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Antibodies that target immune checkpoint molecules, such as CTLA4, provide robust antitumor effects in a subset of
patients. Unfortunately, not all patients respond to immune checkpoint inhibition, and some develop life-threatening
immune-related adverse events (irAEs). The mechanisms that underlie irAEs from immune checkpoint inhibition are not
fully understood, and treatment strategies are currently limited to targeting inflammatory mediators. In this issue of the
JCI, Pai et al. report on their development of a modified CTLA4 antibody that shields the inner CTLA4-binding domain
until the antibody is within the protease-rich tumor microenvironment. In a lymphopenic murine model reconstituted with
naive CD4+ T cells, adapted anti-CTLA4 reduced the occurrence of irAEs and enhanced antitumor effects. This thought-
provoking study lays the groundwork for further exploration of this adapted antibody in immunocompetent hosts and
introduction of this adaptation to other immune checkpoint molecules. It also suggests that this approach may reduce the
incidence of irAEs.
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Limitations of immune 
checkpoint inhibition
Anti-CTLA4 agents are part of the flag-
ship class of immune checkpoint inhib-
itors that ushered in the current era of 
immunotherapy for cancer. In 2011, the 
CTLA4 inhibitor ipilimumab was the 
first immune checkpoint inhibitor to be 
approved by the FDA (1), and in 2016, 
ipilimumab was approved for use in com-
bination with the PD-1 inhibitor nivolum-
ab (2). Together, these agents offered the 
first opportunity for long-term, antitumor 
responses for patients with advanced 
melanoma. Unfortunately, there are 
major obstacles to the use of anti-CTLA4 
therapy. In particular, robust antitumor 
effects are limited to a subset of patients, 
and selected patients develop rare but 
serious immune-related adverse events 
(irAEs) (2). IrAEs are of immense clinical 

relevance to patients treated either with 
ipilimumab monotherapy, which results 
in 28% of patients experiencing grade 
3+ irAEs, or ipilimumab and nivolumab 
in combination, which results in grade 
3+ irAEs in up to 50% of cases (1). To 
date, the literature surrounding irAEs has 
focused on clinical descriptions charac-
terizing the diverse manifestations and 
management of specific irAEs (3–5), with 
selected studies exploring the proposed 
mechanisms of irAE development (6–8). 
Drug development in the field of cancer 
immunotherapeutics has focused largely 
on improving antitumor efficacy. In this 
issue, Pai et al. report on their adaptation 
of an existing therapeutic to both improve 
efficacy and reduce the incidence of 
irAEs. Specifically, the authors propose a 
novel adaptation of the molecular struc-
ture of the anti-CTLA4 agent that maxi-

mizes antitumor effects through activity 
in the tumor microenvironment and ame-
liorates irAE development (9).

Enhancing the good, limiting 
the bad
Pai and colleagues adoptively transferred 
naive CD4+ T cells into lymphopenic Rag1–/– 
mice. In this model, systemic administration 
of anti-CTLA4 recapitulated development 
of irAEs, with histologically confirmed 
development of colitis, dermatitis, pneu-
monitis, and hepatitis, via proliferation of 
T effector cells (10) and increased produc-
tion of TNF-α. In an attempt to mitigate this 
effect, Pai et al. subsequently engineered 
an anti-CTLA4 dual variable domain 
immunoglobulin (DVD), designed to shield 
the inner domain until it was within a pro-
tease-enriched tumor microenvironment. 
The authors postulated that this approach 
would maximize the effects of the anti-CT-
LA4 DVD on tumor-infiltrating Tregs while 
preserving tissue-resident Tregs, there-
by limiting the exuberant inflammatory 
responses that result in irAEs. These find-
ings are a reasonable explanation for the 
development of irAEs and are supported by 
published preclinical models of pneumoni-
tis (11), colitis (12), and type I diabetes mel-
litus (13). Importantly, Pai and colleagues 
also demonstrated enhanced biodistribu-
tion of the anti-CTLA4 DVD in tumors, 
reduced organ toxicity, reduced activation 
of peripheral T effector cells, and increased 
antigen-specific tumor CD8+ cells. Pai et 
al. are to be commended for approaching 
the mitigation of immune-related toxicity 
using a previously unexplored method and 
for providing a foundation for further work 
on this strategy.

Limitations and conclusions
There are however, several limitations to 
the study by Pai et al. The authors interro-
gate lymphopenic hosts and focus solely 
on CD4+ cells, which have not been defini-
tively shown to mediate human irAEs (14). 
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Antibodies that target immune checkpoint molecules, such as CTLA4, 
provide robust antitumor effects in a subset of patients. Unfortunately, 
not all patients respond to immune checkpoint inhibition, and some 
develop life-threatening immune-related adverse events (irAEs). The 
mechanisms that underlie irAEs from immune checkpoint inhibition are 
not fully understood, and treatment strategies are currently limited to 
targeting inflammatory mediators. In this issue of the JCI, Pai et al. report 
on their development of a modified CTLA4 antibody that shields the inner 
CTLA4-binding domain until the antibody is within the protease-rich 
tumor microenvironment. In a lymphopenic murine model reconstituted 
with naive CD4+ T cells, adapted anti-CTLA4 reduced the occurrence of 
irAEs and enhanced antitumor effects. This thought-provoking study 
lays the groundwork for further exploration of this adapted antibody in 
immunocompetent hosts and introduction of this adaptation to other 
immune checkpoint molecules. It also suggests that this approach may 
reduce the incidence of irAEs.
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autoantibody formation (e.g., thyroid dis-
orders; ref. 8), cytokine-mediated toxicity 
(e.g., CTLA4-induced colitis; ref. 7), target 
tissue expression of CTLA4 (e.g., hypoph-
ysitis; ref. 21), patient germline genetics 
(e.g., type I diabetes mellitus; ref. 22), and 
gut microbiota–dependent features (e.g., 
protective in CTLA4 colitis; ref. 6).

Targeting inflammatory mediators is a 
mainstay of current clinical irAE manage-
ment (23). This strategy is further support-
ed by the finding of Pai et al. that TNF-α is 
markedly increased in mice receiving both 
anti-CTLA4 and adoptive transfer of CD4+ 
T cells compared with untreated animals. 
Current guidelines suggest administra-
tion of high-dose corticosteroids for grade 
3+ irAES and consideration of further 
immunosuppression mainly with cytokine-
specific therapies, such as the TNF-α inhib-
itor infliximab, for steroid-refractory cases 
(23). Studies have shown that selective 
targeting of cytokines, such as with inflix-
imab or the IL-6 inhibitor tocilizumab (23), 
or autoreactive T cells (Th17 cells) (24) can 
inhibit autoimmune effects while main-
taining the antitumor benefit of therapy. 
Avoiding or managing toxicity using cyto-
kine-specific targeting shows promise and 
would result in avoiding engineering new 
therapeutics as well as bypassing many 
of the patient-specific challenges that an 
anti-CTLA4 DVD would face. However, 
current irAE management options have 
proven limiting, and challenges such as 
infliximab-resistant toxicity do occur (4, 
23). Additionally, current irAE treatment 
options are only effective for patients who 
have or are about to experience an irAE. 
They do not prevent the irAE from devel-
oping or associated immune-mediated 
organ damage. With the known inability 
to prevent irAEs in mind, modification of 
the therapeutic itself, as Pai et al. suggest, 
gains merit.

In summary, Pai et al. offer a thought-
provoking article that examines a new ther-
apeutic strategy by which the benefits of 
checkpoint inhibition may be maximized, 
while the off-target effects of these agents, 
largely through a biologic basis of alter-
ing Tregs, are minimized. Further study in 
this area could focus on examining these 
effects in immunocompetent models, the 
effects on other potential mechanisms of 
immune-related toxicity, and application of 
this approach to other checkpoint molecules.

Other groups have utilized human CTLA4 
knockin models to interrogate irAE devel-
opment in response to anti-CTLA4, anti–
PD-1, or combination treatment (15). The 
examination of anti-CTLA4 DVD in the 
human CTLA4 mouse model would have 
strengthened the conclusions of Pai et al. 
In addition, results from published studies 
regarding the effect of anti-CTLA4 thera-
py on Tregs in human tumors are varied, 
with some data suggesting these agents 
may not deplete Tregs (16), but may in fact 
expand the Treg pool (17) or even mod-
ulate Treg-suppressive function without 
actually affecting numbers (18).

There are also important clinical and 
translational considerations that should 
be factored into interpretation of the 
findings of Pai and colleagues. Clinical-
ly, anti-CTLA4 monotherapy, as well as 
the combination of anti-CTLA4 and anti–
PD-1, has demonstrated a survival benefit 
in patients with advanced melanoma (2), 
with combination therapy also showing an 
early benefit in a subset of patients with 
non–small cell lung cancer (19). Howev-
er, anti-CTLA4 monotherapy has limited 
efficacy in other tumor types, potentially 
due to an inability to deliver higher dos-
es, in contrast with monotherapies tar-
geting the PD-1/PD-L1 axis, which have 
gained FDA approval in 13 different tumor 
indications to date. The DVD adaptation 
described by Pai et al. may thus have great-
er clinical impact if applied to anti–PD-1/
PD-L1 agents. Moreover, the translation 
of a modified checkpoint inhibitor, such 
as anti-CTLA4 DVD, will face challeng-
es in human cancers, including differing 
immunogenicity properties, antigenic het-
erogeneity of cancers, and the presence or 
absence of both specific and reliable prote-
ases in the tumor microenvironment.

Pai et al. assert that a reduction of 
Tregs is the mechanism by which the 
anti-CTLA4 DVD will mitigate irAEs; 
however, the mechanisms by which irAEs 
develop in response to PD-1 and/or CTLA4 
inhibition appear to be varied, are likely 
dependent on the organ-specific toxicity 
in question, and are unlikely to be solely 
mediated by Tregs. Several mechanisms 
of irAE development have been exam-
ined in the published literature. These 
include development of autoreactive T 
cells between both tumor and organ-spe-
cific tissues (e.g., myocarditis; ref. 20), 
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