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Abstract:  

Pattern recognition receptors (PRRs) are crucial for responses to infections and tissue damage, 

however, their role in autoimmunity is less clear. Herein we demonstrate that two C-type lectin 

receptors (CLRs), Mcl and Mincle, play an important role in the pathogenesis of experimental 

autoimmune encephalomyelitis (EAE), an animal model of Multiple Sclerosis (MS). Congenic rats 

expressing lower levels of Mcl and Mincle on myeloid cells exhibited a drastic reduction in EAE 

incidence. In vivo silencing of Mcl and Mincle or blockade of their endogenous ligand SAP130 

revealed that receptors expression in the central nervous system is crucial for the T cell recruitment 

and reactivation into a pathogenic Th17/GM-CSF phenotype. Consistent with this, we uncovered 

MCL/MINCLE-expressing cells in brain lesions of MS patients and we further found an upregulation 

of the MCL/MINCLE signaling pathway and an increased response following MCL/MINCLE 

stimulation in peripheral blood mononuclear cells from MS patients. Together these data support a 

role for CLRs in autoimmunity and implicate the MCL/MINCLE pathway as a potential therapeutic 

target in MS. 
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Main text:  

Introduction 

Multiple Sclerosis (MS), a leading cause of neurological disability in young adults, is a chronic 

inflammatory disease of the central nervous system (CNS) characterized by autoimmune destruction 

of myelin and subsequent neuro-axonal loss. Autoreactive CD4
+ 

T cells infiltrating the CNS are 

considered to be important triggers of MS pathogenesis (1). Antigen presenting cells (APCs) play a 

crucial role in the reactivation of CD4
+
 T cells, which drive the subsequent pathogenic inflammatory 

responses (2-4).  However, the mechanisms by which T cell fate is determined upon reactivation in the 

CNS remain poorly understood. A growing body of evidence suggests a role for pattern recognition 

receptors (PRRs) in autoimmune inflammatory responses (5). Previous studies have primarily focused 

on toll-like receptors (TLRs), showing their potential role in modulating pathogenic disease pathways 

(6-8), however,  little is known about the role of C-type lectin receptors (CLRs) in autoimmunity and 

particularly in MS (9). 

Myeloid CLRs are important sensors of infectious agents and tissue homeostasis through recognition 

of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns 

(DAMPs) (10, 11). In addition to their well-known role in infections and tissue damage, recent animal 

studies have implicated several CLRs as risk genes for autoimmune diseases including arthritis and 

experimental autoimmune encephalomyelitis (EAE), an MS-like disease model (12, 13). Among the 

CLRs, CLEC4D (MCL) and CLEC4E (MINCLE), two members of the Dectin-2 family primarily co-

expressed on myeloid cells (14), have recently gained attention in human inflammatory diseases. MCL 

and MINCLE signaling leads to the activation of NF-B via the BCL10-CARD9-MALT1 pathway 

(11, 15). Interestingly, several members of this pathway have been identified as candidate risk genes 

for multiple chronic inflammatory diseases such as Crohn’s disease, ankylosing spondylitis, ulcerative 

colitis, inflammatory bowel disease and MS (16, 17) . 

In the present study, we investigated the role of Mcl and Mincle in EAE and MS. Myelin 

oligodendrocyte glycoprotein (MOG)-induced EAE in rats provides a robust model of chronic 
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relapsing-remitting disease, recapitulating several clinical and histopathological features of MS (18). 

We exploited the fact that the Dark Agouti (DA) strain is highly susceptible to EAE while the Piebald 

Virol Glaxo (PVG) strain is relatively resistant (18), and thus generated a congenic strain containing a 

PVG region encompassing CLR genes on the DA background. Herein we report that this new strain 

exhibits reduced expression of Mcl and Mincle on myeloid cells and is resistant to EAE induction. 

Mechanistically, we demonstrate that meningeal myeloid cells orchestrate the recruitment of T cells to 

the CNS and their reactivation into a pathogenic Th17/GM-CSF phenotype via the Mcl/Mincle 

pathway. This mechanism is likely triggered, at least in part, by the alarmin SAP130 during early 

disease development. Both MCL and MINCLE are highly expressed on infiltrating macrophages in 

active MS lesions. Notably, we show that the MCL/MINCLE pathway is affected in MS, with high 

expression of the receptors on immune cells associating with both increased MS disease activity and 

progression, and that MCL/MINCLE stimulation ex vivo results in higher cytokine production in 

peripheral blood mononuclear cells (PBMCs) of MS patients compared to healthy controls. 
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Results  

The CLR gene expression in immune cells modulates EAE development 

We have previously shown that a genetic region on rat chromosome 4 encompassing a cluster of CLRs 

confers resistance to EAE when transferred from the resistant PVG strain to the susceptible DA strain 

(12, 19). In order to identify the gene(s) responsible for this protective effect, we have further reduced 

the size of the transferred region in a congenic strain (hereafter referred to as CLRc) comprising five 

genes, four of which belong to the Dectin-2 family (Table S1). Upon MOG immunization, the 

homozygous CLRc rats displayed marked protection compared to DA homozygous littermate controls, 

while heterozygous rats (Het) exhibited an intermediate phenotype (Figure 1A). In accordance, weight 

loss in CLRc was significantly milder, recovery faster, disease incidence as well as average, 

cumulative and max scores lower compared to DA rats (Figure 1A). Histopathological investigation of 

the spinal cord at day 29 post-immunization (p.i.) revealed significant reduction in both extent of 

demyelination and inflammatory index in CLRc rats (Figure 1B and Figure S1A). Interestingly, only 

DA rats presented demyelination in the brain while this was not observed in either CLRc or Het rats 

(Figure 1B and Figure S1B). These results indicate that the PVG alleles encompassing the CLR genes 

confer resistance to EAE. 

We next examined the contribution of CLRs in CNS- versus bone marrow (BM)-derived immune cells 

using bone marrow chimeric rats. Reconstitution of lethally irradiated DA or CLRc rats with BM 

isolated from DA-GFP rats led to the replacement of peripheral immune cells, as well as meningeal 

and perivascular macrophages with donor BM (Figure S1C-F). No significant differences in EAE 

development, weight change, incidence or average cumulative and max score were observed between 

the strains (Figure 1C). However, the transplantation of DA-GFP rats with DA or CLRc bone marrow 

recapitulated the phenotype observed in congenic animals, with CLRc->DA-GFP chimeric rats 

displaying significantly reduced disease incidence, weight and average, cumulative and max score 

compared to DA->DA-GFP chimeras (Figure 1D, Figure S1G and H).  
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These findings suggest that the protective effect of the CLRc congenic is mediated through the 

peripheral immune cell compartment and/or the meningeal/perivascular macrophages and not via the 

CNS-resident microglia. 

 

The CLRc locus modulates activation of peripheral T cells recruited to the CNS  

Myeloid antigen-presenting cells play a pivotal role in T cell activation and subsequent EAE 

progression (2-4). As C-type lectins are primarily expressed on myeloid cells (20) we first investigated 

whether the lower EAE incidence in CLRc rats resulted from an incomplete activation of T cells 

during the priming phase. Characterization of draining lymph nodes at day 7 p.i. revealed no 

differences in CD4
+
 T cell infiltration, activation, cytokine production or proliferation, implying that 

peripheral priming is unaffected in CLRc congenic rats (Figure 2A-C, Figure S2A and B). However, 

analysis of cellular infiltration in the spinal cord at disease onset (day 13 p.i.) revealed reduced 

numbers of CD4
+
 T cells, monocytes/macrophages and granulocytes in CLRc compared to DA rats 

(Figure 2D and Figure S2C). Further characterization of the infiltrating CD4
+
 T cells revealed a 

significant reduction of Ki67
+
 cells, a marker of proliferation (Figure 2E), along with reduced 

proportions of IL-17, IL-17/IFN double producers and GM-CSF-producing T cells (Figure 2E and F), 

regarded as the most inflammatory T cell phenotypes in the context of EAE (21-26). No significant 

differences were observed in IL-10 and IFN production (Figure 2E and F). Evaluation of meninges 

and the spinal cord prior to clinical signs of EAE revealed a 2- to 4-fold more extensive infiltration of 

macrophages, monocytes, granulocytes and CD4
+
 T cells in the meninges compared to the spinal cord 

(Figure S1I), regardless of the genotype. This finding strengthens the notion that the most likely site 

for reactivation of antigen-specific T cells is in the meninges, as previously suggested (3, 4).  

Overall, these results suggest that CLRs modulate the reactivation of T cells within the CNS, most 

likely in the meninges, and participate in the differentiation or maintenance of IL-17- and GM-CSF-

producing cells. 
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Reduced expression of Mcl and Mincle in monocytes/macrophages associates with protection 

from EAE 

Using sequencing and single nucleotide polymorphism typing, we determined that the CLRc congenic 

region contains four genes of the CLR Dectin-2 family, i.e. Dcar1, Mcl, Mincle and the pseudogene 

Dectin-2p, as well as the vomeronasal gene Vom2r48 (Table S1).  We first examined the association of 

genes of the CLRc locus with different EAE disease parameters using gene expression data from 

splenocytes of (DAxPVG)xDA backcross rats (n=150) subjected to EAE (27). Among the five 

investigated genes, significant associations with disease phenotype were only observed for Mcl and 

Mincle (Table S2). The expression of both genes positively correlated with disease incidence (Figure 

3A), maximal score, cumulative score, disease duration, terminal score and maximum weight loss 

(Table S2 and Figure S3). We next assessed the expression of the CLRc genes in splenocytes of naïve 

DA and CLRc rats by qPCR and determined a significantly reduced expression of Mcl (70%) and 

Mincle (85%) and increased expression of Dcar1 (212%) in CLRc animals compared to DA rats 

(Figure 3B). Expression of Vom2r48 was below the detection threshold and we failed to amplify 

Dectin-2p despite employing multiple strategies, which is not unusual for a pseudogene. Since the 

expression of Dcar1 did not correlate with any phenotypic features of disease, the reduced expression 

of both Mcl and Mincle in immune cells is more likely to confer the protection to EAE observed in 

CLR congenic rats. 

To further characterize the cellular compartment mediating the EAE phenotype, we examined 

expression of Mcl and Mincle on different immune cells in DA and CLRc rats. In the blood of naïve 

animals, significantly fewer circulating Mcl
+
 and Mincle

+
 monocytes were observed together with 

reduced surface receptor expression on both monocytes and granulocytes in CLRc compared to DA 

rats (Figure 3C and Figure S4). In the spinal cord, naïve CLRc rats displayed a reduction of both 

frequency of Mcl
+
 and Mincle

+
 cells and relative receptor expression levels on infiltrating 

monocytes/macrophages. Similar results were observed in both the blood and spinal cord of EAE 

affected animals, although only Mincle and not Mcl expression was affected in granulocytes during 

disease (Figure 3C and Figure S4). No difference in the microglial compartment was observed in EAE 
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animals, supporting the hypothesis that expression of the receptors on microglia is not likely to affect 

EAE disease outcome (Figure 3C and Figure S4).  

To analyze the effect of CLRc on tissue-resident and inflammatory myeloid cells we generated bone 

marrow-derived macrophages (BMMa) and dendritic cells (MoDC) (28), and observed reduced 

expression of Mcl and Mincle in CLRc cells compared to cells derived from DA rats (Figure 3D). 

Furthermore, Mcl and Mincle expression in the meninges ex vivo was significantly lower in naïve and 

immunized CLRc rats (Figure 3D). This was reflected at the protein level, where 11 days p.i. receptor 

expression was only detected in DA rats but not in CLRc spinal cord meninges (Figure 3E), in 

concordance with Mcl
+
 and GFP

+
 cells only being detected in the meninges of DA-GFP ->DA rats 

(Figure S1J).  

Taken together, these data indicate that the EAE protection conferred by the CLRc locus is associated 

with reduced expression of Mcl and Mincle, particularly in myeloid cells residing in the meninges. 

 

Impaired response to Mcl/Mincle ligands in CLRc myeloid cells affects CD4
+
 T helper cell 

recruitment and skewing  

To further investigate the functional consequences of low Mcl/Mincle levels, we assessed qPCR 

expression of genes known to be induced by the Mcl/Mincle signaling pathway in BMMa, MoDC and 

FLT3-derived bone marrow dendritic cells (BMDC) stimulated with Mcl/Mincle-specific ligands, 

TDM and TDB. All CLRc myeloid cell types showed a reduced expression of Mcl/Mincle (Figure 

S5A-C) and an impaired response to Mcl/Mincle ligand activation (Figure 4A and Figure S5D-E). 

More specifically, CLRc BMMa expressed significantly less cytokines such as Il1b, Il6, Il23, Il12p40, 

Tnf as well as the chemokines Ccl2, Ccl3, Ccl20, Cxcl1 and Cxcl2 upon stimulation with TDM and/or 

TDB compared to DA cells. Similar results were obtained when stimulating MoDCs and BMDCs 

(Figure S5D and E). We also investigated the signals that regulated Mcl/Mincle expression and found 

TNF, and to a minor extent IL-1 and IL-1, to upregulate both receptors (Figure S5G).  
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T helper cell differentiation requires TCR activation (signal 1), co-stimulation (signal 2) and a third 

signal mediated by cytokines. We therefore performed in vitro T cell differentiation assays using the 

supernatants from TDM- or LPS-stimulated MoDCs as a surrogate for the third signal of T cell 

activation. While we did not detect any differences in cytokine production or proliferation of CD4
+
 T 

cells exposed to DA or CLRc supernatants from LPS-stimulated cells, supernatants from TDM-

stimulated CLRc cells led to a reduced induction of IFN and IL-17 together with a strong decrease in 

cell proliferation accompanied by increased IL-10 production (Figure S5F). This reduced 

inflammatory profile did not stem from either TGF or IL-10 production by TDM-stimulated CLRc 

cells, since no difference in TGF and only very low production of IL-10 could be detected in the 

MoDC supernatants (Figure S5H).   

We thereafter explored whether the compromised response to Mcl/Mincle stimulation in myeloid cells 

could affect T cell recruitment, activation and fate. We generated GFP
+
 MOG-specific resting effector 

T cells (GFP
+
 MOG-Teff). GFP

+
 MOG-Teff cells were reactivated in vitro with either DA or CLRc 

BMMa to mimic the reactivation of pathogenic T cells in the CNS (Figure 4B). Co-culture of GFP
+
 

MOG-Teff with CLRc BMMa led to a reduced proliferation of T cells as well as reduced number of 

IFNγ-, IL-17- and GM-CSF-producing T cells compared to cells cultured with DA BMMa. We then 

assessed if CLRc BMMa could promote differential recruitment of GFP
+
 MOG-Teff across a CNS 

vascular endothelial cell layer, mimicking the meningeal blood-CSF barrier, using a transwell 

migration assay. We found higher retention of GFP
+
 MOG-Teff in the upper chamber (higher ratio) 

when T cells were exposed to CLRc BMMa, whereas DA BMMa induced more extravasation through 

the endothelial layer (lower ratio) (Figure 4C). Finally, we transferred the GFP
+
 MOG-Teff cells into 

immunized DA or CLRc rats day 6 p.i. and assessed T cell frequencies and activation at disease onset 

(day 13 p.i.). Similar to EAE induction in un-manipulated DA and CLRc rats (Figure 2), we observed 

less proliferation as well as less IL-17- and GM-CSF-producing GFP
-
 T cells in the spinal cord of 

CLRc rats compared to DA (Figure 4D). Interestingly, we also recovered less GFP
+
 MOG-Teff  in the 

CNS of CLRc rats and those cells proliferated less and also produced less IL-17 and GM-CSF (Figure 

4D). 
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Altogether, our in vitro and in vivo findings indicate that reduced Mcl/Mincle expression results in 

impaired myeloid cell activation that leads to reduced T cells recruitment to the CNS and 

compromised T helper cell reactivation.  

 

Downregulation of Mcl and Mincle, and their endogenous ligand SAP130, contributes to EAE 

pathogenesis 

To confirm the impact of Mcl and Mincle expression on neuroinflammation in EAE, we performed in 

vivo CNS-specific knockdown of Mcl and Mincle expression. Infiltrating and resident cells in both 

spinal cord and the brain subarachnoid space were targeted via delivery of Mcl/Mincle-specific siRNA 

using intrathecal (i.t.) and intracisternal (i.c.) injections at days 7, 9 and 12 p.i. in disease-susceptible 

DA rats. The silencing efficiency of combined siRNA targeting of Mcl and Mincle was verified in 

vitro in bone marrow-derived macrophages (BMMa), with a 50-70% decrease of Mcl and Mincle 

surface expression compared to control siRNA (Figure S6). Interestingly, rats treated with 

Mcl/Mincle-siRNA had a reduced EAE disease incidence resulting in lower cumulative and average 

scores as well as weight decrease compared to animals treated with control siRNA (Figure 5A). This 

was accompanied by a trend of decreased infiltration of granulocytes and reduced frequency of IL-17- 

and GM-CSF-producing CD4
+
 T cells in the CNS prior to disease onset (Figure 5B and C). In rats 

treated with either Mcl- or Mincle-specific siRNA separately, we also observed a protection that was 

less robust compared to the effect of combined targeting of Mcl and Mincle (Figure 5A). Altogether, 

the results validate that altered expression of Mcl and Mincle modulates EAE susceptibility by 

affecting T cell reactivation in the CNS.  

Mcl and Mincle can recognize both PAMPs and DAMPs. The danger molecule SAP130 was the first 

established endogenous ligand demonstrated to bind to Mincle (15) and elevated SAP130 levels have 

been implicated in several inflammatory experimental models (29, 30). We addressed the possible 

involvement of SAP130 in disease and hypothesized that blocking the protein in susceptible rats 

would affect EAE pathogenesis. Immunized DA rats were treated i.t. and i.c. with either anti-SAP130 

or isotype control antibodies at day 2 and 7 p.i. Remarkably, blocking SAP130 in the target organ in 
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vivo led to a reduction in EAE score as well as weight loss (Figure 5D). Additionally, a tendency for 

reduced incidence, average and cumulative score was observed.  

Taken together, these results suggest that Mcl, Mincle and their putative ligand SAP130 promote EAE 

pathogenesis. 

 

Increased activity of the MCL and MINCLE signaling pathway in MS patients  

Our findings implicate a role for the C-type lectins Mcl and Mincle in the pathogenesis of EAE. To 

explore their potential relevance in human disease we first examined receptor expression in MS brain 

tissue both in active and chronic active lesions (Table S3). Interestingly, both MCL and MINCLE 

expression was detected in active lesions and in the rim of chronic active lesions. Immunoreactivity of 

MCL and MINCLE localized on HLA-DR immunopositive cells, indicating expression on antigen-

presenting cells, primarily myeloid cells (Figure 6A and Figure S7A). We thereafter determined the 

expression of genes involved in the MCL/MINCLE signaling pathway in circulating blood cells by 

analyzing the transcriptome of PBMCs in a large cohort of MS patients, patients with clinically 

isolated syndrome (CIS) and non-inflammatory neurological disease controls (NINDCs) (Table S4). In 

accordance with previous studies reporting co-regulation of MCL and MINCLE, we could detect a 

strong correlation between MCL and MINCLE expression in PBMCs from MS patients (Figure S7B). 

Gene expression analysis revealed a significant increase in MINCLE and one of the downstream 

mediators, CARD9, in CIS patients and RRMS patients during relapse compared to NINDCs (Figure 

6B, Figure S7C).  

We further investigated a putative association between the MCL/MINCLE pathway and MS disease 

severity by stratifying MS patients according to level of accumulated disabilities (Expanded Disability 

Status Scale, EDSS). We observed higher expression of MINCLE, CARD9 and IL8 in patients that 

have higher disabilities (EDSS>4.5) compared to less affected patients (Figure 6C). Together, these 

results indicated a link between increased peripheral inflammatory activity and disease severity with 

the MCL/MINCLE signaling pathway in MS patients and prompted us to explore the impact of 
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MCL/MINCLE activation in immune cells. To this end, we stimulated PBMC isolated from RRMS 

patients during relapse and from healthy controls (Table S5) with either TDB or LPS and examined 

the modulation of MCL/MINCLE expression as well as the downstream mediators, SYK, MALT1 and 

CARD9, and effector cytokines IL-8, IL-6 and TNF (Figure 6D and E, Figure S7D-G) (31). 

Interestingly, TDB stimulation resulted in a significant increase of IL-8 production both at mRNA and 

protein levels, but not IL-6 or TNF, in monocytes from MS patients compared to healthy controls. Of 

note, there was no difference in MINCLE basal expression prior to stimulation between MS and HC 

monocytes, but there was an increased expression of MCL, SYK and MALT1 in MS patients (Figure 

S7D-E). Upon TDB stimulation, MCL, MINCLE and MALT1 were significantly upregulated in 

monocytes from MS patients (Figure S7D-E), with a similar trend observed for SYK and CARD9.  

Altogether, our data strongly suggest an increased activity of the MCL/MINCLE signaling pathway in 

MS patients, which could play a role in the inflammatory response and disease progression. 
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Discussion 

Using a congenic rat strain with natural variation in expression of C-type lectin receptors, we 

investigated the role of PRRs Mcl and Mincle in EAE pathogenesis, and further examined the findings 

in human disease. Our data demonstrate that lower expression of Mcl and Mincle in the congenic 

strain protects them from development of MOG-EAE. Reduced receptor expression drastically affects 

the response of antigen-presenting cells to specific ligands and mitigates their ability to recruit and 

support pathogenic Th17/GM-CSF phenotype. Moreover, we determined that MCL and MINCLE are 

expressed in MS lesions, that the signaling pathway is active in PBMCs of CIS and MS patients during 

relapse compared to controls, and that monocytes from MS patients responded more vigorously to 

specific receptor stimulation. Furthermore, expression of genes in the MCL/MINCLE pathway was 

increased in patients with higher disabilities, suggesting a role for this pathway in disease progression.  

While PRRs, especially MINCLE, have been implicated in peripheral inflammatory disorders such as 

rheumatoid arthritis (32, 33), their role in CNS-related immune diseases such as MS remains elusive. 

Peripheral inflammation induces substantial changes in the CNS, particularly local neuroinflammation 

mediated by glial activation and subsequent production of pro-inflammatory factors such as TNF, IL-

1 and IL-6 cytokines (34, 35). Accordingly, studies have shown that following peripheral 

inflammation, recruitment of T cells and monocytes into the CNS and the resulting tissue damage is 

strongly influenced by local production of IL-6 and its effect on blood brain barrier permeability (36, 

37). Our data demonstrate that regulation of Mcl and Mincle in meningeal myeloid cells modulates T 

cell recruitment and reactivation in the CNS by a number of mechanisms that might include both pro-

inflammatory cytokine and chemokine production, suggesting that these receptors would play a role in 

initiating or amplifying immune responses in the target organ. This is further supported by the 

increased expression of MCL, MINCLE and down-stream mediator CARD9 observed in PBMCs of 

MS patients during active disease. Furthermore, we found that the MCL/MINCLE ligand TDB 

induces higher production of IL-8 by PBMCs from MS patients compared to controls, which is in 

accordance with previous data implicating the downstream mediators, CARD9 and SYK, in IL-8 

production by human myeloid cells following TDB stimulation (31). Interestingly, animals with 
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MOG35-55-specific CD4
+
 T cells (2D2 mice) display a higher incidence of spontaneous EAE disease 

following influenza respiratory infection when compared to non-infected mice, suggesting that the 

peripheral infection can trigger CNS immunosurveillance and disease (38). Consistent with this, 

epidemiological data have suggested that systemic infection either precedes or concurs with disease 

exacerbation in MS patients (39) and that stress may also be a contributing factor (40). Hence, stress 

or infections could induce expression of PRRs in CNS innate cells of MS patients, promoting 

peripheral immune cell CNS patrolling, which would result in disease relapse. The protective effect of 

i.t and i.c. siRNA-mediated knockdown of Mcl and Mincle strongly supports a role for the receptors in 

the regions directly in contact with the CSF, such as the leptomeninges. Our findings demonstrating 

the expression of Mcl and Mincle in meningeal macrophages of EAE animals and receptors expression 

in MHC II
+
 cells in brain lesions of MS patients argues in favor of this hypothesis. Taken together, 

these data point to a possible role of CNS-intrinsic processes involving MCL, MINCLE, and their 

signaling pathways during the inflammatory phase of MS.  

Our data provide in vitro and ex vivo evidence that Mcl and Mincle, expressed by monocyte-derived 

cells, macrophages and/or dendritic cells, shape the activation towards a Th17 and GM-CSF-

producing T cell phenotype in EAE. While we also see an increased influx of granulocytes upon 

disease onset, the effect of these cells in further shaping the inflammatory response in the CNS is most 

likely secondary to T cell recruitment and activation, as it has been shown that neutrophils only 

acquire significant antigen-presenting capacity upon exposure to T cell-derived cytokines (41). Our 

findings concord with previous studies reporting an effect of Mincle on T helper cell differentiation, 

notably of Th17 cells (42), and a Mincle-associated Th17 response in vivo in the context of 

autoimmunity and sterile inflammation (43, 44). Notably, the mechanism of action for Mcl and Mincle 

appears highly important in light of the crucial role of the Th17 and the cytokine GM-CSF in MS 

pathogenesis (21-26). Indeed, previous studies have determined an increased frequency of Th17 and 

GM-CSF-producing Th cells in the blood and CSF of MS and CIS patients during active disease (45, 

46), and have further associated the frequency of effector memory Th17 cells as well as IL-17a levels 
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with disease severity (EDSS) (45, 47). Similarly, we found that expression of genes from the 

MCL/MINCLE signaling pathway correlates with disease activity and severity.  

The danger theory, proposed by Matzinger and colleagues (48), suggests that the immune system 

responds to intrinsic and extrinsic danger signals (PAMPs and DAMPs) by recognition through PRRs. 

DAMPs, sometimes referred to as alarmins, are endogenous molecules released upon cellular 

activation, stress or damage and can induce activation of inflammatory pathways through PRRs in the 

absence of infection. Accordingly, several DAMPs have been implicated in the pathogenesis of 

autoimmune diseases such as RA, SLE or systemic sclerosis (49, 50). Among the established 

endogenous ligands of Mincle, SAP130 has been reported to contribute to neuroinflammation in 

models of cerebral hemorrhage and traumatic brain injury (30, 51). Herein we showed that blocking 

the SAP130 in the CNS ameliorated EAE, suggesting that SAP130 can act as an alarmin in 

neuroinflammation. However, whether SAP130 or other endogenous ligands play a role in MS 

pathogenesis remains to be explored. 

In conclusion, our study reveals an important role of the myeloid CLRs-mediated pathway in the 

amplification of autoimmune neuroinflammation upon initial CNS stress. In the future it will be 

crucial to define cellular and molecular drivers of the CLRc-mediated response using transgenic 

models as well as clinical samples in the context of genetic variants impacting the pathway. Of interest 

are also the mechanisms underlying CLRs upregulation in MS patients and the characterization of the 

alarmins or other metabolic mediators that may impact the sterile inflammatory response. This is of 

particular importance as most of the successful therapies for MS are able to prevent immune 

infiltration into the CNS but are limited in affecting subsequent steps of autoimmune attack in the 

target tissue. 
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 Methods 

 

Experimental design 

The aim of this study was to investigate the potential role of pattern recognition receptors in 

autoimmune neuroinflammation, more specifically the role of the C-type lectin receptors Mcl and 

Mincle in multiple sclerosis, using both congenic rats expressing reduced levels of the receptors for in 

vivo and in vitro modelling as well as human samples from multiple sclerosis patients. For studies 

involving rats, littermate controls were used and in the event of treatment intervention, animals were 

randomly assigned into groups. In vivo and in vitro experiments were performed twice unless 

otherwise stated. For experiments involving human specimens, the number of samples included in 

each experiment was based largely on availability. Once experimental conditions were optimized, all 

data were included in the analysis. Data was thereafter only excluded upon technical experimental 

error. Animal experiments were performed blinded, as well as the initial analysis of ex vivo and in 

vitro experiments.  

 

Animals 

Inbred DA and PVG.1AV1 rats were originally obtained from the Zentralinstitut für Versuchstierzucht 

(Hannover, Germany) and Harlan UK Ltd (Oxon, UK) respectively. Separate lines have been 

established at Karolinska Institutet (DA/Kini and PVG.1AV1/Kini) (52). The CLRc congenic strain 

stems from a natural recombination event between the DA strain and the APLEC strain, encompassing 

a larger congenic fragment from the PVG background (19, 53). Transgenic eGFP DA rats have been 

described previously (54, 55). Experiments were performed with both male and female rats ranging 

between 8 and 16 weeks of age, and experiments were always carried out with sex- and age-matched 

animals. All animals were bred and kept in 12 h light/dark- and temperature-regulated rooms. Rats 

were housed in polystyrene cages containing aspen wood shavings and had access to standard rodent 

chow and water ad libitum.  
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Participants 

Three cohorts of human samples were used in the study. Post-mortem brain samples of both active 

lesions and normal-looking white matter were collected from MS patients in the Netherlands brain 

bank. PBMCs from clinically-isolated syndrome (CIS) patients, untreated MS patients; relapsing-

remitting in either relapse or remission, secondary progressive, primary progressive, as well as non-

inflammatory neurological disease controls (NINDC) were isolated for whole genome RNA-

sequencing. For the human in vitro experiments, natalizumab treated relapsing-remitting MS patients 

in remission and healthy controls were included.  

 

Genotyping 

Genomic DNA was extracted using alkaline lysis of ear or tail biopsies. TaqMan single nucleotide 

polymorphism (SNP) assay was used to determine the genotype according to the manufacturer’s 

protocol (Thermofisher).  

 

EAE induction and experimental design 

EAE induction. EAE was induced as previously described (18).  Rats were anesthetized with 

isoflurane (Forene) and injected subcutaneously in the dorsal tail base with 200 μl inoculum 

containing MOG (females 4-6 μg and males 10-15 μg) in PBS (Sigma-Aldrich) emulsified 1:1 with 

incomplete Freund’s adjuvant (Sigma-Aldrich). Rats were weighed and monitored for clinical signs of 

EAE daily from day 7 until termination of the experiment. Clinical scoring was performed according 

to a standard scale for EAE: 0, healthy; 1, tail weakness or tail paralysis; 2, hind leg paresis or 

hemiparesis; 3, hind leg paralysis or hemiparalysis; 4, tetraplegy and 5, death. The following clinical 

parameters were assessed: incidence of EAE (clinical signs of EAE for at least two consecutive days), 

onset of EAE (the first day of clinical signs), maximum EAE score (the highest clinical score), 
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cumulative EAE score (the sum of daily clinical scores), duration of EAE (number of days with EAE), 

weight change (calculated by subtracting the daily weight from the weight at day 7 and expressing the 

difference as a ratio of the weight at day 7) and maximum weight loss (calculated by subtracting the 

lowest weight during the experiment from the weight at day 7 and expressing the difference as a ratio 

of the weight at day 7).  

BM chimeras. Eight-week-old recipient animals (n=7 or 8 per group) were lethally irradiated 

(2x550Gy) and injected i.v. with freshly isolated bone marrow (BM) cells (50x10
6
/300ul) from donor 

animals (n=3 per group). Rats were left to reconstitute for 8 weeks. Reconstitution efficiency was 

determined in blood by flow cytometry and animals were thereafter subjected to EAE.  

Drug administration. Immunized rats were randomly divided into two groups (n=7 or 8 per group) and 

were treated with siRNAs, anti-SAP130 or respective controls by intrathecal (i.t.) and 

intracerebroventricular (i.c.) (via cisterna magna) injections with 10 µl per injection. Rats were 

injected under 3.5%-isoflurane anesthesia, as previously described (56). The injections were 

performed with a 50 μl Hamilton syringe (Sigma-Aldrich). Animals were monitored daily and clinical 

signs of EAE were recorded as described above. For the siRNA treatment, groups received i.t. and i.c. 

injections of siRNAs against Mcl, Mincle, both Mcl and Mincle or scramble siRNA, 5ug/10ul/injection 

in Accell siRNA delivery media (media and siRNA from Dharmacon) at day 7, 9 and 12 post 

immunization. For the anti-SAP130 treatment, both groups received i.t. and i.c. injections of either 

anti-SAP130 or rabbit-IgG (both from Abcam), 5ug/10ul/injection in PBS at day 2 and 7 post-

immunization.  

 

Tissue collection 

Lymph nodes and bones for bone marrow extraction. Rats were sacrificed with CO2 prior to dissection 

of inguinal lymph nodes and femoral bones and tissues were kept in PBS on ice until cell preparation.  

CNS tissue. Rats were anesthetized with isoflurane and perfused with PBS containing Heparin at 2500 

IU/I (Sigma-Aldrich) via the left ventricle. For flow cytometry, brains and spinal cords were excised 
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and placed separately in 37% Percoll solution (Sigma-Aldrich) containing 50 U/ml DNase I (Roche 

Applied Science) on ice until further processing. Meninges from the spinal cord were separated and 

collected in cold PBS containing 2mM EDTA (Sigma-Aldrich). For gene expression analysis, spinal 

cord or meninges were collected in RLT buffer containing dithiothreitol (DTT, Sigma-Aldrich), 

dissociated using a tissue lyser (Qiagen) and supernatants were collected and frozen at -70°C until 

RNA preparation. For immunohistochemistry, rats were further perfused with 4% paraformaldehyde 

(Histolab) and skulls and spines were dissected and kept in 4% PFA for 24hrs. 

 

Single cell preparation and ex-vivo culture 

Lymph nodes. Lymph nodes were mechanically dissociated and cells were spun and re-suspended in 

complete media, RPMI complemented with 5% FCS, 1% L-glutamine, 1% penicillin-streptomycin and 

1% pyruvic acid (all from Sigma-Aldrich) and 50 mM 2-mercaptoethanol (Gibco-BRL). 

Subsequently, cells were plated either in 96-well V-bottom plates for further flow cytometry analysis 

or in 96-well U-bottom plates for recall stimulation (72 hours with 20μg/ml MOG) and thereafter flow 

cytometry analysis.  

For in vitro T cell differentiation assay, LN single cell suspension were depleted of CD25
+
 cells 

(which include both recently activated T cells as well as Tregs) with anti-CD25-PE antibody followed 

by anti-PE beads and subsequently CD4
+
 cells were positively sorted using anti-CD4 beads (Miltenyi). 

Resting CD4
+
 T cells were added to 96-well flat plates pre-coated with anti-CD3 (1.25mg/ml, BD 

Pharmingen), and cultured with supernatant from stimulated MoDCs and soluble CD28 (1mg/ml, BD 

Pharmingen) for 4 days. Intracellular cytokine production was assessed by flow cytometry.  

CNS cells. Brain and spinal cord were dissociated with a glass homogenizer in 37% Percoll solution 

and underlaid with 70% Percoll solution. After centrifugation at 1000 g for 30 min, the intermediate 

layer was carefully collected and further diluted in HBSS (Sigma-Aldrich) prior to a 15 min-

centrifugation at 600 g. Cell pellets were re-suspended in PBS (Life Technologies) and further used 

for FACS analysis. Meninges were incubated at 37C for 20 min in PBS/EDTA and then mechanically 
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dissociated through a 40 m cell strainer. Cells were spun and resuspended in PBS until staining for 

flow cytometry. 

BM-derived cells. Bone marrow was flushed out of femurs with PBS. BM single cell suspension was 

used for injection in BM chimera or plated to prepare BM-APCs. BM-APCs were prepared as 

described previously with modifications (28, 57). Briefly, BM cells were cultured in complete DMEM 

(Sigma-Aldrich) complemented with 5% FCS, 1% L-glutamine, 1% penicillin-streptomycin and 1% 

pyruvic acid (all from Sigma-Aldrich) and 50 mM 2-mercaptoethanol (Gibco-BRL), supplemented 

with either a combination of 20 ng/ml rat rGM-CSF and 5 ng/ml rat rIL-4 (to obtain MoDCs), with 

200ng/ml rhFLt3L (to obtain BMDC) or with 20 ng/ml rat rM-CSF (to obtain BMMa) for 9 or 7 days 

respectively (all cytokines were purchased from PeproTech). BMMa and MoDCs (10
5
 cells/well) were 

stimulated in a 48 well plate with either complete media (control well), 10μg TDM (Innaxon), 10µg 

TDB (InvivoGen), with 100ng/ml LPS or with various concentrations of cytokines (TNF, IL-1ß, IL-6, 

all from PeproTech). TDM or TDB were resuspended in isopropanol at 0.1 mg/ml and each well was 

coated with 100 l, and left to evaporate in the laminar-flow cabinet. Isopropanol was added to the 

control wells. Cell supernatants were used for T cell differentiation assay. Adherent cells were lysed in 

RLT containing DTT for gene expression analysis. For Immunofluorescence (IF), DA-GFP BMMa 

were plated in culture slides and stimulated with cytokines for different time points. Cell were 

immediately fixed with 4% PFA and stained for IF. 

In vitro siRNA-mediated MCL/Mincle silencing. Mcl and Mincle expression were reduced using 

siRNA in vitro. Mcl and Mincle-specific siRNAs or control scramble siRNA (Dharmacon) were 

prepared immediately prior to administration in Accell siRNA delivery media (Dharmacon), following 

the manufacturer’s instructions. BMMa cells (10
5
 cells/well in a 48-well plate) were treated with 6 µg 

of scrambled siRNA, pooled Mcl- and Mincle-specific siRNAs (3 µg each) or 6 µg scramble-GFP 

siRNA and harvested 72 hours later in PBS/EDTA prior to flow cytometry. 
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Generation of the GFP
+
 MOG91-108 -specific T cells. DA-GFP rats were immunized with 100 µg 

MOG91-108 in 200 µg CFA. After 7 days a single cell suspension from draining LNs was restimulated 

with 20 μg/ml MOG91-108 at a concentration of 1x10
7
 T cells/ml in RPMI complemented with 5% FCS, 

1% L-glutamine, 1% penicillin-streptomycin and 1% pyruvic acid (all from Sigma-Aldrich), 50 mM 

2-mercaptoethanol (Gibco-BRL) for 4 days at 37
O
C and 5% CO2. Dead cells were removed with Ficoll 

(Ficoll Paque Plus GE healthcare) and live cells cultured for 5 days at a concentration of 2x10
5
 

cells/ml in cRPMI with IL-2 (20% filtered MLA culture supernatant). 

GFP
+
 MOG91-108-specific T cells and BMMa co-culture. BMMa cells were plated at 6.25x10

3
 

cells/well in 96-well U-bottomed plates with 20 μg/ml MOG91-108 and left to rest for 24 hours after 

which 2.5x10
5
 MOG91-108-specific T cells were added to each well and incubated at 37

O
C and 5% CO2 

for 4 days. All conditions were made in duplicates. 

 

Transwell  experiments 

Endothelial cell culture. Endothelial cell culture followed a previously described protocol (58) with 

adaptations for rat brain endothelia. DA rat brains were extracted and kept in cold dissection media 

(HBSS supplemented with 7.5% BSA and 1% penicillin-streptomycin). Brains were processed to 

remove the cerebellum and optic nerves, bisected, forebrains were separated, forebrain meninges were 

then removed under a stereomicroscope and the myelin duvet removed from the forebrain interior to 

obtain the cortex. The cortex was transferred to L15 media containing Papain (Sigma-Aldrich) and 

DNAse1 (Calbiochem), mechanically dissociated by trituration and left to digest for 1 hour at 37°C. 

The enzymatic reaction was stopped with HBSS containing 10% FCS. The pellet obtained was re-

suspended in 1xHBSS containing 22% BSA and separated using density dependent centrifugation at 

800g for 15 minutes. The resulting pellet containing the brain micro-vessels was washed and added to 

complete rat brain endothelial growth culture media (cRBEGM – Sigma Aldrich) containing 10% 

FCS, 1% penicillin-streptomycin, hFGF 5 ng/ml, hVEGF 20 ng/ml and rEGF 5 ng/ml and plated in a 

T75 flask pre-coated in type IV collagen 20 µg/ml and fibronectin 20 µg/ml (all from R&D) and left to 
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incubate at 37
O
C and 5% CO2. After 12h and again after 8h the medium was refreshed with cRBEGM, 

the second time containing 4 µg/ml puromycin and left for 5 days at 37
O
C and 5% CO2. The media 

was refreshed with cRBEGM containing 0.5 µg puromycin for another 7 days after which it was 

replaced with complete cRBEGM with no puromycin. Growth was monitored to check for endothelial 

cell confluence. 

Transwell migration assay. Endothelial cells were detached and harvested using accutase 1x solution 

in PBS at a ratio of 1:1. Pelleted cells were resuspended in cRBEGM at a concentration of 3x10
5
 

cells/ml. Transwell plate bottoms were seeded with 3x10
4
 BMMa cells from either DA or CLRc 

resuspended in complete DMEM and allowed to settle for 3 hours at 37
O
C and 5% CO2. The transwell 

inserts were prepared by coating with 100 µl of fibronectin at 20 µg/ml for 3 hours at 37
O
C and 5% 

CO2 and then seeded with 100 µl of 3x10
5
 cells/ml rat brain endothelial cells, mounted on the wells 

containing the macrophages and allowed to rest for 24 hours at 37
O
C and 5% CO2 to achieve 

confluence. After incubation, 3x10
6
 MOG91-108-specific T cells were added in complete RPMI to each 

insert and the wells were allowed to incubate for 16 hours at 37
O
C and 5% CO2 after which media 

from the upper well and the lower well were taken and cells stained and run for flow cytometry.  

 

Flow cytometry 

The staining procedures were performed by following the manufacturers’ protocols. Briefly, single 

cell suspensions were incubated in 2% mouse serum (to block Fc receptors), then washed and 

incubated with antibodies for cell surface expression. Mcl-A488 and Mincle-A647 antibodies were 

kindly provided by Michael Rory Daws’ laboratory (University of Oslo, Oslo, Norway) and have been 

validated previously (20). All other antibodies were obtained from BD bioscience, eBioscience or 

ABDserotec: CD25 (clone OX-39), CD134 (clone OX-40), CD44 (clone OX-49), MHC II (RT1B 

clone OX-6), CD45 (clone OX-1, # 561588, BD), CD11b (clone WT.5, #562108 BD), CD4 (clone 

OX-35, # 565432), Granulocyte marker (clone RP-1, #550002 BD). Dead cells were excluded using 

yellow fluorescence Live/ death marker (Molecular Probes). All stainings, washing steps and 
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acquisition were performed in cell staining buffer (BioLegend). For intracellular staining, cells were 

stimulated for 5h with Phorbol 12-myristate 13-acetate (PMA) (50 ng/mL, Sigma-Aldrich), Ionomycin 

(1 ug/mL, Sigma-Aldrich) and Golgi Plug (1 ul/mL, BD Bioscience). Cells were blocked with 2% 

mouse serum and stained for cell surface markers with yellow fluorescence Live/ death marker 

(Molecular Probes) prior to washing, fixation and permeabilization. Cells were then stained for 

intracellular proteins with antibodies specific to GM-CSF (MP1-22E9, eBioscience #12-7331-82), IL-

17a (eBio17B7, eBioscience #45-7177-82), IL-10 (A5-4 BD bioscience #562156), IFN (DB-1, BD 

bioscience # 562213) and Ki67 (B56, BD bioscience #561281). Acquisition was performed using a 

Gallios flow cytometer and results were analyzed using Kaluza flow analysis software (both from 

Beckman Coulter). 

 

Quantitative real-time PCR and Microarray 

qPCR. Total RNA was extracted from cell lysate in RLT containing DTT using an RNeasy Mini kit 

(Qiagen) with the QiaCube according to the manufacturer instructions. cDNA was subsequently 

synthetized using iScript kit (Bio-Rad Laboratories). Real-time quantitative PCR was performed on a 

BioRad CFX384/C1000 Real-Time Detection System with a three-step PCR protocol using SYBR 

green fluorophore. Relative quantification of gene expression was calculated using the standard curve 

method with fold expression normalized in relation to the endogenous control gene β-Actin or HPRT.  

Microarray. Expression of Mcl and Mincle assessed by microarray in spleens of (DAxPVG)xDA F1 

rats subjected to EAE, as previously described (27). The following settings for analysis were used: 

Summarization: probe logarithmic intensity error (PLIER) described in the Guide to probe logarithmic 

intensity error (PLIER) estimation (http://www.affymetrix.com); Background correction: PM-GCBG 

and Normalization: Global Median. The microarray data are available in MIAME-compliant (minimal 

information about a microarray experiments) format at the ArrayExpress Database 

(http://www.ebi.ac.uk/arrayexpress) under accession code E-MTAB-784. 
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Histopathological analyses and immunohistochemistry 

Histopathological analysis was carried out using Luxol fast blue and hematoxylin-eosin staining, 

paraformaldehyde–fixed 3 to 5 mm thick paraffin embedded sections of the brain and spinal cord were 

dewaxed in xylol, rehydrated and stained with hematoxylin and eosin and Luxol fast blue to assess 

inflammation and demyelination, respectively. The inflammatory index (I.I.) and demyelination score 

(DM) were determined by the number and size of demyelinated lesions of each rat on an average of 10 

complete brain and spinal cord cross-sections as previously described (59). 

For immunohistochemical analyses of rat samples, whole spine from PFA perfused animals were 

collected and kept in PFA overnight. After washing with PBS, samples were placed in 20N EDTA to 

decalcify the bones for 2 weeks and then placed in 30% sucrose solution for 1 week prior to freezing 

and sectioning onto superfrost glass slides. After rehydration in PBS, sections were stained with 

fluoromyelin (Invitrogen) according to the manufacturer’s protocol. They were then stained for 

microglia (anti-Iba-1, Wako chemical # 019-19741), astrocytes (anti-GFAP, Dako, #M0761) or T cells 

(anti-CD4, Biorad Serotec #MCA55A647) followed by secondary antibody staining. For Mcl (anti-

clec4d, Abcam #ab175021) and Mincle (16E3, Novus Biological #NBP1-49311AF488) staining, 

sections were subjected to antigen retrieval in target retrieval solution low pH (Dako) prior to staining. 

All washing steps were performed in TNT buffer (0.1 m Tris-HCl, pH 7.5. 0.15 m NaCl. 0.05% (v/v) 

Tween 20). 

 

Human studies 

Immunohistochemical analysis. Brain samples (n=5) containing active and chronic active lesions were 

obtained from 3 MS patients in collaboration with the VUmc MS Centrum Amsterdam and the 

Netherlands Brain Bank. Active lesions were characterized by abundant infiltrated macrophages and 

microglial cell activation throughout the lesion and overt demyelination. Chronic active lesions were 

fully demyelinated and contain a rim of macrophages and activated microglia. Detailed clinical data 

are summarized in Table S3. Formalin-fixed paraffin-embedded tissue was stained as described 
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previously (60). In short, deparaffinization and antigen retrieval, sections were incubated overnight 

with anti-MINCLE or anti-MCL (1:100) and anti-HLA-DR (anti-LN3, 1:100) followed by incubation 

with Alexa-488/594-labeled secondary antibodies (1:200; Molecular Probes) and analyzed by confocal 

microscopy (Leica DMI 6000 SP8, Leica).  

 

Expression analysis. PBMCs were collected from 102 MS patients, 28 clinically isolated syndrome 

(CIS) patients and 36 non-inflammatory neurological disease controls (NINDC), diagnosed with e.g. 

neuralgia, paresthesia, sensory symptoms, vertigo and tension headache, between 2001 and 2010 at the 

Neurology Clinic of the Karolinska University Hospital, Solna, Sweden (61). At the time of sample 

collection 14 relapsing-remitting MS (RRMS) patients were in relapse and 73 were in remission, and 

the remaining patients were diagnosed with SPMS (n=8) or PPMS (n=7). mRNA was extracted from 

samples, cDNA libraries were prepared using Illumina TruSeq kit (Illumina, San Diego, USA) and 

sequenced on an Illumina HiSeq 2000 machine, as previously described  (61).  

For the RNA sequencing, we obtained paired-end reads with a length of 100 bp with an average 

sequence depth of 36 million reads per samples. The reads were mapped to the H. Sapiens reference 

genome (NCBI v37, hg19) using STAR aligner and HTSeq tool was used to quantify counts per gene, 

applying the default parameters in each case. The Conditional Quantile Normalization (CQN) method 

was used to normalize the count datasets and to account for the GC content bias. Implementing a 

component-based analysis, we regressed out the effects of batch of RNA-Seq library preparation from 

the normalized (CQN) count data. Residual values obtained after batch-effect correction was used for 

differential expression. The RNA-seq data will be made available from the corresponding author upon 

request and signature of data transfer agreement. 

 

Ex vivo PBMCs culture. RRMS patients treated with Natalizumab (n=9) and healthy donors (n=11) 

were recruited and PBMC were isolated by density gradient centrifugation using Ficoll-Paque plus 

(GE Healthcare, Fairfield, CT) and stored in liquid nitrogen until use. Upon thawing, cells were 
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washed, counted and resuspended in RPMI medium supplemented with 20% FCS, L-glutamine and 

Penicillin-Streptomycin. Cells were plated at 2x10
6
 cells/ml and stimulated with 40 μg plate-bound 

TDB, 50 ng soluble LPS or wells were treated with isopropanol prior to airdrying as negative control. 

Cells were cultured for 48 h, and treated with GolgiPlug (BD Biosciences) 5 h prior to termination of 

the experiment. Cells were stained for MCL (clone 9B9 #360204) and isotype (clone MPC-11, 

#400314) expression prior to in vitro stimulations (BioLegend). Upon stimulation, cells were stained 

with LIVE/DEAD stain (ThermoFisher Scientific, #L34976), CD14 (clone HCD14 #325608), IL-8 

(clone E8N1 #511406), IL-6 (clone MQ2-13A5, #501114), TNF (clone Mab11, #502926) or isotype 

for cytokines (clone MOPC-21, # 400108) (BioLegend).  

 

Statistics   

The 1-way ANOVA with Dunnett's Multiple Comparison Test was used to compare area under curve 

(AUC) of clinical EAE course and weight change as well as RNA-seq data, when more than two 

groups were compared. The Kruskal-Wallis test with Dunn's Multiple Comparison Test was used to 

compare all EAE score-based variables (average, cumulative and max EAE score) and histopathology 

variables, when more than two groups were compared. The Unpaired 2-tailed t-test was used to 

compare AUC of clinical EAE course and weight change when two groups were compared. The 

Mann–Whitney U test was used to compare all EAE score-based variables (average, cumulative and 

max EAE score) as well as microarray, FACS, qPCR and ELISA data, when two groups were 

compared. The Chi-square test was used when analyzing the differences in EAE incidence. Values are 

expressed as mean ± SEM or box-plots with whiskers representing 5-95 percentile. The GraphPad 

Prism ≥ 5.0 software (GraphPad) was used for statistical analyses and p-values <0.05 were considered 

significant. 

 

Study approval   
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All animal experiments in this study were performed in accordance with the guidelines from the 

Swedish National Board for Laboratory Animals and European Community Council Directive 

(86/609/EEC), and approved by the North Stockholm Animal Ethics Committee (Stockholms norra 

djurförsöksetiska nämnd, Stockholm). 

The human studies were approved by the Regional Ethics Committee (Stockholm, Sweden). All 

subjects in the RNAseq and in vitro monocyte stimulations provided written informed consent. For the 

brain cohort, all donors, or their next of kin, had given informed consent for brain autopsy and use of 

their brain material and clinical information for research purposes. 
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Figures and figure legends 

Figure 1 

 

Fig 1. CLRc are protected from EAE in a peripheral immune cell-dependent manner. 

Homozygous (CLRc) and heterozygous (Het) congenic rats and their littermate DA controls were 

immunized with MOG and followed for signs of disease. (A) Clinical signs of EAE and disease 

parameters in DA littermate controls (n=18), Het (n=19) and CLRc rats (n=9) (representative of three 

experiments). For EAE incidence, the upper dotted bars represent unaffected rats whereas the lower 

plain bars represent affected rats. (B) Histopathological analysis of spinal cord (sc) at day 29. Left, 

representative images of H&E and Luxol fast blue (LB) stainings (magnification 40X). Right, 

quantification of inflammation and demyelination for DA (n=9), Het (n=8) and CLRc rats (n=9). (C, 
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D) Lethally irradiated rats were transplanted with bone marrow (BM) from donor animals, 

reconstituted for two months and then immunized with MOG. Clinical signs of EAE and disease 

parameters were assessed in (C) DA or CLRc recipient rats transplanted with DA-GFP BM  (DA-GFP 

-> DA (n=8) or DA-GFP -> CLRc (n=8)) and (D) DA-GFP recipients transplanted with DA or CLRc 

BM (CLRc -> DA-GFP (n=8) and DA -> DA-GFP (n=7). Data are presented as mean ± SEM. The 

following statistical tests were used: 1-way ANOVA with Dunnett's Multiple Comparison Test (A, for 

area under curve (AUC) of clinical EAE and weight change), Kruskal-Wallis test with Dunn's 

Multiple Comparison Test (A, for average, cumulative and max EAE score; B), Unpaired 2-tailed t-

test (C-D, for AUC of clinical EAE and weight change), Mann–Whitney U test (C-D, for average, 

cumulative and max EAE score) and Chi-square test (A, C-D, for EAE incidence). *P < 0.05; **P < 

0.01; ***P < 0.001. 
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Figure 2 

 

Fig. 2. Modulation of T cell activation in the CNS, but not in the periphery, underlies the 

protective CLRc phenotype. Homozygous CLRc rats and littermate DA controls were immunized 

with MOG and phenotyped during the disease course. Characterization of draining lymph node (dLN) 

and CNS infiltrating cells. (A) Frequency of total T cells (CD3), B cells (CD45RA), CD8
+
 and CD4

+
 T 

cells at day 7 p.i. in dLNs of DA (n=6-8) and CLRc (n=6) rats. Frequency of activation markers on 

CD4
+
 T cells (representative of four experiments). (B) Ki67 expression and cytokine production at day 

7 p.i. in CD4
+
 T cells from dLN of DA (n=7-8) and CLRc (n=5-6) rats following 72 h in vitro MOG 

stimulation (representative of three experiments). (C) qPCR for Cd62l, Cd11a, Ccr7 and Ccr6 in 

CD4
+
 T cells sorted from dLNs of DA (n=6) and CLRc (n=6) rats day 7 p.i. in dLNs (representative of 

two experiments). (D) Number of infiltrating CD4
+
 T cells, macrophages/monocytes (Ma/Mo) and 

granulocytes in spinal cord of naïve DA and CLRc rats (n=12 and n=12) and at 7 (n=3 and n=3), 11 

(n=6 and n=5) and 13 days (n=7 and n=5) post immunization (representative of two experiments). (E) 
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and (F) Characterization of proliferation and cytokine production in infiltrating cells isolated from 

spinal cord on day 13 p.i. stimulated in vitro with PMA/Ionomycin/BrefeldinA for 5 h in CLRc rats 

(n=6) and DA rats (n=6) (representative of two experiments). Data are presented as mean ± SEM. All 

comparisons were done with Mann–Whitney U test. *P < 0.05; **P < 0.01.  
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Figure 3 

 

Fig. 3. CLRc regulates expression of Mcl and Mincle in monocytes and macrophages. (A) 

Expression of Mcl and Mincle assessed by microarray in spleens of (DAxPVG)xDA backcross rats 

subjected to EAE, affected (n=95, score 1) and non-affected (n=51, score 0). (B) Gene expression in 

DA (n=6) and CLRc (n=6) spleens determined by qPCR (representative of two experiments). (C) 

Flow cytometry analysis of cells isolated from blood and spinal cord of naive DA (n=5) and CLRc 

(n=5), as well as DA (n=7) and CLRc (n=6) rats at day 13 p.i. assessing Mcl and Mincle protein 

expression by mean fluorescence intensity (MFI) (representative of two experiments). 

Ly=Lymphocyte, Mi=Microglia, Mo/Ma=Monocyte/Macrophage, Gr=Granulocyte. (D) qPCR 

analysis of Mcl and Mincle expression in BMMa and MoDCs (BM-APCs) derived in vitro and 

meninges from naïve and 7 days p.i. rats of DA (n = 4) and CLRc (n = 4) (representative of two 

experiments). (E) Immunofluorescent staining of rat spinal cord 11 days p.i. Representative images of 

staining for Mcl, Mincle and nuclei (DAPI) (magnification 40X). Data are presented as mean ± SEM 

or box-plots with whiskers representing 5-95 percentile. All comparisons were done with Mann–

Whitney U test. *P < 0.05; **P < 0.01; ***P < 0.001.  
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Figure 4 

 

Fig. 4. Attenuated response to Mcl/Mincle stimulation in CLRc BMMa resulting in altered CD4
+
 

T cell extravasation and activation. (A) Bone marrow derived macrophages (BMMa) from DA 

(n=4) and CLRc (n=4) rats were stimulated with receptor-specific ligands (TDM and TDB) for 18h 

(representative of three experiments). qPCR analysis of genes downstream of the Mcl/Mincle 

pathway. (B) MOG-specific CD4
+
 effector cells were reactivated for 4 days with DA (n=6) or CLRc 

(n=6) BMMa at a ratio of 40:1 (T cell:BMMa) in the presence of MOG peptide. Flow cytometry 

analysis of CD4
+
 T cell assessing cytokine production and proliferation (representative of two 

experiments). (C) Transendothelial extravasation of MOG-specific CD4
+
 effector cells towards DA 

(n=4) or CLRc (n=4) BMMa. Flow cytometry analysis of CD4
+
 T cell assessing transmigration 

(representative of two experiments). (D) Adoptive transfer of GFP
+
 MOG-specific CD4

+
 effector cells 

injected i.v. into DA (n=7) or CLRc (n=7) recipients 6 days p.i. (representative of two experiments). 
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Characterization of proliferation and cytokine production in both GFP
-
 as well as GFP

+
 infiltrating 

cells isolated from spinal cord on day 13 p.i. stimulated in vitro with PMA/Ionomycin/BrefeldinA for 

5 h. Data are presented as mean ± SEM. All comparisons were done with Mann–Whitney U test. *P < 

0.05; **P < 0.01. 
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Figure 5 

 

Fig. 5. CNS-specific Mcl/Mincle silencing, as well as blockage of the endogenous ligand SAP130, 

protects from EAE. (A) MOG-immunized rats injected with Mcl (n=8), Mincle (n=8), Mcl/Mincle 

(n=8) or scrambled control siRNA (n=8) i.t. and i.c. at 7, 9 and 12 days p.i. were followed for clinical 

signs of EAE (representative of three experiments). (B) Characterization of proliferation and cytokine 

production of infiltrating cells isolated from spinal cord day 12 p.i., stimulated in vitro with 

PMA/Ionomycin/BrefeldinA for 5 h (proliferation and cytokine production) in rats injected with 

Mcl/Mincle (n=5) or scrambled control siRNA (n=6) and (C) quantification of IFNγ- and IL-17-

producing CD4
+
 T cells (representative of two experiments). (D) Clinical signs of EAE and disease 

parameters in DA rats treated with anti-SAP130 (n=18) or rabbit IgG isotype control (n=18) antibody 

i.t. and i.c. on days 2 and 7 p.i. (two pooled experiments). Data are presented as mean ± SEM. The 

following statistical tests were used: 1-way ANOVA with Dunnett's Multiple Comparison Test (A, for 
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area under curve (AUC) of clinical EAE and weight change), Mann–Whitney U test (A-D, for 

average, cumulative and max EAE score, B and C), Unpaired 2-tailed t-test (D, for AUC of clinical 

EAE and weight change) and Chi-square test (A and D, for EAE incidence).  *P < 0.05; **P < 0.01; 

***P < 0.001.  
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Figure 6 

 

Fig 6. The MCL/ MINCLE signaling pathway is upregulated in MS patients and correlates with 

disease activity and progression. (A) Group representative immunofluorescent staining of MS 

lesions. MCL or MINCLE (green), HLA-DR expression (LN3, red), 40X magnification. (B-C) Gene 

expression analysis of PBMC from MS patients and non-inflammatory neurological disease controls 

(NINDCs) using RNA-sequencing. (B) Expression of MCL, MINCLE and CARD9 comparing MS 

patients in remission (n=73), MS patients in relapse (n=14), CIS patients (n=28) and NINDCs (n=36). 

(C) Expression of MCL, MINCLE, CARD9 and IL8 according to Expanded Disability Status Scale 

(EDSS) score. (D) PBMC from RRMS patients in relapse (n=9) and healthy controls (n=11) were 

stimulated in vitro with either TDB, LPS or media. qPCR analysis of IL8 expression of adherent 

CD14
+
 fraction after 24 h stimulation. (E) Flow cytometry analysis of IL-8 production gated on CD14

+
 

monocytes after 48 h stimulation. Data are presented as mean ± SEM or box-plots with whiskers 

representing 5-95 percentile. The following statistical tests were used: 1-way ANOVA with Dunnett's 
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Multiple Comparison Test (B), Unpaired 2-tailed t-test (C) and Mann-Whitney U test (C and D). *P < 

0.05; **P < 0.01. 
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