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Abstract  1 

Tumor infiltrating lymphocytes are widely associated with positive outcomes, yet carry 2 

key indicators of a systemic failed immune response against unresolved cancer. Cancer 3 

immunotherapies can reverse their tolerance phenotypes, while preserving tumor-4 

reactivity and neoantigen-specificity shared with circulating immune cells. We performed 5 

comprehensive transcriptomic analyses to identify gene signatures common to circulating 6 

and tumor infiltrating lymphocytes in the context of clear cell renal cell carcinoma. 7 

Modulated genes also associated with disease outcome were validated in other cancer 8 

types. Through comprehensive bioinformatics analyses, we identified practical diagnostic 9 

markers and actionable targets of the failed immune response. On circulating 10 

lymphocytes, three genes, LEF1, FASLG, and MMP9, could efficiently stratify patients 11 

from healthy control donors. From their associations with resistance to cancer 12 

immunotherapies and microbial infections, we uncovered not only pan-cancer, but pan-13 

pathology failed immune response profiles. A prominent lymphocytic matrix 14 

metallopeptidase cell migration pathway, is central to a panoply of diseases and tumor 15 

immunogenicity, correlates with multi-cancer recurrence, and identifies a feasible, non-16 

invasive approach to pan-pathology diagnoses. The differently expressed genes we have 17 

identified warrant future investigation towards the development of their potential in non-18 

invasive precision diagnostics and precision pan-disease immunotherapeutics.  19 
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Introduction 20 

Pan-cancer studies have demonstrated that tumor infiltrating lymphocytes (TILs) 21 

are prognostic determinants of intratumoral heterogeneity (1). The failure of TILs at 22 

discriminating and eliminating neoantigen content from general tissue-specific, tumor-23 

associated, or tumor-selective antigens, should reclassify the emergence of cancer as 24 

facet of the failed immune response (FIR). The one-size-fits-all potential for pan-cancer 25 

treatment by immune checkpoint blockade (ICB) is being investigated, but a significant 26 

fraction of patients do not respond to any single currently available therapies, while others 27 

progress or develop resistance. To identify TIL phenotypes contributing to responses, 28 

pan-cancer studies have correlated epithelial-to-mesenchymal transition and immune 29 

activation (2), where immune activation and CD8+ TIL landscapes associate with 30 

favorable prognostic genes (3). Pre-treatment pan-cancer surveillance of interferon 31 

signaling and antigen presentation factors (4), or pan-cancer “immunophenoscore” (5), 32 

may become adopted by mainstream oncology. Indeed, comprehensive multi-cancer 33 

databases are vastly extending our knowledge of tumorigenesis by providing avenues for 34 

deciphering diagnostic pan-cancer signatures distinguishing tumor types, and having 35 

prognostic, predictive, and therapeutic potential (6, 7). Integrative pan-cancer analyses 36 

elucidate tumor lineage unique signatures (8), and trace metastatic lesions to tissues of 37 

origin (9). However, the use of whole tumor datasets as precise scoring determinants of 38 

immune inference requires complex deconvolution (10), complicated by influence of 39 

tumor expression programs on TILs (11).  40 

Baseline-tumor specimens provide a wealth of prospective information (12). 41 

However, their use for routine prediction to response is challenged by specimen sizes, 42 
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and limits imposed by cancer heterogeneity, and invasiveness and delays from surgical 43 

procurement (13). Liquid biopsies have the advantage of being easily accessible (14), 44 

where circulating tumor cells and DNA (15, 16), and pan-cancer platelets (17) have been 45 

investigated for diagnostics. Yet, their non-specificities and inabilities of pinpointing the 46 

nature of primary tumors have delayed adoption of these methods (18). The traceability 47 

of circulating immune cells, that are themselves targets for immunotherapies, should 48 

make their shifting phenotypes superior predictive biomarkers. Pan-cancer diagnostic 49 

and predictive biomarkers from circulating effector peripheral blood lymphocytes (PBLs) 50 

could mirror neoantigen-specific FIR TIL phenotypes, providing a “peripheral 51 

immunoscore” correlating with tumor burden or response to therapies (19, 20). 52 

We have overcome the limitations of tumor heterogeneity and biospecimen and 53 

biomarker accessibility, by identifying cell surface FIR pan-cancer diagnostic and 54 

actionable targets circulating PBLs. Clear cell renal cell carcinoma (ccRCC) was used as 55 

the primary model for biomarker discovery for several reasons: it features highest 56 

numbers of differentially expressed genes (DEGs) (21), observed PBL profiles correlate 57 

with TIL profiles (22), and its strong yet dysfunctional immunogenicity represents an 58 

enigma (23), despite RCC trials demonstrating better responses to ICB than other 59 

targeting therapies (24).  60 

We performed comprehensive microarray analyses on paired patient (pt) CD8+ T 61 

cells and CD19+ B cells isolated from ccRCC tumors (TIL, TIL-B), normal tumor-adjacent 62 

tissue infiltrating immune cells (TIIC), peripheral blood mononuclear cells (PBMC) from 63 

patients (ptPBL), and from age-matched healthy control donors (cdPBL). DEGs from TILs 64 

and ptPBLs were compared to The Cancer Genome Atlas (TCGA) Kidney Renal Clear 65 
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Cell Carcinoma (KIRC) cohort, identifying DEGs associated with patient prognosis. Both 66 

cell surface DEGs, and DEGs having pre-existing targeting compounds, more amenable 67 

to antagonistic or agonistic design or drug repurposing, were retained. ccRCC prognostic, 68 

pan-cancer DEGs were identified in lung, breast, ovarian and gastric cancers. A scoring 69 

system was implemented to retain DEGs whose expression was restricted to 70 

lymphocytes, were supported by immunology and oncology literature, and had significant 71 

protein-protein interactions (PPI) and gene expression correlations. Top scoring DEGs 72 

were validated on a new independent RCC cohort, where a minimum set of three DEGs 73 

could stratify patients. A central DEG, matrix metallopeptidase 9 (MMP-9), could also 74 

stratify patients having pan-cancer recurrence. Effects of pan-cancer genes were 75 

investigated for splicing defects and used in pathway discovery. Our ‘blinded’ gene-76 

discovery pipeline design is supported by identification of DEGs previously reported as 77 

biomarkers conferring resistance, and others slated as novel immunotherapeutic targets. 78 

The demonstration that pan-cancer FIR-DEGs are essential for controlling human 79 

immunodeficiency virus 1 (HIV-1) and other microbial infections, implicates these as pan-80 

pathology immune biomarkers with diagnostic and therapeutic potential. 81 

  82 
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Results 83 

Distinct cell surface coding DEG profiles from ccRCC CD8+ and CD19+ PBLs 84 

and TILs 85 

To investigate pan-cancer immunity, we performed a comprehensive microarray 86 

analyses on matched case-control pairs of CD8+ TILs and CD19+ TIL-Bs from ccRCC 87 

tumors, CD8+ and CD19+ TIICs from normal tumor-adjacent tissues, and CD8+ and 88 

CD19+ PBLs from ccRCC patients; along with CD8+ and CD19+ PBLs from matched 89 

healthy control donors (Supplemental Figure S1). Study patient clinicopathologic 90 

characteristics are presented in Supplemental Table S1. Quality control experiments for 91 

yield and quality of various rapidly isolated immune cell subsets from tumors were 92 

performed (Supplemental Figure S2A-D), in addition to stringent bulk total RNA quality 93 

testing prior to its amplification and application to comprehensive microarrays 94 

interrogating >67,000 transcripts (Supplemental Figure S2E). The Affymetrix 95 

Transcriptome Analysis Console (TAC) was used to observe prominent DEGs in TILs and 96 

ptPBLs relative to TIICs and cdPBLs (Supplemental Figure S2F), totaling 7,300 (i.e., 97 

CD8+ and CD19+ TIL-B/TIIC and ptPBL/cdPBL; 1.5 fold-change; P < 0.05) 98 

(Supplemental Figure S1). Principal component analyses (PCA) were generated using 99 

the Partek Genomics Suite for all paired CD8+ or CD19+ biospecimens and PBL controls 100 

(Figure 1A, B). Venn diagrams were generated to demonstrate overlaps in DEGs 101 

represented by CD8+ and CD19+ ptPBLs (20.4%) and TILs (37.8%) (Figure 1C), and to 102 

demonstrate overlaps of possible splice junctions generating spliceoforms common to 103 

CD8+ ptPBLs and TILs, made possible by using comprehensive HTA 2.0 microarrays 104 

(Figure 1D), and suggesting that patient-inherent post-translational modification 105 
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programs generating distinct RNA isoforms may also influence the behavior of TILs. To 106 

assess feasibility of pursuing DEGs more easily amenable to therapeutic interventions 107 

such as ICB (i.e., actionable targets), we used unsupervised clustering and PCA to 108 

examine DEGs coding for molecules expressed on the plasma membranes (PM); these 109 

efficiently separating immune isolates – with largest differences maintained between TILs 110 

and TIICs (Figure 1E) – and also permitting efficient separation of ptPBLs and cdPBLs 111 

(Figure 1E, F).  112 

 113 

Prognostic ccRCC DEGs have pan-cancer prognostic potential 114 

To identify prognostically important ccRCC DEGs, we generated Kaplan-Meier 115 

plots and P values for the 7,300 significant DEGs using TCGA KIRC RNA-seq and 116 

associated clinical datasets (n = 534 tumor, n = 72 healthy control donors). This step 117 

resulted in detecting 2,257 prognostic DEGs (Supplemental Figure S1). To further refine 118 

prognostic DEGs and find the most feasible actionable targets, we focused on PM-119 

associated proteins, or those having known targeting compounds. Partek and PANTHER 120 

Gene Ontology were both used to identify PM proteins, ensuring most PM-associated 121 

DEGs would be retained. ChEMBL target searches were used to identify proteins with 122 

known targeting compounds. Together, these two approaches reduced target DEGs to 123 

779, which were then investigated for their pan-cancer potential using >11,500 lung, 124 

breast, gastric, and ovarian cancer patients from Kaplan Meier-plotter, generating 467 125 

(i.e., 62%) target DEGs with pan-cancer potential. This refined list represented pan-126 

cancer FIR biomarkers, grouped as either: 1) agonistic targets decreased in tumors 127 

relative to normal tissues and having a positive prognosis, or 2) antagonistic targets 128 
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increased in tumors relative to normal tissues and having negative prognosis 129 

(Supplemental Figure S1). PCA transposition permitted visualization of how these pan-130 

cancer FIR-DEGs identified from ptPBLs (Figure 2A, Supplemental Figure S3A) or TILs 131 

(Figure 2B, Supplemental Figure S3B) were distributed across the five cancers, and 132 

how they correlated with each other; where numerous were common to both CD8+ TILs 133 

and CD19+ TIL-Bs relative to their TIIC counterparts (Figure 2C, full gene list in 134 

Supplemental Figure S3C). A subset of pan-cancer FIR-DEGs were also found to be 135 

common between TILs and ptPBLs (Supplemental Figure S3D). 136 

Correlograms reflected increased correlations between the five cancers used to 137 

refine for pan-cancer target FIR-DEGs (compare Supplemental Figure S3E and Figure 138 

2D). Because the selected 467 pan-can FIR-DEGs were discovered using whole tumor 139 

TCGA datasets, we compared percentages of correlations between five cancers to that 140 

of their immune infiltrates (n > 11,500), providing similar trends, suggesting strong 141 

likelihood that global FIR-DEG signatures were immune-based (Figure 2E). Of these 467 142 

pan-cancer FIR-DEGs, proportions of agonistic and agonistic targets derived from ptPBLs 143 

were equal, whereas those derived from TILs had increased agonistic target 144 

representation (Figure 2F). 145 

To further refine pan-cancer FIR-DEG targets, nominal derivatives (binomial 146 

values) were generated to integrate quantitative and non-quantitative, and thus non-147 

harmonizable datasets and analyses, and were used get an overall score representing 148 

their 1) coupled expression and effect on overall survival (n = 5 cancers, Kaplan Meier-149 

plotter), 2) coupled RNA and protein expression in myeloid and lymphoid cells relative to 150 

12 other cancers, 3) modified in expression levels in cancers relative to normal tissues (n 151 
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= 17 cancers; The Human Protein Atlas), and 4) direct published literary evidence of DEG 152 

expression in the immune subtypes from which they were identified (Supplemental Table 153 

S2). The top 200 scoring pan-cancer ptPBL and TIL FIR-DEGs were subjected to PPI 154 

analyses using rudimentary search engine (STRING) (Supplemental Figure S3F) (25), 155 

providing a PPI enrichment value (P = 1.85e-10) warranting further investigation. For 156 

more comprehensive PPI analyses, we used IID, pathDIP and NAViGaTOR, providing 157 

new evidence of interactions (Figure 3), with most highly associated pathways to 158 

antagonistic targets including, immune system, TNF signaling, APC complex inactivation, 159 

NFkB, and agonistic pathways WNT signaling, chemokine signaling, proteoglycans, and 160 

GPCRs; (P < 1e-10) (Supplemental File S1A). Finally, the top scoring 200 ptPBL and 161 

TIL pan-cancer FIR-DEGs were further refined by retaining those that were the most 162 

correlated in differential pan-cancer gene expression, towards discovery of novel 163 

mechanistic pathways not deciphered from above analyses (Figure 4).  The combination 164 

of these scoring methods was used to select pan-cancer FIR-DEG for validation on a new 165 

RCC patient cohort (Supplemental Figure S1). 166 

 167 

Pan-cancer and polarizing DEGs stratify CD8+, CD19+, PBLs, TILs and TIICs 168 

Twenty eight pan-cancer FIR-DEGs, and 62 commonly used T cell polarizing 169 

genes defining known T cell subsets, were selected for validation on a new, independent 170 

74 patient RCC cohort, using TaqMan Gene Expression Assays on 96.96 microfluidic 171 

BioMark HD Real-Time PCR system dynamic arrays (Fluidigm), providing the advantage 172 

of DEG co-expression analysis. Total CD8+ ptPBL RNA from 41 ccRCC, eight RCC, and 173 

six pRCC patients, and CD8+ cdPBL RNA from control donors were analyzed, with three 174 
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ccRCC patient duplicates added as inter-assay RNA extraction controls. We also included 175 

five total ptPBMC and five total ndPBMC RNA preparations. Finally, to maximize use of 176 

the microfluidics chip, and to determine if these could provide a baseline for DEG 177 

expression, we also added pooled total RNA samples from: CD8+ (n = 50 patients) and 178 

CD19+ (n = 50 patients) ptPBLs, CD8+ (n = 15 patients) and CD19+ (n = 15 patients) 179 

cdPBLs, ccRCC PBMCs (n = 10 patients), pRCC PBMCs (n = 10 patients), ndPBMCs (n 180 

= 10 control donors), and paired ccRCC TILs (n = 8) and TIICs (n = 8). BioMark HD-181 

generated heatmaps, housekeeping genes, and loading controls are shown in 182 

Supplemental Figure S4A-D.  183 

Following normalization, correlograms were used to visualize co-expression 184 

dynamics between all DEGs (Supplemental Figure S4E). Unsupervised clustering 185 

demonstrated that pooled RNA fractions were stratified as expected: with CD8+ and 186 

CD19+ isolates stratifying furthest apart, and total PBMC isolates stratifying 187 

independently, but remaining closer to CD8+, as a function of T cells (7-24%) representing 188 

a larger frequency of total PBMC than B cells (1-7%) (Figure 5A). Also expected, TILs 189 

stratified closest to total PBMC, yet remained close to TIICs – reflecting tissue infiltrating 190 

immune profiles. Finally, ccRCC ptPBLs and cdPBLs from either CD19+ or CD8+ isolates 191 

clustered closely, at opposite ends of the heat map. Unsupervised clustering was also 192 

used to observe that individual ccRCC ptPBMCs were efficiently stratified from ndPBMCs 193 

(Figure 5B). PCA was used to visualize coupling of pooled RNA fractions and DEG co-194 

expression, here demonstrating that patient TILs, PBMCs and CD8+ ptPBLs were 195 

distantly stratified from both TIICs and CD19+ ptPBLs (Figure 5C). This 3-dimensional 196 
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view also provided evidence of co-expressing groups of pan-cancer FIR-DEGs and 197 

polarizing genes. 198 

 199 

Pan-cancer DEGs stratify RCC patients from control donors  200 

Differential expression and correlation analyses were coupled to identify pan-201 

cancer FIR-DEG combinations most efficiently stratifying patients. Several pan-cancer 202 

FIR-DEGs (ICOS, PF4V1, IFNG, LAG3, TIGIT, CDA, PDK4, KLF4, PIM2, TIMP1, 203 

IGF2BP3, IL23A, LEF1, TCF7), in combination with other T cell genes, efficiently stratified 204 

patients from control donors to an accuracy of 90.1% (Figure 6A, D). Absence of novel 205 

discovered pan-cancer FIR-DEGs uncommon to T cell polarization caused loss of patient 206 

stratification (Supplemental Figure S5A); however, control donors still stratified with a 207 

LEF1 and NT5E expressing population, which included other biomarkers of activation, 208 

and immune checkpoint BTLA, which we and others believe marks T cells having 209 

enhanced survival properties (26). 210 

Combination testing revealed that a smaller set of these patient stratifying pan-211 

cancer genes (IFNG, CDA, PDK4, KLF4, IGF2BP3, LEF1), could also stratify patients to 212 

an accuracy of 89.1% (Figure 6B, D), which could not be met in their absence 213 

(Supplemental Figure S5B-C). Additional combination testing identified a minimal set of 214 

three DEGs (MMP9, FASLG, LEF1) stratifying patients with a 79.3% (Figure 6C, D). 215 

Interestingly, aside from stratifying patients from control donors, pan-cancer FIR-DEG 216 

PCAs revealed two dominant CD8+ ptPBL populations containing either FASLG or LEF1 217 

together responsible for triggering cell death or cell activation. In addition, the three 218 

internal patient duplicates remained closely clustered throughout PCAs, whereas pooled 219 
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RNA factions were centralized among their counterparts (Figure 6A-C). Further 220 

correlation analyses performed on RCC patients populating yellow PCA quadrants 221 

occupied by control donors demonstrated these to have increased CXCR3 (P=0.0021; 222 

r=0.4898; CI=0.1874-0.7074) and CXCR5 (P=0.0029; r=0.4764; CI=0.1705-0.6988) 223 

(Spearman method), suggesting that these may be two key RCC fitness genes, also 224 

recently linked to increased abilities of broadly neutralizing antibody production by HIV-1 225 

elite controllers (27). 226 

 227 

Pan-cancer FIR-DEGs common to RCC and HIV  228 

This link between RCC ptPBL DEGs and HIV-1 controllers prompted our 229 

examination of other pan-cancer FIR-DEGs commonly expressed by HIV-1 controllers. 230 

Intriguingly, the majority of our validated pan-cancer FIR-DEGs were represented in an 231 

HIV-1 elite DEG screen (28). As such, we searched the literature to elucidate which of 232 

these DEGs were useful to both cancer and HIV-1 when expressed by PBLs, 233 

demonstrating that 60% of these similarly polarized T cells towards permissiveness to 234 

cancer development and HIV-1 infection (Supplemental Table S5). In comparing HIV-1 235 

controller DEGs similarities to ccRCC DEGs, we observe that the pan-cancer DEG 236 

prioritization pipeline increased identity to HIV-1 controller DEGs from 17% (467 pan-can 237 

DEGs) to 50% (top 100 pan-can DEGs) (Figure 6E). This led us to consider whether the 238 

pan-cancer FIR-DEG pipeline was actually identifying pan-pathology genes. We thus 239 

compared our pan-cancer DEGs to datasets from another study aimed at identifying 240 

frontline biomarkers common to numerous pathologies (29). Strikingly, 82.1% of our 241 

ptPBL-based, and 42.8% of our TIL-based top 200 pan-can FIR-DEGs were confirmed 242 



Running title: Pan-Pathology targets of the failed immune response 
 

13 
 

by their findings, with 51% of 467 pan-can DEGs, and 59% of top 100 pan-can DEGs 243 

present (Figure 6F), and where a total of 71.1% of DEGs were commonly reflected by 244 

bacterial infection datasets. Potentially revealing pan-pathology T cell biomarkers, we 245 

then compared our lists to cancer patient datasets of response to anti-PD-1 246 

immunotherapy (30, 31), highlighting a few of our pan-cancer FIR-DEGs (Supplemental 247 

Table S6), notably including our MMP9, FASLG, and LEF-1 minimal triad stratifying 248 

ccRCC patients from control donors (Figure 6C; and see Supplemental Table S7 for 249 

summary of validated DEGs common to other datasets). 250 

 251 

Pan-cancer DEGs are associated with pan-cancer recurrence and T cell 252 

activation  253 

Within the validation cohort, 10 of 28 ccRCC patients (35.7%) were recorded as 254 

having been previously treated for other malignancies including: kidney, bladder, blood, 255 

breast, colon, liver, melanoma, ovary, prostate, rectal, and uterine cancers, where a few 256 

had suffered from three different malignancies with no recorded metastases. We used 257 

this opportunity to compare validated DEGs across control donors, RCC patients, and 258 

those positive or negative for pan-cancer recurrence. Strikingly, MMP9 expression best 259 

stratified pan-cancer recurring patients (P<0.0001, t = 1.779, df=26 T-test; P=0.007, 260 

MDiff=1.716, 95% CI of diff=0.3989 to 3.034, df=2366, 2-way ANOVA, Tukey’s post-test) 261 

(Figure 7A). Indeed, all MMP9hi patients had previously suffered from RCC, along with 262 

blood, breast, colon, melanoma, ovarian, prostate, or uterine cancers; with a high 263 

proportion of adenocarcinomas (80.0%). A disproportionate number of MMP9low patients 264 

had previously suffered from a bladder or prostate cancer (66.6%). Other DEGs stratifying 265 
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pan-cancer recurring patients were KLF4, RORC, PDK4, and CCR4; yet these genes 266 

were decreased in these recurring patients. 267 

From PCA analyses demonstrating that pan-cancer DEGs stratified two CD8+ T 268 

cell pools in addition to individual patients (Figure 6), along with observations of their 269 

ability to stratify patients according to pan-cancer recurrence (Figure 7A), we applied 270 

correlograms to observe whether their combined expression could tip the balance 271 

between tolerant/anergic and activated/effector T cell profiles. The merging of 272 

correlograms providing a split in DEGs populations, expression levels of DEGs between 273 

isolates, and balance of DEGs formerly documented in the literature as being associated 274 

to activation or tolerance phenotypes, suggested existence of a dominant activated 275 

effector CD8+ ptPBL population (Figure 7B). The majority of these effector DEGs (69.2%) 276 

providing an activation phenotype were downregulated in patients with pan-cancer 277 

recurrence, suggesting these patients may lack the ability to mount an immune response. 278 

 279 

Pan-cancer DEGs synergize towards prognosis and are subject to splicing 280 

defects  281 

The TCGA KIRC-probing prognostic algorithm was modified to test all 282 

combinations of additive effects of pan-cancer FIR-DEGs on patient prognosis. The only 283 

DEGs with marked additive effects on patient survival were MMP9, LEF1, PF4V1, and 284 

TIMP-1 – this observation gaining additional support from correlograms providing 285 

evidence of their co-expression (Figure 7C). Additionally, relative to the three-DEG 286 

signature stratifying patients (Figure 6C), while FASLG did not itself associate with 287 

prognosis (P = 0.401), MMP9hiLEF1hiFASLGhi KIRC patients had reduced survival (HR = 288 
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0.0988-0.6324; P = 3.71e-05). While the TCGA KIRC dataset represents whole tumor 289 

RNA expression, The Human Protein Atlas showed that unlike the others having additive 290 

effects on prognosis, expression of MMP9 RNA and protein are strictly associated with 291 

lymphoid and myeloid systems; thus, possibly enhancing prognostic effects by identifying 292 

immune relevant signature populations from whole tumor datasets. Inverse correlation 293 

observed between oncostatic melatonin receptor 1A (MTNR1A), extensively expressed 294 

by lymphocytes, and MMP-9 expression in RCC as a plausible mechanism for our 295 

findings (32), prompted us to re-examine microarray datasets to see that MTNR1A was 296 

indeed reduced in ccRCC CD8+ TILs (P = 8.3 e-04) and CD19+ TIL-Bs (P = 1.4 e-04). 297 

To gain insight on other possible mechanisms behind effects of pan-cancer FIR-298 

DEGs on patients, and because we used the Human Transcriptome Array (HTA) 2.0 299 

microarray able to distinguish between differential gene expression and transcript isoform 300 

modulation, we used the microarray dataset to observe whether these differed at the 301 

isoform level. In paired patient CD8+ ptPBLs and TILs, with exception of HIST1H2BG, 302 

ICOS and IFNG, all other validated pan-cancer FIR-DEGs had modified isoforms, where 303 

47.36% of these were found to be mirrored between CD8+ ptPBLs and TILs relative to 304 

TIICs (Figure 7D) (Supplemental Table S8). Additionally, as determined by Affymetrix 305 

TAC software, there were many more distinct transcript isoforms present and heightened 306 

splicing indices for ptPBLs than for TILs, relative to TIICs (i.e., ptPBLs vs. TIICs, 71.97%, 307 

avg. splicing index = 18.432, avg. splicing event score = 0.224; TILs vs. TIICs, 28.57%, 308 

avg. splicing index = 1.727, avg. splicing event score = 0.306). Thus, the transcript isoform 309 

repertoire of CD8+ ptPBLs is much larger than that of CD8+ TIL, likely due to similarities 310 

for tissue-infiltrates; but with a few notable differences including higher isoform numbers 311 
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for immune checkpoints TIGIT and LAG3. Both MMP9 and TCF7 common isoforms were 312 

further increased in ptPBLs relative to TILs, and both CD69 and IQGAP1 common 313 

isoforms were modified in ptPBLs relative to cdPBLs. For MMP9, TIMP1, IQGAP1, 314 

MPHOSPH8, CD69, TCF7, LAG3, and TIGIT, the same isoforms are repeatedly 315 

represented among isolate types (i.e., CD8+ ptPBLs and TILs, relative to CD8+ TIICs and 316 

cdPBLs) (Supplemental Table S8). Together, these results suggest that prognostic 317 

effects of pan-cancer FIR-DEGs may also be the result of deficiencies in transcript 318 

isoforms required for optimal T cell fitness. 319 

 320 

Enrichment of pan-cancer disrupted MMP9-pathways in ccRCC ptPBLs  321 

Our initial strategy to use PPI analyses for refinement of ccRCC DEGs for 322 

validation was only partially useful. Now armed with validation experiments and strength 323 

in statistics for individual DEGs, by repeating PPI analysis using rudimentary search 324 

engine (String), the importance of MMP9 having highest combined interaction annotation 325 

score (14.91), and its positioning as a central interacting node of pan-cancer FIR-DEGs 326 

(TIMP1, PDK4, LEF1, CDA, KLF4, PF4V1, SELF, PIM2, ICOS, IFNG, IL23A, IL6ST, 327 

TCF7, SELL, SERPINE1, OSM, CXCL5, HBA1, COLA1, MAB2, LIFR, IQGAP1, MAPK8, 328 

PIK3CA, BLC2, LAG3, and TIGIT), with associated cytokine production, and immune cell 329 

migration and adhesion cellular processes, held more weight (Supplemental Figure S6). 330 

MMP9 in CD8+ PBLs was one of three DEGs able to stratify RCC patients from 331 

control donors, and MMP9 was increased in pan-cancer recurring RCC patients. We thus 332 

used advanced PPI and pathway analyses (IID and pathDIP, using NAViGaTOR) to re-333 

examine the microarray datasets with aim to decipher significant role of MMP-9 in 334 
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signaling cascades at play in ccRCC patients. A comprehensive pathway enrichment 335 

analysis using all 1,036 non-redundant ptPBL DEGs, identified pathways including 336 

amyloid fiber formation, platelet activation, SIRT, HDACs, leukocyte transendothelial 337 

migration, alcoholism, SUMOylation, androgen receptor, and TNFalpha (P < e-10) all had 338 

links to MMP9 regulation (Supplemental File S1B). To identify the most relevant MMP-339 

9 pathways of the 235 revealed by pathDIP in ccRCC ptPBLs, we performed correlation 340 

analyses revealing that 216 of the 1,036 DEGs were significantly correlated with MMP-9-341 

positive pathways (Supplemental Table S9). Generating physical PPI networks using 342 

NAViGaTOR demonstrated that all but 6 of these 216 DEGs (97.71%) do interact (Figure 343 

8A, see Supplemental Figure S7 for full PPI). From pathway enrichment analysis using 344 

pathDIP, many disease, cancer, and immunity pathways could be repeatedly observed in 345 

MMP-9 significant DEG-associated pathways (Figure 8B, see Supplemental Figure S8 346 

for full analyses). Tissue-specific disrupted PPI networks among MMP-9 interactors in 13 347 

cancers were examined, whereby the majority of identified genes represented in 348 

cell/leukocyte migration and adhesion processes, and extracellular matrix disassembly 349 

and collagen metabolism (Supplemental Figure S8), as recently reported as 350 

representing pre-treatment serum biomarkers in response to ICB (33), and genes 351 

common to ccRCC ptPBLs are involved in immune response and activation, regulation of 352 

apoptosis, and migration in response to bacteria (34). Interestingly, cancers having the 353 

highest MMP-9 gained and lost PPIs were colon, mouth, and lung (Figure 8C). Finally, 354 

an independent differential correlation analysis and organization of MMP-9 pathways and 355 

their significantly associated DEGs, was used to validate that though extracted from 356 

ccRCC ptPBLs expression signatures, the majority of MMP-9 pathways filtered on ccRCC 357 
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DEGs were most linked to a variety of renal diseases, numerous viral, bacterial and 358 

parasitic infections, numerous cancers, and immunity and antigen recognition and 359 

activation; differentiation, and cellular survival pathways (Figure 9, see Supplemental 360 

Figure S9 for expanded pathway DEG names). 361 

 362 

Discussion 363 

The importance of combining TIL and ptPBL profiles, large patient datasets, and 364 

bioinformatics to resolve singular predictive biomarkers representing pan-pathology 365 

personalized immunotherapeutic targets cannot be understated. Here, we set out to 366 

elucidate novel pan-cancer targetable immune biomarkers using a non-biased approach, 367 

where we discovered numerous pan-cancer FIR-DEGs correlating with patient survival, 368 

several of which have also been identified as immunotherapy resistance, HIV-controller, 369 

and bacterial infection biomarkers. In developing an assay for RCC patient stratification, 370 

we found that this was possible with as little as three CD8+ ptPBL DEGs (i.e., MMP9, 371 

LEF1 and IFNG). We discovered that MMP9 was increased among pan-cancer recurring 372 

patients, with some suffering from as many as three malignancies without recorded 373 

metastases. PPI networks placed MMP9 as a central node of interaction matrices amid 374 

other pan-cancer FIR-DEGs identifying cell migration and cytokine pathways. 375 

Matrix metalloproteinase 9 (MMP-9; leukocyte Gelatinase B), is a type IV 376 

collagenase (35) belonging to the >25 MMP family of secreted and transmembrane-377 

bound, zinc-dependent endopeptidases controlling tissue remodeling by degrading 378 

components of the extracellular matrix, proteinases, adhesion molecules, chemokines 379 

and cytokines (36). Following its activation by cleavage, secreted pro-MMP-9 is regulated 380 
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by tissue inhibitor of metalloproteinases 1 (TIMP-1), also identified as a pan-cancer FIR-381 

DEG. MMP-9 is a biomarker of pathogenesis and progression of various diseases, 382 

including heart disease, atherosclerosis, hypertension, chronic obstructive pulmonary 383 

disease, blood–brain barrier disorders, endometriosis, Down syndrome, and 384 

streptococcal pneumonia (37, 38). MMP-9 is important for productive infection by 385 

numerous viruses, including hepatitis viruses, vesicular stomatitis virus, respiratory 386 

syncytial virus, and HIV-1 (39). 387 

While many MMPs associate with poor prognoses, MMP-9 is the most extensively 388 

studied, and associates with aggressive phenotypes and poor prognoses in several solid 389 

malignancies (40). In cancer, MMP-9 is associated with genetic instability, tissue 390 

remodeling, tumor cell proliferation, invasion and motility, progression, extravasation, 391 

metastasis, epithelial-mesenchymal transition, angiogenesis, apoptosis, inflammation, 392 

and immunosurveillance (35). MMP-9 in PBLs, serum, and tumors, predicts prognosis, 393 

invasiveness, grade and differentiation, recurrence, metastasis, and treatment-394 

resistance, for bladder, lung, blood, colorectal, prostate, and liver cancers (41-48). In 395 

RCC, MMP-9 is increased in tumors and plasma (49), and correlates with histological 396 

grade (50), poor prognosis and lowered survival (51), metastasis, decreased time-to-397 

progression, and poor response to sunitinib (52). 398 

Though many studies have examined MMPs facilitating epithelial cancer invasion 399 

via migration towards chemokines (53), others indicate MMPs shape the aggressive 400 

stromal compartment of the tumor microenvironment (54). MMPs are expressed by 401 

various immune subsets within stromal compartment across cancers, with TILs as the 402 

highest producers of MMP-9 (55). MMP-9 expression disproportionately correlates with 403 
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immune response genes rather than extracellular matrix genes in lung adenocarcinomas 404 

(56). MMP-9 is constitutively expressed at higher levels in splenic T cells and TILs than 405 

tumor cells (55). Immunosurveillance requires an invasive phenotype, supporting a role 406 

for MMP-9, upregulated in response to cytokines, and facilitating migration of PBLs from 407 

the vasculature into sites of inflammation. Induced by adhesion-molecule interactions 408 

between APCs and lymphocytes, MMP-9 is considered a pure effector molecule, 409 

amplifying immune function by catalysing innate and acquired immunity (57), and is 410 

critical for antigen-specific activation-induced proliferation of T cells (58). We observed 411 

increased MMP9 expression in both CD8+ and CD19+ ccRCC ptPBLs, and other genes 412 

we find correlating with MMP9 expression are implicated in CD8+ cross-priming and 413 

antigen-mediated activation and proliferation (CD69, STAT4, NFIL3, IL10, JAK1) (39, 58, 414 

59). In patients with recurring pan-cancers, MMP9 was inversely correlated with its 415 

regulator STAT3, which restricts tumor-penetration of anti-tumor CD8+ T cells (60, 61). In 416 

pooled RNA PCA analyses, MMP9 expression correlated with TILs and CXCL13, which 417 

induces MMP-9 expression towards leukocyte migration in perivascular spaces (62, 63). 418 

BATF was the only pan-cancer FIR-DEG negatively correlating with MMP9 in RCC, 419 

ccRCC, and in pan-cancer recurring patients, and is known to suppress MMP-9 and 420 

effector molecules for CD8+ T cell differentiation and survival (64). Other DEGs in pan-421 

cancer recurring patients (KLF4, RORC, CCR4, PDK4) are implicated in MMP-9 422 

regulation for cell migration (65-68). Some DEGs stratifying RCC patients and correlating 423 

with MMP9, have been associated with response to immunotherapies (MMP9, IL10, 424 

NFIL3, LEF1, FASLG, MKI67, STAT4, CD244, JAK1). In a recent study examining 425 

correlates with ccRCC response to ICB, despite an underpowered discovery cohort, 426 



Running title: Pan-Pathology targets of the failed immune response 
 

21 
 

increased MMP9 correlated with progressive disease relative to low MMP9 in partial 427 

responders or patients with stable disease (69). Another study demonstrated that 428 

reduction of MMP-9 on monocytes from combination immunotherapies led to conversion 429 

of tumor microenvironments from “cold” to “inflamed” states eliciting protective T cell 430 

responses (70). Finally, MMP9 and numerous other extracellular matrix pan-cancer 431 

genes we have identified, have also just recently been shown to be differentially 432 

expressed between ICB responders and non-responders (71), and where, notably, we 433 

identify almost half (44%) of their defined immunotherapy failure signature as gained PPIs 434 

of MMP-9 during cancer.  435 

Possible mechanisms of MMP-9 regulation in cancer are supported by our 436 

observations of alternative MMP9 RNA isoforms in RCC CD8+ ptPBLs and TILs, and by 437 

previous association of MMP9 polymorphisms with disease (35). Another possible 438 

mechanism stems from reports of pharmacologic concentrations of melatonin inhibiting 439 

MMP-9 through melatonin receptor 1A (MTNR1A), as an oncostatic agent inhibiting tumor 440 

growth and invasiveness of renal, breast, gastric, hematological, prostate, bone, skin, 441 

liver, and brain tumors (32). MTNR1A is extensively expressed by splenic, thymic and 442 

circulating CD4+, CD8+ and B+ lymphocytes (72), and was found to be significantly 443 

reduced in ccRCC TILs and TIL-Bs, and thus less likely to respond to melatonin or 444 

regulate MMP-9. Thus, representing an attractive target for the treatment of numerous 445 

diseases, a specific MMP-9 inhibitor, JNJ0966, has been developed for clinical utility in 446 

immune disorders (73), and could be repurposed for the control of numerous cancers and 447 

pathologies. Finally, another possible MMP-9-cancer onset mechanism stems from our 448 

observations of its gained and disrupted PPIs were most significant in colon, mouth, and 449 
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lung cancers. Thus, deregulation of MMP-9 roles in maintaining colonic microbiota (74), 450 

may have profound effects on cancers in these systems. 451 

We have focused on MMP-9 because this molecule efficiently stratifies RCC 452 

patients via both CD8+ and CD19+ immune cells, yet extends itself beyond pan-cancer: 453 

as an attractive pan-pathology immune biomarker and target for the treatment of 454 

numerous diseases, and is a central interactor for numerous other pan-cancer biomarkers 455 

we have identified herein. MMP-9 is an attractive pan-pathology biomarker because its 456 

elevated expression can be detected in tumors, but also by less invasive methods 457 

examining blood, and by completely non-invasive methods examining urine, feacal 458 

samples, tears and exhaled breath condensate (75-77). Since MMP-9 expression is 459 

controlled by circadian rhythm, diurnal variations may be responsible for its initial immune 460 

deregulation in patients. With the possibility of its expression causing varied responses 461 

among patients, MMP-9 monitoring may be valuable over treatment course, be it radio-, 462 

chemo-, or immuno-therapeutic. Further work determining the precise polarity of T cell 463 

subsets expressing MMP-9, and its function permitting their infiltration into tumors, may 464 

resolve imminent questions of the field concerning tumor immunogenicity. Aside from 465 

MMP9, however, numerous other identified pan-cancer FIR-DEGs warrant further 466 

investigation. 467 

In the discovery of how pan-cancer FIR-DEGs may have pan-pathology effects, 468 

we observed that blinded refining of target list using informatics without previous 469 

knowledge of their onco-static or -promoting abilities, increased identity of pan-cancer 470 

DEGs also important for HIV-1 controllers, as the first data-driven suggestion these may 471 

actually represent pan-pathology markers. To be certain of this link to HIV-1 fitness 472 



Running title: Pan-Pathology targets of the failed immune response 
 

23 
 

correlated by our pan-cancer FIR-DEGs, we performed extensive literature reviews 473 

indicating that the majority shared similar effects promotion or inhibition of HIV-1 infection. 474 

Other PBL DEGs shared by many infectious and autoimmune diseases are common to 475 

those discovered here (e.g., MMP9, IGF2BP3, TIMP1, CDA, IFNG, PFAV1, LAG3, PIM2, 476 

ICOS, TIGIT, IL23A). 477 

To our knowledge, we are the first to present a pan-pathology biomarker pipeline 478 

starting from CD8+ and CD19+ DEGs from paired cancer patient PBLs, TILs and TIICs. 479 

Prognostic DEGs were validated across five cancers and as little as three could stratified 480 

patients and pan-cancer recurrence. We focused on DEGs that could be easily detected 481 

as biomarkers or targeted by therapies. The resulting pan-cancer genes are of additional 482 

interest as they may reflect a pan-pathology state of the FIR, with numerous DEGs 483 

similarly modulated and important for resistance to immunotherapy, and unresolved viral 484 

and bacterial infections. The non-invasive FIR-DEGs we have identified warrant future 485 

investigation towards the development of their potential in precision diagnostics and 486 

precision pan-disease immunotherapeutics. 487 

Methods 488 

Complete detailed methods are in the supplemental materials. 489 

 490 

Statistics 491 

For the training ccRCC cohort, a sample size of n = 5 paired patient TILs, TIICs, 492 

and PBLs was determined as having above 0.9 power according to the GeneChip Human 493 

Transcriptome Array 2.0 manufacturer guidelines (Affymetrix, Thermo Fisher Scientific). 494 
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Training set microarrays power calculations by the manufacturer used an inference of 495 

means calculation from https://www.stat.ubc.ca/~rollin/stats/ssize/n2. Multiple hypothesis 496 

test correction was performed using the FDR Benjamini–Hochberg step-up procedure. 497 

For the RCC validation cohort (n = 74), power analysis determined that a minimal sample 498 

size of n = 62 to reach a power of 0.80 at α = 0.05 (two-tailed) (G*Power ver. 3.1.9.2; 499 

Universitat Düsseldorf, Germany). For algorithms used, statistical methodology for 500 

algorithms is described within scripts and https://www.biostars.org/p/153013/. Limma and 501 

survival packages for R are used for single and synergistic ccRCC prognostic algorithms. 502 

Dendrogram, heatmap and PCA unsupervised algorithms used the Euclidean distance 503 

metric and complete linkage clustering method. Correlogram algorithm uses the R 504 

corrplot library, and was created from http://www.sthda.com/, using r-project corrplot and 505 

vignette packages. Binomial correlations for testing of validated DEGs against clinical 506 

patient parameters used two-tailed nonparametric Spearman correlation with 95% CI 507 

(Prism V6.01, GraphPad). An unpaired 2-tailed student's t test with FDR of 1% was used 508 

to compare two groups, and two-way ANOVA (with Sidak's multiple-comparisons test) 509 

and 95% CI was used for multiple comparisons. Pathway enrichment analysis results 510 

were adjusted for multiple testing by applying FDR and Bonferroni methods. P-values of 511 

less than 0.05 were considered to indicate a statistically significant difference. 512 

 513 

Study approval 514 

Renal cancer patients underwent resection for stage I-IV RCC between 2013 and 515 

2017 at the CHUM (Montreal, Canada). Study approval, and written and informed consent 516 

procedures approval was granted by the CHUM Research Ethics Board. Written informed 517 
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consent was received from all study participants prior to inclusion in the study. All methods 518 

were performed in accordance with the relevant guidelines and regulations. Clinical 519 

participant data was randomly numbered for complete anonymity.  520 

 521 

Data availability 522 

TCGA KIRC RNA-seq datasets and associated clinical datasets are available at 523 

the cBioPortal for Cancer Genomics at http://gdac.broadinstitute.org/. Pan-cancer testing 524 

patient cohort GEO, the EGA and TCGA datasets are available at http://kmplot.com/. 525 

DEG protein profiles in cells and across 17 cancers are available from 526 

https://www.proteinatlas.org/. Transcriptomic datasets from melanoma and NSCLC 527 

patients treated with anti-PD-1 therapy are available from Hugo et al. (30), and Rizvi et 528 

al. (31). The HIV-1 elite controllers dataset is available from Zhang et al. (28), and the 529 

bacterial datasets are listed in Song et al. (29). Comprehensive pathway enrichment 530 

analysis and PPI analyses are available as Supplemental Data. The microarray data is 531 

published at the National Center for Biotechnology Information Gene Expression 532 

Omnibus (http://www.ncbi.nlm.nih.gov/geo) under GEO accession number GSE117230. 533 
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Figure 1. Distinct comprehensive transcriptomics from paired CD8+ and CD19+ 
profiles from ccRCC blood, tumors and tissues, and control donor blood isolates. 
(A-B) PCA demonstrating distinct DEG profiles from comprehensive HTA 2.0 microarray 
analyses of (A) CD8+ (n = 15) and (B) CD19+ (n = 15) immune cell subsets from paired 
patient tumors (TIL; TIL-B), normal adjacent tissues (TIIC), and circulating lymphocytes 
(ptPBL), and control donor matched circulating lymphocytes (cdPBL) (n = 10). (C) 4-way 
Venn diagram demonstrating percent overlaps of DEGs identified by microarrays across 
different source biospecimens analyzed. (D) Venn diagram demonstrating that ptPBLs 
have greater numbers of differentially represented exon-exon probe selected regions 
(PSR) junctions compared to TILs; relative to TIICs from paired CD8+ samples (P<0.05; 
ANOVA, Transcriptome Analysis Console v.3, Affymetrix). Thirteen percent of shared 
PSR junctions exist between ptPBLs and TILs, representing 33% of total genes common 
to ptPBLs and TILs having shared isoform identity. (E) Gene Ontology plasma membrane 
(PM) proteins identified by Partek, and unsupervised hierarchical clustering algorithm 
generated heatmaps demonstrating that the four different CD8+ isolates are stratified 
according to PM, using log2 expression values applying the Euclidean distance metric 
and complete linkage clustering method (R programming language; R-studio). Heatmaps 
demonstrate the unsupervised clustering of PBL isolates as most closely related, with 
TILs and TIICs at their boundaries, suggesting that their profiles may be influenced by the 
cancer microenvironment. (F) Feasibility of utilizing PM associated proteins towards 
identifying pan-cancer DEGs that can stratify patients is demonstrated by PCA biplots of 
PM DEGs from CD8+ cdPBL and ptPBL isolates created on log2 values using the biplot 
function (R; R-studio). TIL, tumor infiltrating lymphocytes; TIIC, adjacent normal tissue 
infiltrating immune cells; ptPBL, patient peripheral blood lymphocyte; cdPBL, control 
donor peripheral blood lymphocyte; diff., differential; id., identity.  
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Figure 2. A subset of prognostic ccRCC DEGs have pan-cancer prognostic 
potential. (A-B) PCAs nominal derivatives of combined modulation of expression and 
effects on prognosis to visualize CD8+ and CD19+ DEGs from (A) ptPBLs and (B) TILs 
with significant gene modulation and effect on prognosis across the five cancers tested. 
Genes on far left are more highly expressed in normal tissues than tumors and have 
positive prognostic effects (N/T pos prog), representing agonistic targets. Genes on far 
right are more highly expressed in tumors than normal tissues and have negative effects 
on prognosis (T/N neg prog), representing antagonistic targets. PCAs also illustrate 
linkage between gene coexpression and cancer types, where BC ptPBLs and NSCLC 
TILs are most related to other cancers. In (A), all ptPBL DEGs are shown. In (B), DEGs 
unique to CD8+ TILs or CD19+ TIL-Bs are shown. (C) DEGs common to CD8+ TILs and 
CD19+ TIL-Bs are shown, where dark highlighted gene names represent best antagonistic 
targets, and green highlighted gene names represent best agonistic targets. (D) 
Correlograms representing linkage between the five cancers from nominal derivatives, 
demonstrating that NSCLC and BC are most related to ccRCC, independently of patient 
sample number (Spearman method, coexpression coefficient ladder on right). (E) Graph 
demonstrating similar expression patterns of pan-cancer DEGs and genes representing 
infiltrating immune cell subsets used: CD45, CD3, CD4, CD8, CD20, CD56, and CD68 
across pan-cancers (n = 11,577). (F) Graph demonstrating distributions of relative ratios 
of 483 agonistic vs. agonistic pan-cancer genes, where TILs have higher percentages of 
genes that are lower in tumors and have positive prognostic value. TIL, tumor infiltrating 
lymphocytes; TIIC, normal adjacent tissue infiltrating immune cells; ptPBL, patient 
peripheral blood lymphocyte; cdPBL, control donor peripheral blood lymphocyte, BC, 
breast cancer; NSCLC, non-small cell lung cancer; GI, gastro-intestinal, OV, ovarian.  
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Figure 3 

  

Figure 3. Pan-cancer DEGs have extensive protein-protein interactions (PPI). PPI 
networks of top 200 DEGs. A high PPI enrichment value (P = 1.85e-10) indicating 
interactions among these DEGs is very significant relative to proteins drawn at random, 
indicating biological connection as groups in defined pathways. Pan-cancer agonistic 
(red) and antagonistic (green) DEGs (nodes/circles) and their interactions (edges/lines), 
demonstrate groupings of these two pan-cancer DEG subclasses, and grey lines highlight 
interactions between them. Non-interacting DEGs are on right (NAViGaTOR v3 and IID 
v04-2018). DEG nodes are colored according to GO Molecular Functions listed in the top 
left legend. Larger node circles represent highest degree DEGs interactors within 
network, and blue DEG names represent centrality of interactors (as determined by the 
all pairs shortest path algorithm in NAViGaTOR). GO, Gene Ontology. 
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Figure 4 

 

Figure 4. Pan-cancer DEGs have extensive coexpression dynamics. Correlograms 
of top 200 selected prognostic pan-cancer DEGs demonstrate extensive co-expression 
dynamics in CD8+ ccRCC isolates (Spearman method, expression ladder on right) (n = 
20). Predominant pathways of the four most highly correlating pan-cancer gene groups 
included Gene Ontology (GO) biological processes: cellular responses to stimulus, 
receptor signaling, and regulation of metabolic processes; and Kegg pathways: adherens 
junctions and colorectal, endometrial, blood and pancreatic cancers for the top right 
correlating ptPBL gene group, whereas bottom left ptPBL gene groups had extracellular 
matrix disassembly. For TILs, the bottom left gene group was stronger for GO biological 
processes: receptor signaling, developmental processes, cell communication, and signal 
transduction, while the top right TIL gene group was dominated by cell cycle regulation 
processes (P = 4.98e-05), but also: regulation of T cell activation and cytokine production. 
TIL, tumor infiltrating lymphocytes; TIIC, normal adjacent tissue infiltrating immune cells; 
ptPBL, patient peripheral blood lymphocyte; cdPBL, control donor peripheral blood 
lymphocyte.  
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Figure 5. Coexpressing pan-cancer and polarizing DEGs stratify CD8+, CD19+, 
PBLs, TILs and TIICs.  Using all genes from qRT-PCR validation, (A-B) unsupervised 
hierarchical clustering algorithms, using -ΔCT normalized qRT-PCR expression values, 
applying the Euclidean distance metric and complete linkage clustering method, were 
used to generate heatmap clustering and associated dendrograms (R programming 
language; R-studio). Heatmaps demonstrated that (A) pooled fraction used for validation 
experiments can efficiently stratify all isolates as expected from their genetic linkages and 
immune cell subset ratios of PBL populations (n = 74 patients, n = 176 samples, n = 9 
sample pools), and that (B) total individual ptPBLs and cdPBLs cluster separately (n = 
10). Pooled fractions are also used for principal component analysis (PCA) in (C), using 
-ΔCT normalized qRT-PCR expression values, applying the Euclidean distance metric 
and complete linkage clustering method (R programming language; R-studio) (n = 176 
samples), demonstrating that PBLs are most closely linked to circulating CD8+ T cells, 
and are different in DEG composition relative to circulating CD19+ B cells, TIL-Bs, and 
TIICs. PCA presented also demonstrates the common and differing coexpression of 
certain T cell polarizing and pan-cancer DEGs in TIL and CD8+ ptPBL isolates. Pan-
cancer genes are highlighted in green throughout. ccRCC, clear cell renal cell carcinoma; 
pRCC, papillary renal cell carcinoma; pt, patient; nd, normal donor; PBL, peripheral blood 
lymphocyte; PBMC, peripheral blood mononuclear cells; tot, total; TIL, tumor infiltrating 
lymphocytes; TIIC, normal adjacent tissue infiltrating immune cells; N, normal tissues 
DEG; T tumor tissues DEG; pos, positive; neg, negative; prog, prognosis n, number of 
patients in pool.  
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Figure 6. Iterative DEG combination testing defining minimal gene sets required for 
stratifying patients from control donors according to circulating CD8+ T cells. 
Normalized -ΔCT qRT-PCR DEG expression values from individual and pooled CD8+ 
ptPBLs and cdPBLs were used for PCA using applying the Euclidean distance metric and 
complete linkage clustering method (R programming language; R-studio) (n = 69). (A) 
Patients are stratified using 32 DEGs including pan-cancer (ICOS, PF4V1, IFNG, LAG3, 
TIGIT, CDA, PDK4, KLF4, PIM2, TIMP1, IGF2BP3, IL23A, LEF1, TCF7), T cell polarizing 
(FASLG, ZEB2, EOMES, CCR5, TOX, PRDM1, BATF, FOXO1, CD28, CD27), adhesion 
(JAM3, SELP), and immune checkpoint DEGs (CD160, CD244, PDCD1, TIM-3, BTLA, 
NT5E). (B) Patients are stratified using 12 DEGs including pan-cancer (CDA, PDK4, 
KLF4, IGF2BP3) and adhesion (JAM3, SELP) DEGs. (C) Patients are stratified using 
three DEGs (pan-cancer, MMP9 and LEF1; T cell polarizing, FASLG). Pale yellow 
background boxes highlight PCA stratified control donors used to calculate percent 
patient stratification. (D) Graph representing percent patient stratification from DEG 
groups in (A-C), and in Supplemental Figure S5, with representative numbers of pan-
cancer genes among groups at bottom (n = 66, non-duplicate samples). (E-F) Venn 
diagrams demonstrating overlaps between (E) CD8+ ccRCC ptPBL DEGs, CD8+ ccRCC 
TIL DEGs, CD8+ HIV elite controllers, and PBMC from bacteria infected patients, and (F) 
effect of pan-cancer pipeline on enhancing CD8+ DEG identity. PBL, peripheral blood 
lymphocyte; pt, patient; nd, normal donor; TIL, tumor infiltrating lymphocytes; dupe, 
duplicate sample; misclas., misclassified benign kidney lesion; ccRCC, clear cell renal 
cell carcinoma; pRCC, papillary renal cell carcinoma; RCC, renal cell carcinoma; n, 
number of pooled samples; pan-can, pan-cancer; other, other DEGs; sub-fig., associated 
sub-figure.  
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Figure 7. Additive prognostic pan-cancer DEGs stratify multi-cancer recurring 
ccRCC patients having activated CD8+ T cell profiles. (A) DEGs from validation cohort 
were compared among cdPBL (n = 12), and ptPBL with (n = 10) or without (n = 18) 
recurring multi-cancers. P, two-way ANOVA, Tukey post-test; *, P < 0.05; **, P < 0.01; 
****, P < 0.0001; boxes, upper and lower quartiles; whiskers, all points maxima to minima; 
+, mean; line, median. Functional classifications of DEG groups are listed above and 
below, and the literature was used to (B) segregate DEGs according to tolerance or 
activation phenotypes. Correlograms (Spearman method) using normalized -ΔCT qRT-
PCR expression values for visualization of two groups of pan-cancer and T cell polarizing 
DEGs, with differences observed between all ccRCC patients vs. control donors, and 
patients with vs. without recurring cancers (Student T test, P < 0.05) (red, increased 
expression; green, decreased expression). Only MMP9 is significantly increased in multi-
cancer patients relative to all others. (C) Pan-cancer DEG combinations tested for 
additive prognostic effects using TCGA KIRK dataset. Only MMP9, LEF1, PF4V1, TIMP1, 
and TMEFF1 demonstrate additive prognostic effects, and these cluster in correlograms 
(as above) enquiring pan-cancer DEGs with combinatorial effects on prognosis. Kaplan-
Meier plots P, log-rank. (D) Venn diagram illustrating that ptPBLs have more differentially 
represented exon-exon probe selected regions (PSR) junctions relative to TILs; both 
relative to TIICs (P < 0.05; ANOVA, Transcriptome Analysis Console v.3, Affymetrix), with 
8% overlap of total PSR junctions between ptPBLs and TILs, and 47% of all pan-cancer 
DEGs having shared ptPBL and TIL PSR junction identity (see Supplemental Table S8). 
tot, total; ccRCC, clear cell renal cell carcinoma; ptPBL, patient peripheral blood 
lymphocyte; cdPBL, control donor peripheral blood lymphocyte; TIL, tumor infiltrating 
lymphocytes; TIIC, normal adjacent tissue infiltrating immune cells; diff., differential; id., 
identity.  
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Figure 8. Enrichment of disrupted MMP9 pathways in ccRCC patient circulating 
cells and various cancers. (A) Protein-protein interaction (PPI) network linking pan-
cancer proteins from significant MMP-9 pathways-associated ccRCC ptPBL DEGs. DEGs 
(nodes/circles), and their interactions (edges/lines) are colored red (highly expressed) 
and green (lowly expressed), and grey edges highlight interactions between them 
(NAViGaTOR v3 and IID v04-2018). Non-interacting proteins are listed on top right. DEG 
nodes are colored according to Gene Ontology (GO) Molecular Functions listed in legend. 
Larger node circles, represent high degree of interactions with all other DEGs, and blue 
DEG names represent centrality of interactors. (B) Pathway enrichment analysis graphs 
depicting results of pathDIP analysis for MMP-9 pathway interactors from correlation 
analyses. Upper panel shows significance of enrichment obtained for individual pathways 
(p-value, -log10) adjusted for multiple testing using FDR and Bonferroni methods. Lower 
barplot shows overlap between query genes and members of individual pathways. 
Respective numbers of known and predicted pathway members are distinguished by 
opacity, and fill color indicates source of given pathway. Plots are restricted to top 100 
most significant (full pathways in Supplemental Figure 7A). (C) Tissue-specific disrupted 
PPI networks among MMP-9 interactors in cancer. Gained and lost MMP-9 PPIs in 
thirteen epithelial tissues-cancers highlighting its tissue-specific role in cancer, where 106 
disrupted MMP-9 PPIs were identified (n = 2,801) (see Supplemental Figure S7). 1,814 
disrupted PPIs were found, 81% of which are disrupted in only one or two tissues and 
only less than 5% are present in more than three tissues.  
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Figure 9. MMP-9 pathway DEGs are linked to a variety of renal diseases, cancers, 
microbial infections and immune activation. MMP-9 pathways associated ptPBL 
DEGs from pathDIP matrix were correlated, and DEGs significantly associated with MMP-
9 pathways (P < 0.05) were used to generate supervised heatmap of most highly 
correlating MMP-9-pathway genes and associated pathways. Majority of FIR DEG-
associated MMP-9 pathways are enriched for those of renal diseases, numerous viral, 
bacterial and parasitic infections, numerous cancers, and immunity and antigen 
recognition and activation; differentiation, and cellular survival pathways. Orange, DEG 
represented in pathway; blue DEG not represented in pathway (full pathway DEGs list in 
Supplemental Figure S9). 


