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Introduction
Adverse reactions to food involve both immune-mediated and 
non–immune-mediated responses. Among these responses, there 
has been increasing attention to gastrointestinal (GI) allergic dis-
eases, a spectrum of disorders classified by IgE-mediated, non–
IgE-mediated, and mixed IgE-mediated and non–IgE-mediated 
mechanisms. Loss of tolerance to harmless food antigens results 
in initiation of immune hypersensitivity, and failure to terminate 
immune responses leads to chronicity (1, 2).

Basic and translational studies have uncovered several com-
mon pathways in GI allergic diseases. First, although not formally 
demonstrated for each of these diseases, a breakdown of immu-
nologic tolerance appears to be a key feature. Loss of tolerance 
can stem from a number of mechanisms, including alterations in 
the immune surveillance system (e.g., dysregulation of antigen 
processing and change in Treg function). Second, a biased type 
2 immune response is also a key factor in disease onset, mani-
festations, and maintenance. Several allergic GI diseases involve 
imbalanced Th2 effector cell responses compared with responses 
of other T cell types (i.e., Treg, Th1, Th17) as well as increased Th2 
cytokine production. The Th2 response increases IgE and mast 
cell, basophil, and eosinophil production and activation. Third, 
an impaired epithelial barrier is an apparent mechanism, result-
ing in increasing encounters of food antigens with immune cells, 
priming a break in immune tolerance and initiation of epithelial 
innate immune responses that further prime for Th2 responses. 

Finally, cooperating environmental and genetic factors influ-
ence these pathways and therefore promote or protect against  
allergic GI diseases.

Immunologic basis of GI allergic disease
Cells and loss of tolerance. Allergic diseases involve the interplay 
of a constellation of cells, including mast cells, basophils, eosin-
ophils, lymphocytes, and constitutive tissue cells such as epi-
thelial cells and antigen-presenting cells. These cells and their 
orchestrated interactions are normally involved in protective 
immunity to certain pathogens, typically parasites (3). A sum-
mary of the immunologic basis of food allergic subtypes is pre-
sented in Table 1.

Under healthy homeostatic conditions, remaining unrespon-
sive to food is a primary objective of the immune system. Such 
immune tolerance is generated by relocation of antigen from the 
gut lumen to the lamina propria by specialized M cells, myeloid 
cells, and goblet cells. Goblet cells have a key role in the develop-
ment of intestinal tolerance, serving as a passage for antigen transit 
from the lumen to tolerance-inducing dendritic cells (DCs) (4, 5). 
The intestine’s mucus layer not only provides a physical barrier but 
permits tolerance-inducing DCs to sample bacteria (6). Following 
transmission of antigen to the lymphoid tissue and subsequent 
antigen presentation, tolerogenic T cells return to the intestine (2). 
Tregs require the transcription factor forkhead box P3 (FOXP3) 
and secrete IL-10 and TGF-β. IL-10 is a key regulatory cytokine 
that is also produced by DCs and a number of other T cells. IL-10 
terminates allergen-specific Th2 responses and induces Treg dif-
ferentiation (7). Tolerance-regulating Tregs have an essential role 
in downregulating Th2 cells and inhibiting IgE-mediated mast cell 
activation, thus preventing inflammatory responses and main-
taining physiologic homeostasis at mucosal surfaces (8). Interest-
ingly, the chronic allergic disease eosinophilic esophagitis (EoE) 
is characterized by increased TGF-β. TGF-β is produced by many 
cell types in the esophagus, including eosinophils and mast cells, 
and promotes tissue fibrosis, epithelial-mesenchymal transition, 
and smooth muscle contraction; therefore, TGF-β likely has a dual 
pathogenic and immune-regulatory role in EoE rather than a sim-
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ment, including increased proteolytic activity with inflammatory  
consequences (29). Additional examples of dysregulated barrier 
genes are found among the epidermal differentiation complex 
(EDC) genes clustered on chromosome 1q21, including the genes 
FLG and IVL, which are markedly decreased in EoE (30).

The above data substantiate that impaired barrier function 
can enhance the development of the atopic response, probably via 
two mechanisms: (a) penetration of the tissue by unwanted anti-
gens that subsequently encounter antigen-presenting cells, and (b) 
epithelial “damage sensing,” whereby pathogenic insults activate 
protease-activated receptors (PARs) and pattern recognition recep-
tors (including TLRs) on epithelial cells (31–33). This activation 
deploys innate immune responses. For example, double-stranded 
RNAs and proteolytic allergens upregulate TLR-mediated and/or 
PAR2-mediated TSLP induction in keratinocytes (34, 35).

Several studies reveal that barrier proteins have the potential 
to modulate immune reactions. For example, SPINK7 inhibits 
the serine protease urokinase-type plasminogen activator (uPA), 
which can activate eosinophils by cleaving uPAR expressed on 
their cell surface, which likely occurs in EoE (29). A summary of 
barrier regulatory molecules and their regulation in an allergic 
response is illustrated in Figure 1.

Heritability of GI allergic disorders
Studies on cohorts of twins and triplets with a confirmed GI aller-
gic disorder in at least one sibling estimate that the heritability 
is typically very high (>50%) regardless of the type of GI allergic 
disease. The genetic component’s contribution to this heritability 
is variable between specific diseases (36, 37). In EoE, heritability  
is high (with sibling risk ratios approaching 50-fold risk), but a 
twin study revealed that genetics only contribute about 15% (38). 
This is most highlighted by the 10-fold higher rate of concordance 
between dizygotic twins than between non-twin siblings, implicat-
ing early-life exposures as the main environmental driver (38, 39).

Common genetic variant analysis of food allergy. GWAS focus-
ing on common genetic variants (>5% prevalence in the general 
population) have identified several genes involved in barrier func-
tion that associate with susceptibility to food anaphylaxis (21, 40). 
For instance, genetic variants in FLG associate with food anaphy-
laxis and EoE susceptibility (22, 40), and downregulation of FLG 
directly contributes to EoE by contributing to impaired esophageal 
epithelial barrier function (29, 30, 41).

Recently, the SERPINB gene cluster on chromosome 18q21.3 
was identified as a novel locus associated with food anaphylaxis  
(21). In addition, whole-exome sequencing analysis of EoE 
patients identified rare damaging mutations in the SERPINB3 
gene (42), suggesting critical involvement of this family of pro-
tease inhibitors in the pathogenesis of allergic diseases. Because 
these proteins are mainly localized to the epithelium and function 
as protease inhibitors, they likely regulate barrier integrity.

EoE’s strong genetic association with variants at 2p23 helped 
mechanistically explain the tissue specificity of this disease. This 
locus contains the CAPN14 gene, whose esophagus-specific expres-
sion and involvement in EoE are discussed above (22, 28, 43, 44).

Other variants emphasize type 2–skewed pathways in the 
onset of food allergic disorders. The first evidence was the 
genetic linkage of the Th2 cytokine cluster at 5q31–33 with serum 

ple protective role (9). The esophagus of EoE patients contains 
persistent Tregs (10, 11); whether these Tregs actively produce 
TGF-β and whether they possess a protective or proinflammatory 
role require further investigation.

It is interesting that breast milk contains immunoregulatory  
mediators including TGF-β and that TGF-β supplementation  
induces tolerance in a murine model of food allergy (12). Following 
epicutaneous sensitization and oral challenge in pregnant mice, 
the offspring evidenced attenuation of food anaphylaxis, specific 
IgE production, and intestinal mast cell numbers. This mechanism 
is mediated by induction of allergen-specific Tregs and transfer of 
maternal IgG complexes with the antigen in breast milk by the neo-
natal crystallizable fragment receptor, FcRN, expressed by DCs (13). 
Interestingly, human breast milk containing IgG-allergen immune 
complexes induces tolerance in humanized FcRN mice (13).

Barrier. Atopic diseases tend to occur in a chronological 
sequence termed the atopic march, in which the initial manifes-
tation of atopic disease in early childhood is often in the skin (i.e., 
atopic dermatitis [AD]), followed by the staggered development of 
food anaphylaxis, EoE, allergic rhinitis, and allergic asthma (2, 14). 
Support for this theory is derived from the finding that a defective 
skin barrier is an established risk factor for food anaphylaxis and 
EoE (15, 16). Several mouse studies have shown that epicutaneous 
exposure to allergens causes allergic sensitization, IgE produc-
tion, Th2 responses, and food anaphylaxis (17–19). Impaired skin 
barrier, as measured by transepidermal water loss, correlates with 
the development of food anaphylaxis at the age of 2 years (20).

High-throughput approaches including whole-transcriptome 
and whole-exome sequencing and genome-wide association 
studies (GWAS) have revealed that impaired barrier influences 
the development of GI allergic diseases. First, loss-of-function 
mutations in the epidermal barrier gene FLG (encoding filaggrin) 
increase the risk for AD, peanut sensitization, peanut allergy, and 
EoE (21, 22). Filaggrin is a structural protein with key roles in skin 
homeostasis, including regulation of the physical strength of the 
epithelium, barrier function, hydration, pH, and antimicrobial 
protection (23). Up to half of European AD patients have loss-of- 
function genetic variants in FLG, which is the most signifi-
cant known genetic risk factor for AD (23). Second, patients 
with EoE exhibit a marked decrease in the esophageal cadherin  
desmoglein-1 (DSG1) compared with control individuals. In vitro, 
loss of DSG1 in esophageal epithelial cells causes impaired epithe-
lial barrier, indicating that DSG1 may have a key role in epithelial  
integrity (24–26). Mutations that decrease DSG1 expression stimu-
late production of Th2 cytokines, including thymic stromal lymph-
opoietin (TSLP), and associate with severe atopy, including food 
anaphylaxis, EoE, and metabolic wasting known as severe derma-
titis, multiple allergies, and metabolic wasting (SAM) syndrome 
(discussed in the next section) (27). Third, the cysteine protease 
calpain-14 (CAPN14) also mediates esophageal barrier func-
tion and contributes to the pathology of EoE. Overexpression of 
CAPN14 in esophageal epithelial cells decreases DSG1 expression 
and impaired barrier function. CAPN14 is induced by IL-13, and 
silencing of CAPN14 prevents IL-13–mediated DSG1 loss. Whether  
CAPN14 directly cleaves DSG1 is yet unknown (28). Fourth, 
loss of expression of the serine protease inhibitor SPINK7, as 
occurs in EoE, is sufficient to induce epithelial barrier impair-
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ple, the 11q13 locus encoding EMSY and LRRC32 (22, 55–58) is 
associated with food anaphylaxis, EoE (59), AD (60), asthma 
(61), allergic sensitization (62), inflammatory bowel disease, 
and allergic rhinitis (63). EMSY is a transcription regulator also 
involved in intracellular signaling (56). LRRC32 is a leucine-rich 
repeat molecule expressed on the surface of Tregs that binds to 
TGF-β and promotes its processing. The association suggests that 
altered expression of EMSY and LRR32 can potentially contribute 
to breakdown of immune tolerance (64).

HLA-DQ and HLA-DR, encoding class II HLA molecules, are 
also suggested to be involved in food anaphylaxis by regulating 
immune tolerance (65). Antigen-presenting cells induce immune 
tolerance by presenting peptides to T cells via class II MHC mol-
ecules, such as HLA-DQ and HLA-DR. Two SNPs on the HLA 

IgE levels (45). Later studies associated this locus with EoE (46), 
Crohn’s disease (47), psoriasis (48), eczema (49), and food ana-
phylaxis (21). The lead SNP at this locus, rs11949166, is located 
between IL4 and the kinesin family member 3a gene (KIF3A), 
and a second, independent association is in the RAD50/IL13 
region, which also contains the well-known IL13 coding variant 
(IL-13 R130Q) (21, 50–52). Consistent with these data, a gain-
of-function mutation in IL4RA associates with atopy (52).

The 5q22 locus, encompassing TSLP, is associated with a num-
ber of allergic diseases, including EoE, asthma, allergic rhinitis, and 
AD (53, 54). Food anaphylaxis has not been linked to this region, 
highlighting its distinct mechanisms, as depicted in Table 1.

Other genetic variants might be linked to the breakdown of 
tolerance through regulation of antigen presentation; for exam-

Table 1. Classifications of GI allergic diseases and their mechanism

Disease Antigen Mechanism

IgE-mediated  
food allergy Food anaphylaxis Milk, egg, wheat, fish/shellfish,  

peanut/tree nuts, beef, soy, chicken

• Increased Th2 cell differentiation and decreased Tregs
• Antigen encounter promotes secretion of cytokines in the type 2 family  

(e.g., IL-4, IL- 5, IL-9, and IL-13) by Th2 cells
• Stimulated B cell class switch to IgE
• IgE binds to FcεRI receptor on mast cells
• Food antigens induce cross-linking of mast cell–bound IgE molecules
• Mast cell degranulation with release of histamine and inflammatory mediators 

including proteases, de novo production of lipid metabolites of arachidonic acid,  
and de novo production of cytokines (IL-4, IL-13) (1, 3)

Oral allergy syndrome Pollen-derived epitopes Cross-reactive with fruit- or vegetable-protein epitopes

Red meat allergy Carbohydrate epitope α-gal  
found in red meat Antigens transmitted in the saliva of ticks that have fed on mammals (2)

IgE-mediated  
and non–IgE-mediated  
(mixed) food allergy

EGIDs such as EoE Milk, egg, wheat, fish/shellfish,  
peanut/tree nuts, soy

• Increased exposure to allergen and encounter with antigen-presenting cells,  
which lead to break of immune tolerance

• Innate response characterized by epithelial production of IL-1, IL-25, GM-CSF, 
IL-33, and TSLP, which promote Th2 cell recruitment and activation

• Increased IL-13 production (11, 174)
• IL-13 promotes eotaxin-3 production from epithelial cells,  

which recruits eosinophils (174, 175)
• IL-13 promotes CAPN14 expression to promote esophageal epithelial barrier  

impairment (28)
• Decreased SPINK7 expression promotes esophageal epithelial barrier  

impairment (29)
• Eosinophilia and tissue damage (175)

Non–IgE-mediated  
food allergy

Food protein–induced 
enterocolitis syndrome Milk, soy, rice, oat, egg

Preliminary evidence of involvement of neutrophils, NK cells, monocytes and 
eosinophils, lack of IgG4, and intestinal permeability in disease propagation  
(177–180)

Food protein–induced 
proctocolitis Milk, soy, wheat, egg Preliminary evidence of eosinophilic inflammation (177, 180)

Food protein enteropathy Milk, soy, wheat, egg Preliminary evidence of allergen-specific suppressor CD8+ T cells (180)

Celiac disease Gliadin peptides  
(found in gluten)

• TGM2 induces gluten peptide deamidation to  increase affinity to HLA-DQ, which 
presents these peptides to CD4+ T cells

• Proinflammatory T cells promote intestinal damage
• Disease-specific B cells produce autoantibodies against self-TGM2 and 

deamidated gluten peptides
• HLA class II genes HLA-DQ2 and HLA-DQ8 susceptibility (180–182)

GI allergic disorders are classified by either IgE-mediated, non–IgE-mediated, or mixed IgE-mediated and non–IgE-mediated mechanisms. Loss of 
tolerance, resulting in initiation of immune hypersensitivity to harmless food antigens, and failure to terminate these responses, lead to chronicity of 
these responses. The food antigens involved in, and the mechanisms of, these diseases are summarized (1–3, 28, 29, 155, 174–187). α-gal, galactose-α-1,3-
galactose; TGM2, transglutaminase 2.
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region (71). Moreover, an increase in pea-
nut sensitization and allergy risk was seen 
in children with FLG loss-of-function 
mutations exposed to high levels of pea-
nut allergens in household dust (72).

Mendelian disorders inform GI allergic 
disease etiology. Several monogenic dis-
orders associated with GI allergy result 
from mutations in barrier genes (e.g., 
those that encode desmosomal junction 
proteins and the serine protease inhibitor 
SPINK5. SPINK5 loss of function results 
in a rare autosomal recessive disorder 
termed Netherton syndrome (NS) that is 
characterized by defective skin cornifica-
tion and Th2-skewed immune alterations 
(73). Loss of functional SPINK5 unleashes  
uncontrolled serine protease activities 
that promote corneodesmosome degra-
dation and excess corneocyte desquama-
tion, resulting in skin barrier dysfunction. 
NS patients develop a severe atopy syn-
drome involving progressive increases in 
serum IgE levels, hypereosinophilia, AD, 
and EoE. Common SNPs in the SPINK5 
locus are associated with AD severity and 
with food anaphylaxis (74). Generalizabil-

ity of these rare Mendelian disease observations is evidenced by 
the finding that both SPINK5 and SPINK7 expression is decreased 
in the esophagus of EoE patients compared with control individu-
als (29, 75–77) and that these are generally acquired events rather 
than a consequence of genetic loss of function. Mutations in CDSN 
(encoding corneodesmosin) cause peeling skin disease, with fea-
tures similar to those of NS, including multiple food allergies (78). 
Another monogenic disorder caused by barrier impairment is SAM 
syndrome, which is caused by homozygous mutations in DSG1 
(27). Loss of membranal DSG1 expression impairs cell-cell adhe-
sion, leading to acantholysis in all patients. In addition, DSG1 defi-
ciency stimulates production of Th2 cytokines, including TSLP, 
IL-5, TNF, and IL-13–induced periostin. These patients often have 
increased IgE levels, multiple food allergies, and EoE (27). As  
stated earlier, loss of DSG1 expression occurs in non-Mendelian 
EoE, supporting the generalizability of this mechanism. Heterozy-
gous missense mutations in another desmosomal protein, desmo-
plakin (DSP), also cause SAM syndrome with increased IgE levels, 
food allergies, hypereosinophilia, and EoE (79).

Other monogenic disorders highlight the balance between 
Th2 cells and Tregs as a causative mechanism in the etiology of 
GI allergic diseases. Deficiency of dedicator of cytokinesis 8 
(DOCK8) results in an autosomal recessive, combined immuno-
deficiency and hyper-IgE syndrome characterized by sinopulmo-
nary infections, eczema, viral skin infections, high specific serum 
IgE against food allergens, increased Th2 cells, and severe atopy,  
including food anaphylaxis (80). CD4+ T cells from DOCK8- 
deficient patients are preferentially polarized to a Th2 effec-
tor phenotype, with defective ability to polarize toward a Th17  
cytokine-producing state. In the absence of DOCK8, impaired 

locus on chromosome 6 significantly associate with peanut-driven  
allergy but not egg or cow milk allergies (65).

A recently discovered locus at 16p13, a region encoding the 
CLEC16A, DEXI, and CITTA genes, was genetically associated  
with EoE (59). CITTA regulates the expression of class I and II MHC 
genes that are important in immune tolerance (66, 67). Variants 
in CLEC16A associate with IgA deficiency (68). IgA is involved in 
mucosal immunity, development of tolerance, and protection against 
infection; IgA deficiency coexists with autoimmune diseases and 
allergies (69). DEXI has unknown function, but polymorphism in this 
gene is associated with autoimmunity (70).

Because many identified variants overlap between several  
atopic diseases, with the exception of CAPN14, they have poor spec-
ificity as biomarkers of allergic diseases. In addition, in allergic dis-
orders with low prevalence rates, such as EoE (1 in 2000), even indi-
viduals carrying risk variants that increase the disorder’s odds ratio 
(OR) 2-fold possess relatively low risk of developing the disease.

Considering the combinatorial effect, having two or more 
risk variants at different loci for disease susceptibility is likely 
to be important. Martin et al. presented evidence of interaction 
between SNPs at IL4 and TSLP such that TSLP risk variants most 
strongly associate with EoE when the IL4 risk variant is present 
(43). Another genetic interaction is observed between variants in 
TSLP and the uPA-encoding gene, PLAU, in EoE (29).

Gene-environment interactions. Environmental factors can spe-
cifically modify disease risk in genetically susceptible subjects. 
For example, breastfeeding reduces EoE risk in individuals with 
the rs6736278 susceptibility gene variant in CAPN14, and neona-
tal intensive care unit admission significantly increases EoE risk  
in individuals carrying a specific risk allele in the LOC283710/KLF13 

Figure 1. The regulation of epithelial barrier function in EoE. Esophageal allergic responses to food 
antigens are driven by barrier impairment. Decreases in the esophageal levels of the serine protease 
SPINK7 lead to increased serine protease activity, which impairs epithelial barrier function and in turn 
causes innate epithelial proinflammatory responses, including TSLP production. TSLP promotes Th2 
responses. This reaction can be controlled by anti-TSLP, anti–IL-13, and/or anti–IL-4R antibodies. In addi-
tion, loss of SPINK7 promotes increased esophageal uPA activity that activates eosinophils. Antiprote-
ase replacement of SPINK7, such as A1AT delivery, could potentially restore these pathways. Increased 
IL-13 promotes epithelial cells to produce eotaxin-3 that attracts eosinophils to the esophagus. 
Anti–IL-5, anti–IL-5R, and anti–Siglec-8 therapy reduce and/or eliminate eosinophils. IL-13 also induces 
decreased expression of the desmosomal protein DSG1, thereby impairing the epithelial barrier, as well 
as increased expression of the cysteine protease CAPN14, which also impairs the epithelial barrier.  
Therapeutic reagents that are FDA approved or in clinical trials are shown in red and blue, respectively. 
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of food allergic responses (84, 86). Homozygous loss-of-function 
mutations in the gene CARMIL2 result in primary immunodefi-
ciency disorder with variable phenotypic presentations including 
pulmonary allergy, various bacterial and fungal infections, derma-
titis, and EoE. CARMIL2 contributes to the NF-κB pathway by sta-
bilizing activated PKCθ microclusters at the immunological syn-
apse, and loss-of-function mutations in this gene cause impaired 
Treg differentiation and function and cytoskeletal organization 
(87, 88). Summaries of genetic loci and of monogenic disorders 
associated with food allergic diseases are presented in Tables 2 
and 3, respectively.

Environmental factors that contribute to food 
allergic diseases
The pathoetiology of food allergic disease is likely due to a com-
plex interplay of prenatal and postnatal environmental factors. 
Changes in food production, processing, and packaging (e.g., the 
use of pesticides, antibiotics, hormones, preservatives, heat dena-
turation, detergents, and chemicals) have been suggested to be 
linked to allergic diseases directly or indirectly (89–94).

The association of chemicals like bisphenol A (BPA) and 
phthalates with food allergy has been controversial (90). BPA is 
an endocrine disruptor with estrogenic activity that is commonly 
used as a component in polycarbonate plastic and epoxy resins. 
The main exposure to BPA is through food and beverages. Two 
studies demonstrated that BPA exposure altered the development 
of oral tolerance and decreased Treg number in mice (95, 96). Pre-

STAT3 activation leads to production of Th2-biased cells at the 
expense of Th17 cells (81, 82). Interestingly, STAT3 mutations also 
result in hyper-IgE syndrome and EoE (83, 84).

Loeys-Dietz syndrome (LDS) is an autosomal dominant con-
nective tissue disorder caused by mutations in the genes encoding 
the TGF-β receptor subunits TGFBR1 and TGFRBR2, which result 
in dysregulated TGF-β signaling. The clinical phenotype includes 
predisposition to atopy including asthma, food anaphylaxis,  
eczema, AD, allergic rhinitis, and eosinophilic GI disorders (EGIDs). 
Patients with LDS have increased frequency of CD4+ T cells that 
express both FOXP3 and IL-13, and cultures of TGF-β–stimulated 
CD4+ T cells from patients with LDS produce increased Th2 cyto-
kines compared with controls. These findings suggest that LDS 
mutations support Th2 skewing in a cell-autonomous manner (85) 
and highlight the key role of TGF-β, and likely Treg dysregulation, as 
a pathoetiologic mechanism in GI allergy including EGID.

In support of the key role of TGF-βR1, individuals with a loss-
of-function mutation in ERBB2IP have increased risk for food 
allergic diseases including food anaphylaxis and EoE. Notably, 
ERBB2IP encodes ERBB2-interacting protein (ERBIN), a known 
anchor protein for the TGF-βR1 downstream signaling molecules 
SMAD2 and SMAD3. Both STAT3 and ERBIN form a complex 
with SMAD2/3, inhibit SMAD2/3 activation, and suppress TGF-β 
signaling. ERBIN loss of function impairs TGF-β signaling and 
increases Treg numbers. Interestingly, DSG1 and ERBIN cooper-
ate to repress MAPK signaling and promote keratinocyte differen-
tiation, converging multiple relevant pathways in the development 

Table 2. Common genetic variants that contribute to allergic GI diseases

Susceptibility locus Top candidate genes involved Atopic and immune disorders

Loci potentially involved in 
barrier function

1q21.3 FLG Food allergy, atopic dermatitis, allergic rhinitis, asthma, EoE
18q21.3 SERPINB7, SERPINB10 Food allergy
2p23 CAPN14 EoE

 Loci potentially involved in 
Th2 responses

5q31.1–q33 IL4, IL13, KIF3A Food allergy, EoE, Crohn’s disease, psoriasis, eczema

5q22 TSLP, WDR36 EoE, allergic sensitization, asthma, allergic rhinitis, atopic dermatitis

Loci potentially involved in 
immune tolerance

11q13 EMSY, LRRC32
Food allergy, EoE, atopic dermatitis, asthma, allergic rhinitis, allergic sensitization, 
inflammatory bowel disease

6p21 HLADQ, HLADR Peanut allergy
16p13 CLEC16A, DEXI, CITTA EoE, IgA deficiency, and autoimmune diseases

Susceptibility loci associated with allergic GI disorders.

Table 3. Monogenic disorders associated with allergic GI disorders

Gene name Disease Atopic manifestation

Barrier
SPINK5, CDSN Netherton syndrome Increased IgE levels, food allergy, atopic dermatitis, EoE
DSG1, DSP SAM syndrome Increased IgE levels, multiple food allergies, EoE

T helper responses DOCK8 Hyper-IgE syndrome Eczema, increased IgE, food allergy

T regulatory responses

TGFBR1, TGFBR2 Loeys-Dietz syndrome Asthma, food allergy, eczema, atopic dermatitis, allergic rhinitis, EGIDs
ERBB2IP Food allergy, EoE
STAT3 Hyper-IgE syndrome Increased IgE, food allergy, atopic dermatitis, eczema
CARMIL2 Immunodeficiency disorders EoE, dermatitis, recurrent skin and chest infections
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natal exposure of rats to BPA resulted in decreased Tregs and DCs 
in the spleen and mesenteric lymph nodes (97). In addition, gly-
cated proteins, found in many foods particularly after super-high 
heating, such as microwave cooking, frying, and barbecuing, have 
been suggested to serve as alarmins that promote type 2 responses 
(94). Finally, exposure to certain drugs during infancy, particularly 
histamine 2 receptor antagonists and proton pump inhibitors, also 
increases risk for food anaphylaxis and EoE (71, 98, 99).

Past assumptions were that early exposure to food was a risk 
factor for the development of food allergy. However, current evi-
dence supports that early exposure to food antigens is likely pro-
tective, at least for the development of food anaphylaxis (100, 101). 
The dual allergen exposure hypothesis suggests that epicutaneous 
exposure to antigens induces allergic sensitization, particularly in 
individuals with impaired skin barrier, whereas oral consumption 
of high amounts of antigen induces tolerance (Figure 2A). Several  
studies on peanut allergy showed striking results. Du Toit et al. 
(102) reported that the prevalence of peanut allergy in infants in the 
United Kingdom is 10-fold higher than the prevalence of peanut 
allergy in infants in Israel. This study revealed a link between early 
consumption of food antigens and tolerance induction, suggesting 
that the dramatic increase in infant peanut consumption in Israel 
is the main reason for the low prevalence of peanut allergy (102, 

103). The dual allergen exposure hypothesis has been solidified by 
the Learning Early About Peanut Allergy (LEAP) study, a controlled 
clinical study that aimed to determine the best strategy to prevent 
peanut allergy in children. The study found that infants that had a 
negative skin-prick test to peanut were at higher risk for developing 
peanut allergy at 60 months of age if they avoided peanut consump-
tion than if they were peanut consumers. In the group of infants that 
had a positive skin-prick test to peanut, the peanut-avoiding chil-
dren were 3 times more likely to have peanut allergy at the age of 
60 months than were peanut consumers (104). This study showed 
that peanut consumption can be protective even in high-risk infants 
who were environmentally exposed and sensitized to peanut. This  
protective effect remained even if the children who consumed 
peanut avoided peanut for the following 12 months (105). These  
findings have now been put into clinical practice by recommenda-
tion of peanut consumption in the first year of life (106).

Variance in the rates of allergic GI disease are found by geog-
raphy and ethnicity. For example, non–US-born children who 
migrate to the US have decreased risk of food allergy independent 
of ethnicity (107). Similarly, Asian children who migrate to Aus-
tralia have decreased risk to develop nut allergy (108). In contrast, 
among US-born children, the children of immigrants were at the 
highest risk for food anaphylaxis (107). Ethnic minorities in devel-
oped countries tend to have a higher rate of allergic sensitization. 
Higher levels of food-specific IgE have been observed in black 
children than in white children (109). These differences are prob-
ably attributable to differences in genetics and lifestyle.

Vitamin D deficiency has been associated with increased 
risk of peanut sensitization, peanut allergy, and IgE-mediated 
egg allergy (110, 111). The mechanism is thought to be mediated 
by vitamin D–driven suppression of IgE production and the pro-
motion of tolerogenic DC and Treg maturation, which induces 
immune tolerance. In contrast, several studies have shown that 
excess vitamin D consumption increases the risk for allergies 
(112). Further studies are needed to establish the driving mecha-
nisms, the dose response, and timing relationships.

Microbial dysbiosis. Decreased exposure to pathogens, such as 
Helicobacter pylori, has been reported to contribute to the develop-
ment of allergies (113). Preterm delivery, cesarean section, and anti-
biotic use in infancy, which affect/alter the microbiome, are more 
common in EoE than control groups (71, 99). A large study in Japan 
revealed that food allergy risk is decreased with increasing birth 
order, possibly reflecting exposure to more infections from siblings 
(114, 115). Having a dog is a protective factor against IgE-mediated 
food allergy and EoE (71, 115). Living on a farm is associated with 
decreased rates of food allergy sensitization in children (116). These 
data substantiate a key role for exposure, particularly related to  
dysbiosis, in the etiology of GI allergic diseases.

It is notable that germ-free mice are more susceptible 
to Th2 responses (117–119). Azad et al. demonstrated that 
microbiome dysbiosis in early infancy is associated with food 
sensitization later in life (120). In another study, the intesti-
nal microbiota of infants with milk allergy was significantly  
different from that of control infants (121). Animal studies 
suggest that gut colonization of commensal microbes in early  
life influences tolerance versus allergic sensitization to envi-
ronmental exposures encountered later in life via several 

Figure 2. The effects of different allergen exposure paths on GI allergic 
diseases. (A) The dual allergen exposure hypothesis suggests that (a) 
environmental exposure to antigens in early life, specifically via the skin, 
increases the risk of developing food allergic disease later in life by induc-
ing allergic sensitization, and (b) oral consumption of high amounts of 
antigen in early life decreases the risk of developing food allergic disease 
later in life by inducing immune tolerance. (B) OIT induces Treg expansion 
and release of IL-10. IL-10 promotes Treg cell differentiation and inhibits 
Th2 cell differentiation. As a result, less IL-4 is produced, which decreases 
IgE isotype switch recombination in local B cells and Th2 cell differentia-
tion. OIT-induced TGF-β production by Tregs is also considered pathogenic 
in EoE and promotes tissue fibrosis, epithelial-to-mesenchymal transition, 
and smooth muscle contraction. OIT, at least in the setting of EoE, does 
not effectively dampen Th2 cell production of IL-5 and IL-13, which promote 
EoE. Increased IgG4 production by B cells is thought to be protective 
against IgE-mediated allergic GI diseases but might be pathogenic in EoE.
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mechanisms. In the GI tract, dietary fiber is converted to 
short-chain fatty acids (mainly acetate, butyrate, and propio-
nate) through the actions of commensal anaerobic bacteria. 
The receptors for these metabolites (GPCRs such as GPR43/
FFAR2, GPR41/FFAR3, and GPR109A/HCAR2) are expressed 
by Tregs, Th2 cells, neutrophils, macrophages, DCs, mast cells, 
epithelial cells, and adipocytes in the intestine and particu-
larly the colon (11, 122). Butyrate and propionate regulate dif-
ferentiation of colonic Tregs that suppress inflammatory and 
allergic responses (123, 124). Acetate regulates gut epithelial  
integrity (125). Short-chain fatty acids influence the severity of 
allergic inflammation in the lungs by regulating DCs and Th2 
cells (126). Alterations in the intestinal microbiome homeosta-
sis regulate the epithelial inflammasome pathway and IL-18 
production, which can be protective processes against intestinal 
damage and colitis (127). Dietary fiber and microbiota also pro-
mote chromatin changes by regulating histone acetylation and 
methylation in multiple host tissues (122). Barletta et al. showed 
that probiotic supplementation in a murine model ameliorates 
peanut allergy by increasing TGF-β levels (128). Atarashi et al. 
successfully isolated Treg-inducing bacterial strains from the 
healthy human indigenous microbiota. Inoculation of these  
bacteria into germ-free mice revealed multiple strains of clus-
ters IV, XIVa, and XVIII of Clostridia that induced Treg expan-
sion and antiinflammatory cytokine production (129). Col-
onization of germ-free mice with feces from healthy or cow’s  
milk–allergic (CMA) infants revealed that the CMA-colonized 
mice had increased anaphylactic responses compared with 
healthy-colonized mice and exhibited differential gene signa-
ture in the ileal epithelium. In the same paper, the authors also 
identified the clostridial species Anaerostipes caccae as a protect-
ing species against an allergic response to food (130). Though 
the effect of probiotic supplements on AD and eczema in clinical 
trials seems promising (131), their effect on GI allergy remains 
controversial (132, 133). Zmora et al. investigated the murine 
and human mucosa-associated microbiome along the GI tract 
with and without supplementing with multiple strains of bacte-
ria (mainly from the genera Lactobacillus and Bifidobacterium) 
and reported that humans can be clustered into two groups:  
permissive or resistant to mucosal probiotic colonization (134). 
In addition, the use of empiric probiotics after the use of antibi-
otics could delay the gut microbiome and transcriptome recon-
stitution, whereas fecal microbiome transplantation induced 
rapid microbiome reconstitution (135). These studies raise 
the hypothesis that probiotic treatment may be more benefi-
cial as a patient-tailored therapy than as an empiric one-for-
all approach. Further studies are required to identify specific 
strains and, particularly, certain species of the genus Clostri-
dium, which will be adjusted to the host microbiome in a personal-
ized manner. Perhaps healthy dietary guidelines can protect from 
GI allergic diseases by promoting a balanced GI microbiome.

Oral immunotherapy and the mechanism of 
desensitization
Food allergen immunotherapy is a process by which an atopic 
individual is exposed to initially small but gradually increas-
ing quantities of allergens in order to achieve tolerance or 

sustained unresponsiveness of the immune system, thereby 
decreasing the probability of an allergic reaction toward the 
allergen (136). The exposure to antigens can be epicutaneous, 
sublingual, or oral. The mechanisms by which immunotherapy 
is mediated are under extensive investigation. The reduction in 
sensitivity after immunotherapy is associated with a decreased 
ratio of IgE/IgG2a and increased antigen-specific IgG4 and IgA 
antibodies (137), decreased mast cell and basophil reactivity, 
and increased Tregs (138).

The extent of protection following immunotherapy is highly  
variable. Epicutaneous immunotherapy in a murine peanut allergy  
model revealed hypermethylation of the Gata3 promoter and 
hypomethylation of the Foxp3 promoter in Tregs, leading to a 
decrease in Th2 cells and an increase in Tregs, respectively. This was 
associated with sustained protection from food anaphylaxis (139).

Multiple case reports and meta-analysis of oral immuno-
therapy (OIT) reveal that immunotherapy for IgE-mediated food 
allergy may cause development of EGIDs (140–144). In murine 
models of EoE, epicutaneous allergen exposure primes for EoE 
(145), whereas epicutaneous immunotherapy induces a persistent 
resolution of esophageal eosinophilia (138), suggesting the skin’s 
potential to positively or negatively modify EoE-related responses.  
During OIT, Treg-mediated Th2 immunity in mice is mod-
ified, likely concentrated on inhibiting IL-4– and IgE- 
mediated responses but not sufficiently inhibiting IL-5– and 
IL-13–mediated responses. During experimental OIT, the 
induced Treg response is sufficient to repress IL-4/IgE but 
not experimental EoE development. It is unknown whether  
OIT-associated EoE is due to the unmasking of preexisting,  
lower-grade esophageal eosinophilia or the initiation of new 
esophageal disease. Interesting observations have shown that 
IgG4 levels are increased in EoE (146–149). IgG4 is thought to 
be a neutralizing antibody because it binds weakly to activating 
Fcγ receptors. Treg-derived IL-10 and TGF-β likely regulate IgG4 
production, connecting these pathways. During early life, food- 
specific IgG4 increases with continual peanut exposure; notably, 
a similar IgG4 increase occurs during OIT. Why the EoE response 
occurs only in a subset of OIT-treated patients may be genetically  
dictated. Figure 2B summarizes what OIT teaches us about the 
mechanism of EoE and IgE-mediated food allergy.

Prevention and therapies
The most common approach to treat GI allergies is food aller-
gen avoidance. Dietary treatment requires strict guidelines and 
educational interventions, especially in EoE, in which multiple 
foods drive disease and patients often have to remove the top 
six food allergen groups (milk, wheat, soy, egg, nuts/tree nuts, 
and fish/shellfish). Self-injectable epinephrine can prevent fatal 
consequences in life-threatening IgE-mediated food allergy. 
Because a dry, impaired skin barrier may increase the risk for GI 
allergic diseases, a few studies have examined whether treating 
eczema may decrease the risk of food anaphylaxis (150). Con-
sistent, routine application of emollients has been shown to pre-
vent AD (151, 152). Lowe et al. showed that prevention of eczema 
using lipid replacement therapy reduced food sensitization in a 
pilot trial (153). Likewise, in support of the dual allergen hypoth-
esis, oral consumption of food allergens early in life prevents IgE 
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in mouse models of food anaphylaxis (172). Encouraging pre-
liminary findings from a clinical trial of anti–IL-33 in peanut  
allergy have been recently presented (available at  https://www. 
anaptysbio.com/pipeline/etokimab/) (173). 

Future directions
It is now understood that oral tolerance under healthy condi-
tions is characterized by barrier integrity and Treg expansion 
promoted by early-life exposures through diet and microbiome 
composition. In contrast, loss of tolerance is characterized by loss 
of barrier integrity, microbial dysbiosis, and exaggerated type 2 
immunity influenced by genetic susceptibility elements (includ-
ing common variants as well as rare mutations associated with 
Mendelian diseases). Treatment is focused on promoting antigen 
desensitization and restoring long-term oral tolerance, currently  
centered around oral immunotherapy approaches, but future 
strategies include administering concurrent biologic therapies 
(e.g., monoclonal antibodies), manipulating commensal organ-
isms through probiotics, prebiotics, and fecal transplantation, 
and reestablishing the protease/antiprotease balance (Figure 3). 
Currently, there is an unmet need to find more diagnostic mark-
ers and inhibitory strategies for GI allergic diseases. Better identi-
fication of individuals with increased risk of disease susceptibility 
will help future prevention of disease onset. Additional transla-
tional research will likely help in developing new treatment strat-
egies and tailored medicine.
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sensitization and food anaphylaxis, at least in the case of peanut 
allergy (100, 104, 105, 115).

Other treatment options that currently exist include cor-
ticosteroids, mast cell inhibitors, H2 antagonists, and leukot-
riene receptor antagonists. For diseases such as EoE, topical 
esophageal delivery of swallowed corticosteroids can be effec-
tive (154). However, EoE reoccurs nearly universally after ces-
sation of therapy.

Non–IgE-mediated food allergies are typically resolved 
between 1 and 3 years of age, and the serotonin 5-HT3 receptor 
antagonist ondansetron has proven beneficial in some cases (155).

Anti–human IgE antibody (anti-IgE; omalizumab) 
was the first biologic agent approved for treating asthma.  
Omalizumab treatment with allergen immunotherapy helps 
to potentiate increases in Treg activity by reversing the Th2 
cell–like program (156). Using allergen OIT with anti-IgE 
antibodies in clinical studies showed promise, although not 
in all studies (157–160). Anti–IL-5 antibodies (mepolizum-
ab, reslizumab) have been FDA-approved for treating eosin-
ophilic asthma (161), and several clinical trials support their 
effectiveness for EoE, although while esophageal eosinophil-
ia improved, clinical symptoms were only modestly improved 
compared with typical improvements seen with topical gluco-
corticoids or dietary elimination therapy (162–164). Treatment 
of EoE with anti–IL-13 antibodies (QAX576 and RPC4046) 
produced favorable early results (165–167). Early phase II tri-
als of anti–IL-4Rα (dupilumab) also yielded positive results 
(168), substantiating preclinical models based on IL-13–driv-
en EoE-like responses (169, 170). Ongoing clinical studies 
are evaluating the effectiveness of targeting the IL-5 receptor 
IL-5Rα, anti–Siglec-8 (an eosinophil and mast cell inhibitory 
receptor), and anti–IL-4Rα for a number of GI allergic diseases, 
including EGIDs and food anaphylaxis. The effect of anti-TSLP 
treatment (AMG157) on EoE or IgE-mediated food allergy is 
unknown. However, in a study of asthma, AMG157 treatment 
showed positive results, especially for asthma that remained 
uncontrolled despite treatment (171). IL-33 was shown neces-
sary for sensitization to peanut allergens and allergic responses 

Figure 3. Factors that contribute to immunologic 
tolerance, sensitization, and desensitization. 
Immune tolerance toward an antigen breaks down 
when a danger signal is produced instead of a 
tolerance signal. Long-lasting adaptive immune 
responses are influenced by a sequence of 
environmental and genetic factors. The increase 
in the prevalence rate of allergic GI diseases over 
the past several decades is mainly attributed to 
changes in environmental factors. Future studies 
that will decipher the pathways toward sensitiza-
tion and desensitization will provide the bases for 
therapeutic immune intervention.
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