemental Figure 17. The increased expression of ADK, IRSp53, and CREB1 in mTOR activating mutation-carrying neurons is rescued by the knockdown of eIF4E. Representative images of ADK, IRSp53, and CREB1 (red) in GFP-positive cells from P21 FMCD mice treated with shScramble (top) or sheIF4E (bottom). *** P < 0.001 (n = 5 in each case, one-way analysis of variance [ANOVA] with Bonferroni post-hoc test). Scale bar = 25 um.




356

357 Supplemental Figure 18. ADK expression in cortical neurons and astrocytes from FMCD


358 mice brains.

- 359 (A) Representative images of NeuN (green, top) or GFAP (green, bottom) and ADK (red) in GFP-
- 360 positive cells from adult FMCD model mice (P56-P140).
- 361 (B) Quantification of (A). *** P < 0.001 (n = 5 in each case, one-way analysis of variance with
- 362 Bonferroni post-hoc test). Scale bar = 25 um.
- 363
- 364
- 365

368	(A) Western blot analysis to show the efficiency of ADK knockdown in N2A cells. shADK #3
369	was used for further analysis. Quantification of western blot analysis with the loading control α -
370	tubulin relative to empty vector, * $P < 0.05$ and *** $P < 0.001$ (n = 7 in each case, one-way
371	ANOVA with Bonferroni post-hoc test). Mean \pm SD.
372	(B) Representative images of ADK (red) knockdown in GFP-positive cells from P7 FMCD mice
373	electroporated with shScramble (top) or shADK (bottom) RNA expressing vectors. Quantification
374	of ADK knockdown. *** $P < 0.001$ (n = 5 in each case, one-way ANOVA with Bonferroni post-
375	hoc test). Scale bar = 20 um.
376	
377	
378	
379	
380	
381	
382	
383	
384	
385	
386	
387	
388	
389	
390	

391 Supplemental Table 1.

Mapping distributions of read counts for the assigned classes in the Ribo-seq and RNA-seq libraries of mTOR WT, mTOR p.C1483Y,

393 and mTOR p.L2427P mice.

Class	RPF WT 1st replicate	RPF RPF WT 1st replicate WT 2nd replicate	RPF WT 3rd replicate	RPF p.C1483Y 1st replicate	RPF RPF p.C1483Y 1st p.C1483Y 2nd replicate replicate	RPF p.C1483Y 3rd replicate	RPF p.L2427P 1st replicate	RPF RPF p.L2427P 2nd p.L2427P 3rd replicate replicate	RPF p.L2427P 3rd replicate	RNA-seq WT 1st replicate	RNA-seq WT 2nd replicate	RNA-seq WT 3rd replicate	RNA-seq p.C1483Y 1st replicate	RNA-seq RNA-seq p.C1483Y 2nd p.C1483Y 3rd replicate replicate		RNA-seq p.L2427P 1st replicate	RNA-seq p.L2427P 2nd p replicate	RNA-seq p.L2427P 3rd replicate
cos	8.27%	11.18%	25.40%	9.08%	9.24%	19.40%	15.69%	12.02%	26.71%	29.21%	23.20%	20.03%	30.04%	24.40%	20.99%	26.98%	14.83%	13.02%
UTR	1.96%	1.62%	2.43%	1.28%	1.71%	1.88%	1.88%	1.85%	2.07%	15.77%	12.69%	10.75%	16.58%	13.19%	9.66%	16.37%	8.07%	9.65%
rRNA	50.66%	52.45%	20.20%	18.70%	72.85%	26.33%	46.81%	53.88%	23.22%	1.60%	1.06%	2.31%	1.53%	1.06%	0.99%	1.27%	1.09%	2.10%
tRNA	0.54%	0.36%	0.40%	0.34%	0.20%	0.27%	0.41%	0.32%	0.29%	0.08%	0.03%	0.08%	0.12%	0.04%	0.06%	0.12%	0.03%	0.16%
Intron	0.51%	0.39%	0.85%	1.69%	0.45%	0.55%	0.49%	0.47%	0.85%	5.85%	5.91%	10.69%	5.38%	4.99%	3.69%	6.45%	3.75%	6.91%
Intergenic	2.62%	2.05%	4.70%	2.72%	1.48%	4.18%	2.53%	2.87%	6.10%	29.32%	32.21%	33.42%	24.22%	28.09%	39.32%	32.36%	24.74%	35.97%
Others	35.46%	31.95%	46.01%	66.18%	14.07%	47.39%	32.19%	28.58%	40.76%	18.17%	24.91%	22.73%	22.12%	28.23%	25.31%	16.45%	47.48%	32.19%
Total Reads	78938989	103041083	130980756	243382145	105409798	113437980	81881324	81623538	88549718	101252271	141375625	69976707	114068454	143206719	92636343	131307738	86508443	96911633
Read count																		
Class	RPF WT 1st replicate	RPF WT 2nd replicate	RPF WT 3rd replicate	RPF p.C1483Y 1st replicate	RPF RPF p.C1483Y 1st p.C1483Y 2nd replicate replicate	RPF p.C1483Y 3rd replicate	RPF p.L2427P 1st replicate	RPF RPF p.L2427P 2nd p.L2427P 3rd replicate replicate		RNA-seq WT 1st replicate	RNA-seq WT 2nd replicate	RNA-seq WT 3rd replicate	RNA-seq p.C1483Y 1st replicate	RNA-seq p.C1483Y 2nd replicate	RNA-seq p.C1483Y 3rd replicate	RNA-seq p.L2427P 1st replicate	RNA-seq p.L2427P 2nd p replicate	RNA-seq p.L2427P 3rd replicate
CDS	6,529,989	11,519,568	33,273,024	22,107,689	9,736,770	22,003,872	12,847,657	9,813,545	23,650,209	29,579,025	32,798,533	14,013,504	34,268,460	34,942,515	19,441,832	35,420,601	12,831,722	12,620,076
UTR	1,544,862	1,673,236	3,181,416	3,119,152	1,802,929	2,128,340	1,541,299	1,507,894	1,836,959	15,962,467	17,939,142	7,524,199	18,911,114	18,893,715	8,944,379	21,490,401	6,980,943	9,350,767
rRNA	39,987,803	54,043,696	26,462,136	45,503,549	76,793,431	29,870,732	38,330,375	43,980,102	20,557,114	1,619,398	1,498,243	1,614,323	1,743,708	1,515,700	913,756	1,671,070	940,309	2,038,728
tRNA	422.791	369.034	529.776	839.309	210.890	307.788	334.210	263.375	255.662	77.451	38.152	54.717	141.801	62.059	57.181	151.954	29.560	151.485
Intron	398,705	399,477	1,112,931	4117726	473,852	627,556	401,804	387,468	754,228	5,927,207	8,353,759	7,478,420	6,142,088	7,144,008	3,416,603	8,472,938	3,243,547	6,696,664
Intergenic	2,065,518	2,115,265	6,159,993	6,616,628	1,562,808	4,736,640	2,070,063	2,345,988	5,402,391	29,684,320	45,533,052	23,385,552	27,626,240	40,226,286	36,420,438	42,495,602	21,405,092	34,858,117
Others	27,989,321	32,920,807	60,261,480	161,078,092	14,829,118	53,763,052	26,355,916	23,325,166	36,093,155	18,402,403	35,214,744	15,905,992	25,235,043	40,422,436	23,442,154	21,605,172	41,077,270	31,195,796
Total Reads	78,938,989	103.041.083	130.980.756	243,382,145	105.409.798	113.437.980	81.881.324	81.623.538	88.549.718	101.252.271	141.375.625	69.976.707	114.068.454	143.206.719	92.636.343	131.307.738	86 508 443	96.911.633

402 Supplemental Table 4.

403 Clinical information of FMCD patients and control cases.

Patient ID	Age	Sex	Age at first seizure	Age at surgery	Seizure frequency	Tissue region	Etc
UMB1712	20Y	male	-	-	-	Frontal	Postmortem tissues
UMB4917	22Y	male	-	-	-	Frontal	Postmortem tissues
UMB5309	14Y	female	-	-	-	Temporal	Postmortem tissues
UMB5408	6Y	male	-	-	-	Temporal	Postmortem tissues
FCD56	10Y	female	2Y	6Y	3/day	Frontal	-
FCD247	11Y	female	1Y	9Y	N.A.	Temporal	-
FCD254	12Y	male	4Y	9Y	10/day	Frontal	-
FCD348	6Y	male	4Y	5Y	N.A.	Frontal	-
HME20	5Y	female	2M	9M	10/day	Frontal	-
HME255	20Y	female	8Y	17Y	3/day	Temporal	-
HME338	17Y	female	5Y	15Y	N.A.	Temporal	-
TSC2	8Y	female	2Y	4Y	N.A.	Temporal	-
TSC264	2Y	female	1Y	1Y	6/day	Frontal	-
TSC357	20Y	male	1Y	18Y	N.A.	Frontal	-

419 Supplemental Table 5.

420 mTOR pathway mutations found in FMCD patients

	Patient ID	Sequencing	Mutation type	Mutated gene	Nucleotide changes	Protein change	Reference	Altered read	Frequency (%)
	TSC2 FCD254	Whole exome sequencing Targeted hybrid capture sequencing	Germline Somatic	TSC2 MTOR	c.3355C>T c.4376C>A	p.Gln1119* p.Ala1459Asp	74 882	43 30	36.75 3.29
	HME255 TSC264	Targeted hybrid capture sequencing Targeted hybrid capture sequencing	Somatic Germline	MTOR TSC2	c.4448G>A c.3007delG	p.Cys1483Tyr p.Ala1003fs	836 2282	87 278	9.43 10.86
421	TSC357	Targeted hybrid capture sequencing	Germline	TSC2	c.5153A>C	p.His1718Pro	2792	1313	31.99
422 423									
424									
425									
426									
427 428									
429									
430									
431									
432									
433 434									
435									
436									

Supplemental Table 7.

Mapping distributions of read counts for the assigned classes in the Ribo-seq and RNA-seq libraries of C1483Y cells, Torin1 cells, and

control cells.

Class	RPF control 1st replicate	RPF RPF control 1st replicate control 2nd replicate	RPF control 3rd replicate	RPF rd Torin11st replicate	RPF st Torin1 2nd replicate	RPF Torin1 3rd replicate	RPF C1483Y 1st replicate	RPF C1483Y 2nd replicate	RPF C148	RPF RNA-seq C1483Y 3rd replicate control 1st replicate		RNA-seq RNA- control 2nd replicate contr	RNA-seq control 3rd replicate	RNA-seq Torin1 1st replicate	RNA-seq Torin1 2nd replicate	RNA-seq Torin1 3rd replicate	RNA-seq C1483Y 1st replicate	RNA-seq RNA-seq C1483Y 2nd replicate C1483Y 3rd replicate	RNA-seq tte C1483Y 3rd re
CDS	14.7	2% 34.79%	3% 15.48%	8% 17.8	3% 18.56	3% 22.90%	5	6.38%	6.31%	3.86%	27.08%	21.50%	32.30%	13.55%	% 37.03%	% 32.82%		3.31% 4.4	4.48%
UTR	2.2	2.26% 1.90%		1.08% 7.42	1.56%	3% 4.99%		1.43%	0.55%	2.60%	10.35%	9.66%	13.96%	5.41%	% 13.93%	% 12.90%		0.63% 0.5	0.58%
rRNA	79.9	^{19.96%} 48.59%	37.65%	69.11%	11% 64.53%	3% 55.54%		59.45%	63.97%	65.57%	1.65%	1.19%	1.39%	2.86%	% 0.75%	% 1.04%		1.51% 0.5	0.95%
tRNA	0.1	0.17% 0.48%		0.35% 0.24	0.24% 0.19%	%09'0 %60%		0.90%	0.27%	0.36%	0.04%	0.05%	0.02%	0.05%	% 0.01%	% 0.07%		0.11% 0.0	0.09%
Intron	0.1	0.16% 0.57%		0.27% 0.28	0.28% 0.66%	3% 0.81%		0.26%	0.30%	0.15%	4.26%	4.93%	4.89%	2.99%	% 5.26%	% 3.48%		1.65% 2.0	2.07%
Intergenic	0.6	0.87% 2.82%		1.39% 1.5	1.51% 2.99%	3% 2.38%		2.26%	3.11%	1.27%	27.65%	24.63%	34.29%	20.72%	% 19.16%	% 24.90%		44.58% 21.84%	4% 22.30%
Others	1.8	1.85% 10.84%	43.77%		3.61% 11.52%	2% 12.77%		29.32%	25.50%	26.19%	28.96%	38.05%	13.15%	54.42%	% 23.87%	% 24.80%		48.19% 69.98%	8% 68.30%
Total Reads	84544590	590 126593842	42 86026712	712 69845284	284 105027922	22 117489790		67839196 76	76803583	115448783	76325689	322820203	131345936	68919162	2 109353253	53 89619698	8 132948004	004 99084567	67 106717153
Class	RPF control 1st rendicate	RPF RPF control 1st realicate control 2nd realicate		RPF rd Torin11st			RPF C1483Y 1st replicate	RPF C1483V 2nd renlicate	RPF C145	RPF RNA-seq C1483V 3rd replicate - control 1st replicate		RNA-seq RNA-seq control 3	RNA-seq control 3rd renticate	RNA-seq Torin1 1st		RNA-seq Torin1 3rd		RNA-seq C1483Y 2nd renticate C1483Y 3rd renticate	RNA-seq
CDS	12,444,778	778 44,047,81	replicate 13.316.688	replicate 688 12.455.249	replicate 249 19,489,475	75 26,909,780	7	4	.848.522	4,457,937 20	00	12	42,430,223	replicate 9.336.081	replicate 1 40,489,913	3 29.410.775	5 4,403,984		27 5.768,864
UTR	1,906,633	633 2,408,183	83 931,792	792 5,182,850	850 1,636,157	57 5,865,303			420,378	3,004,013	7,897,164	31,197,801	18,330,940						0
rRNA	67,605,641		61,515,585 32,385,272	272 48,271,061	061 67,773,905	05 65,252,417	ч	0,330,493 49,	19,129,378	75,701,188	1,261,073	3,838,643	1,820,533	1,968,453	3 819,758	927,610	0 2,013,234	234 941,504	04 680,658
tRNA	145,049	049 606,121	21 303,432	432 168,462	462 194,961	61 709,128		611,800	203,921	410,989	34,232	154,145	30,211	35,490	0 10,598	86,703	3 152,425	425 93,897	108,332
Intron	139,050	050 723,993	93 232,866	866 194296	296 691,553	53 947,217		173,956	230,197	172,557	3,252,823	15,913,740	6,428,789	2,059,995	5 5,754,400	0 3,116,139	9 2,194,830	830 2,053,996	96 2,696,231
Intergenic	739,701	701 3,574,020	20 1,200,064	064 1,051,027	027 3,139,045	45 2,790,909		1,530,929 2,1	2,307,095	1,471,081 2'	21,107,642	79,490,104	45,030,243	14,203,437	7 20,940,401	1 22,313,403	3 59,273,555	21,039,395	23,796,910
Others	1,563,738	738 13,718,088	88 37,656,598	598 2,521,739	739 12,103,026	26 15,007,036	-	19,890,714 19,1	19,584,092	30,230,418 23	22,102,877	122,827,726	17,266,997	37,507,294	4 26,098,172	22,228,248	8 64,073,286	286 69,341,402	02 72,888,483
Total Reads	84.544.590	590 126 593 842	42 86.026.712	712 69.845.284	284 105 027 022	22 117 489 790		67 839 196 76 /	76 803 583	115 448 783 76	76 325 680	322 R2N 2N3	131 345 036	68 919 162	2 109 353 253	33 89 619 698	8 122 048 004	004 99 084 567	67 106 717 153

Page 33

449 Supplemental Table 12.

450 Upstream analysis of mTOR activation-sensitive genes in C1483Y cells.

Upstream Regulator	ator Molecule Type	Predicted Activation State	Activation z-score	p-value of overlap	Target molecules in dataset
451 EIF4E	translation regulator	Activated	2.236	0.00271	ATOX1, BIRC6, CDC34, CKS2, NUDT3
T					
452					
453					
454					
455					
456					
457					
458					
459					
460					
461					
462					

463

Supplemental Table 13.

5' UTR motif	Adk-S	Creb1	IRSp53	Atox1	Birc6	Cdc34	Cks2	Nudt3
(GGC) ₄	9.07E-05	7.90E-06				5.10E-05		5.51E-06
U-rich			4.61E-05					
A-rich		1.58E-05						
CERT		6.69E-05		1.34E-05	7.42E-05	1.76E-06		2.99E-05

Summary of 5' UTR motifs (E-score) identified in subset of mTOR activation-sensitive genes.

Supplemental Table 2. (Separate file)

Log2 ratio of fold changes in the translational efficiencies (TEs) of mTOR p.C1483Y and mTOR p.L2427P mice relative to mTOR WT mice with z-score.

Supplemental Table 3. (Separate file)

mTOR activation-sensitive genes in FMCD mice.

Supplemental Table 6. (Separate file)

5' TOP mRNAs and log2 ratio of fold changes in the translational efficiencies (TEs) of mTOR p.C1483Y and mTOR p.L2427P mice relative to mTOR WT mice.

Supplemental Table 8. (Separate file)

Log2 ratios of fold changes in the translational efficiencies (TEs) of C1483Y and Torin1 cells relative to control cells with z-score.

Supplemental Table 9. (Separate file)

5' TOP mRNAs and log2 ratios of fold changes in the translational efficiencies (TEs) of C1483Y cells and Torin1 cells relative to control cells.

Supplemental Table 10. (Separate file)

Length, GC content, and Gibbs free energy change of 5' UTRs of mTOR activation- and inhibition-sensitive genes in FMCD mice, C1483Y, and Torin 1 cells.

Supplemental Table 11. (Separate file)

mTOR activation- and inhibition-sensitive genes with identified 5' UTRs motifs.

Supplemental Table 14. (Separate file)

The sequence of 5' UTRs and motifs in *Adk-S*, *IRSp53*, and *Creb1* that are deleted in 5' UTR reporter assay.