
Supplemental Table 1

Clinical characteristics of MS patients and controls.

Cases	Gender	age	Clinical diagnosis	Lesion
MS389	F	55	Secondary progressive MS	Chronic active
MS402	М	46	Secondary progressive MS	Chronic active
MS403	F	54	Secondary progressive MS	Chronic acute
MS404	F	55	Secondary progressive MS	Acute active
MS406	М	62	Secondary progressive MS	Acute active
MS407	F	44	Secondary progressive MS	Acute active
MS408	М	39	Secondary progressive MS	Acute active
MS410	F	47	Secondary progressive MS	Acute active
MS411	М	61	Secondary progressive MS	Acute active
MS416	М	55	Secondary progressive MS	Acute active
MS418	М	56	Secondary progressive MS	Acute acute
C075	М	88	urinary infection, COPD	Control
C073	М	71	Liver Cancer	Control
C072	М	77	Pneumonia, ischemic bowel	Control
C036	М	68	Myocardial infarcts	Control
C044	F	67	Acute arrhythmia	Control
C067	F	67	Metastatic ovarian cancer	Control
C054	M	66	pancreatic cancer	Control

Supplemental Fig. 1

Casp8 Peptide Sequences detected by Mass Spectrometry

- 1. DCFICCILSHGDK 2. FLCLDYIPHK 3. TMLAENNLETLK 4. WDLLVNFLDCNR

Supplemental Figure Legends

Supplemental Figure 1. Microglia intrinsic ASC promote both Th17 and Th1 induced EAE. Analysis of results for WT \rightarrow Asc^{f/+}Cx3cr1^{Cre-ER} (ASC^{Δ MT}) and WT \rightarrow Asc^{f/f}Cx3cr1^{Cre-ER} (ASC $^{\Delta}$ MT) bone marrow chimera mice in EAE disease. (A) Schematic diagram of tamoxifen treatment, bone marrow transplantation and EAE induction. (B) Analysis of efficiency of Cre recombinase in microglia of Asc^{f/+}Cx3cr1^{Cre-ER}Rosa26-stop-DsRed mice. (C) Gating strategy of EYFP+ microglia during EAE disease. (D and E) Inflammatory gene expression in the lumbar spinal cords as assessed at the peak of disease induce by Th17 (D, N=6/group) or Th1 (E, N=5/group) transfer. (F and G) H&E staining of lumbar spinal cords harvested at the peak of disease. Scale Bar, 100 µm. Data are representative of two independent experiments; Mean ± SEM. *P < 0.05, * *P < 0.01 (unpaired two-tailed *t*-test).

Supplemental Figure 2. IRAKM physically interacts with caspase-8. (A) Mass spectrometry analysis of IRAKM-associated proteins after immunoprecipitation via anti-IRAKM beads from cell lysates and four matched peptide sequences that correspond to caspase-8 were detected.

Supplemental Figure 3. Characterization of IL-1b KO microglia. (A) Tamoxifen was administered to *Csf1r^{f/f}Cx3cr1^{Cre}* mice at 5 mg/mouse by i.p for consecutive four weeks (1 time/week) followed by DAPI staining and microscope analysis of microglia cells deletion. EYFP indicates microglia cells and Blue indicates nuclear. Scale Bar, 400 μm. (B) Gating strategy of microglia from WT and *II1b*-/- donor mice. (C) *Csf1r^{f/f}Cx3cr1^{cre}* mice were treated with tamoxifen and transferred with or without wild-type microglia after the fourth tamoxifen injection. N=6/group. (D) ELISA analysis of inflammatory cytokines and chemokines in the supernatant of primary microglia isolated from EAE brain at peak disease. N=4/group. Data are representative of two independent experiments; Mean ± SEM.