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Abstract 

BACKGROUND. The circadian clock is a fundamental and pervasive biological program that 

coordinates 24-hour rhythms in physiology, metabolism and behaviour, and it is essential to 

health. Whereas time-of-day adapted therapy is increasingly reported to be highly successful, 

it needs to be personalized since internal circadian time is different for each individual. In 

addition, internal time is not a stable trait, but is influenced by many factors including genetic 

predisposition, age, gender, environmental light levels and season. An easy and convenient 

diagnostic tool is currently missing. 

METHODS. To establish a validated test, we followed a three-stage biomarker development 

strategy: (i) using circadian transcriptomics of blood monocytes from 12 individuals in a con-

stant routine protocol combined with machine learning approaches, we identified biomarkers 

for internal time; (ii) these biomarkers were migrated to a clinically relevant gene expression-

profiling platform (NanoString), and (iii) externally validated using an independent study with 

28 early or late chronotypes. 

RESULTS. We developed a highly accurate and simple assay (BodyTime) to estimate the inter-

nal circadian time in humans from a single blood sample. Our assay needs only a small set of 

blood-based transcript biomarkers and is as accurate as the current gold standard dim light 

melatonin onset method at smaller monetary, time and sample number cost. 

CONCLUSION. The BodyTime assay provides a new diagnostic tool for personalization of 

healthcare according to the patient’s circadian clock. 
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Introduction 

Many fundamental aspects of human physiology, metabolism and behavior display 24-

hour rhythms. These are found at all levels – from cells, tissues and organs to the entire or-

ganism (for a review see (1)). The master circadian clock resides in the hypothalamic suprachi-

asmatic nuclei (SCN) and coordinates daily rhythms of sleep and wakefulness, core body tem-

perature and hormone secretion (such as cortisol, melatonin and many others). The circadian 

clock is synchronized to Earth’s rotation primarily by light-dark cycles – a process called `en-

trainment’. In addition, virtually every cell of the body contains a circadian oscillator that con-

tributes to the daily rhythmicity of a large variety of physiological and metabolic activities in-

cluding immune responses, xenobiotic detoxification as well as renal and cardiovascular func-

tions. In fact, at least 40% of protein-coding genes show daily rhythms in expression in a tissue-

specific manner not only in nocturnal rodents (2), but also in humans (3). 

Given this ubiquity of daily rhythms, it is not surprising that the metabolism (pharma-

cokinetics) and effects (pharmacodynamics) of many, especially short half-life drugs change 

over the 24 hours. A recent study has shown that ~50% of all current drugs target the product 

of a circadian gene (3). Additionally, therapeutic outcomes such as survival after open-heart 

surgery (4), efficacy and tolerance of chemotherapy (5), wound healing (6), antibody response 

to vaccination (7) or effectiveness of acetylsalicylic acid application for cardiovascular diseases 

(8) all vary across time-of-day. 

Therefore, tailoring drug administration or other therapeutic interventions to optimal 

time-of-day (chronotherapeutics) aims to maximize efficacy and/or improve tolerance (9). 

However, one key barrier to widespread adoption of chronotherapeutics is that humans are 

heterogeneous with respect to timing of their internal clocks as well as to their behaviour 
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influencing synchronization of their clocks to the environmental light-dark cycle. In other 

words, humans have different `phases of entrainment’ – a concept, which underlies different 

`chronotypes’ whose physiological and behavioural rhythms range from early (`morning larks’) 

to late (`night owls’), the majority being somewhere in between (10). Moreover, the phase of 

entrainment of humans is not a stable trait; it rather depends on many internal and external 

factors. It has a genetic basis (11), is age- and sex-dependent (10), depends on light exposure 

level (12, 13), on the season (12, 14) as well as on the location within the time zone (10). 

Therefore, any timed therapeutic intervention needs to be personalized. In other 

words, we need a simple diagnostic tool to read out objectively the internal time of an indi-

vidual at a given moment. The present approaches to assess internal time are either based on 

questionnaires and therefore not objective (10, 15); or they are cumbersome and costly re-

quiring multiple measurements under controlled conditions. The current gold standard to as-

sess circadian phase is to determine the time point when endogenous melatonin secreted 

from the pineal gland reaches a predefined threshold concentration in saliva or blood plasma 

(dim light melatonin onset, DLMO) (16, 17). Because light suppresses melatonin secretion, 

sampling has to be carried out under controlled dim light conditions. Moreover, the sampling 

rate (every 30-60 minutes over a period of 5-6 h) makes the protocol inconvenient to be used 

in daily clinical routine. Together, the current situation is suboptimal, which is unfortunate 

because there is an increasing need for internal circadian time assessment as reflected by in-

clusion of DLMO in the latest catalogue of diagnostic criteria for circadian rhythm sleep disor-

ders (18).  

The estimation of internal circadian time from single or multiple samples was pio-

neered by Ueda et al. (19). Their molecular-timetable method was originally developed on 
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mouse liver transcripts and later translated to humans by analyzing blood metabolites from 

two samples taken 12 hours apart (20). Subsequent studies applied machine learning ap-

proaches (ZeitZeiger and partial least squares) to circadian transcriptomes from human pe-

ripheral blood mononuclear cells (PBMCs), which however did not result in a prediction accu-

racy similar to the current gold standard DLMO measurement (21, 22). In addition, the identi-

fied biomarkers were not validated in truly independent studies and the measurement plat-

forms were not adapted for clinical usage. 

Here, we present a simple solution to determine internal time of an individual from a 

single blood sample taken at any time during the day. To establish a validated assay for clinical 

usage, we first searched the circadian transcriptome of blood monocytes for biomarkers using 

machine learning approaches. Next, we migrated the biomarkers to a clinically relevant gene 

expression-profiling platform and finally validated our assay using an independent study. Our 

BodyTime assay uses a small set of blood-based transcript biomarkers to compute internal 

time with an accuracy equalling the current gold standard method at a smaller monetary and 

time cost. Thus, the BodyTime assay is a precise new diagnostic tool allowing personalized 

therapeutic intervention adapted to the patient’s endogenous circadian phase. Such a tool 

has the potential to foster further development of chronomedicine on a much larger scale.  
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Results 

Strategy for BodyTime assay development 

The goal of the present study was to develop an objective and simple assay to deter-

mine internal circadian time in humans for both clinical and research use (BodyTime assay). 

Specifically, we aimed to accurately quantify the phase of entrainment (also called chrono-

type) of humans using multiplex gene expression profiling. To establish a validated test, we 

followed a three-stage biomarker development strategy (Figure 1A) (23): (i) unbiased discov-

ery of biomarkers (i.e., time-telling genes) using a large-content platform (RNA-Seq). Time-

telling genes are likely to be identified among those genes, whose expression is robustly time-

of-day dependent across many individuals with similar phase, amplitude and expression level; 

(ii) migration to a targeted gene expression profiling platform (RNA-Seq  NanoString™); and 

(iii) independent external biomarker/assay validation. 

 To this end, we conducted two independent studies with healthy volunteers: the BOTI 

study (Figure 1B) to identify the time-telling genes (stage 1+2) and the VALI study (Figure 1C) 

to test whether the final assay performs well on a clinically relevant platform with an inde-

pendent subject cohort (stage 3). The design of these studies will be outlined in the respective 

result sections. To assess the performance of the BodyTime assay, we compared it to the cur-

rent gold standard for internal circadian time, the measurement of DLMO. 

We chose to use peripheral blood monocytes as source material for gene expression 

profiling, because (i) blood is an easily accessible source of human cells and (ii) monocytes 

comprise a homogenous blood cell population and have been shown to possess a high-ampli-

tude circadian clock (24, 25) in contrast to other peripheral blood mononuclear cells (PBMCs), 

such as B or T cells. For the final multiplex gene expression profiling, we chose the NanoString 
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Technologies nCounter platform, since it offers key advantages (sensitivity, reproducibility, 

technical robustness, etc.) over more traditional methods such as microarrays and quantita-

tive RT-PCR (26). Moreover, NanoString-based diagnostic tests with Food and Drug Admin-

istration (FDA) clearance are already on the market (27). 

 

Stage 1: Extraction of biomarkers for internal time from human monocyte transcriptome 

time series data 

The goal of stage 1 was to extract a candidate set of time-telling genes from whole 

monocyte transcriptomic time series data from multiple individuals. That is, we sought a func-

tion that maps gene expression signatures to time. To this end, we conducted the BOTI study 

under controlled laboratory conditions using a narrow cohort design (12 exclusively male sub-

jects, mean age=25.3 ± 2.6 y (± SD), range [22-30 y]; mean DLMO=21:17 ± 1:09, range [19:13-

22:36]) (Figure 1B, Supplemental Table 1). For each subject, 14 blood samples were taken at 

regular intervals of 3 hours over a period of 40 hours in a constant routine protocol (28) to 

minimize unwanted effects of sleep, activity or meals on circadian gene expression. Subjects 

remained in a semi-recumbent posture in bed under dim light, constant temperature and hu-

midity during a period of 40 hours of sleep deprivation. They received isocaloric snacks every 

hour and water. Hourly saliva samples were taken for determination of melatonin secretion 

profiles. Monocytes were sorted from whole blood and resulting RNA was subjected to RNA-

Seq. In addition to the external time of day, each sample was assigned an additional time 

stamp, which relates to the subject’s DLMO (internal time). After quality assessment, the final 

RNA-Seq time series included 136 mRNA abundance profiles (9115 genes) from 10 subjects 

(Supplemental Table 2, Supplemental Figure 1). 
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Among the various bioinformatics methods proposed to obtain predictors that map 

gene signatures to time, we applied ZeitZeiger (29) to the RNA-Seq data set, because ZeitZei-

ger achieves good prediction performance with fewer genes compared to other methods. We 

devised a 4-predictors approach, i.e., we tested four types of predictors that differ with re-

spect to the predicted variable (external time or internal time) and the format of the RNA-Seq 

data input (1-sample or 2-samples 6 hours apart). The difference between the two formats is 

the mRNA abundance profile assigned to each measurement (Mi) in the time series (1-sample: 

single profile recorded at Mi; 2-sample: ratio of two profiles recorded 6 h apart, Mi/Mi+2). The 

idea of the 4-predictor approach is that genes with high and robust time-telling properties 

should be less dependent on the type of predictor and thus should be frequently extracted by 

ZeitZeiger.  

 To evaluate the performance of the predictors, we followed a leave-one-subject-out 

cross-validation approach. To this end, the predictors were trained with data from all subjects 

except one, and internal/external times of the samples from this left-out subject were subse-

quently predicted. This was repeated for all subjects. Moreover, cross-validation was always 

done for nine combinations of ZeitZeiger’s two main parameters sumabsv and nSPC. Briefly, 

sumabsv controls how many genes form each sparse principal components (SPC) and nSPC 

determines how many SPC are used for prediction, i.e. the higher sumabsv or nSPC, the more 

genes are needed for prediction. All four types of predictors performed comparably (Figure 

2A, Table 1) in terms of optimal parameter combination (nSPC=2, sumabsv={2, 3}) and mean 

number of genes used for prediction (12 to 15 genes for sumabsv=2, 30 to 35 genes for sum-

absv=3). As a measure of accuracy, we use the median absolute difference between the pre-

dicted and the observed (internal or external time) time stamps and its interquartile range 
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(IQR). Hereafter, for simplicity, we abbreviate median absolute difference to MdAE. The accu-

racy achieved in predicting internal time is similar for the 1-sample (MdAE=1.6 h, IQR=2.4-

3.2 h) and the 2-sample method (MdAE=1.4-1.7 h, IQR=1.9 h) (Figure 2A, Table 1); differences 

between the two methods are not statistically significant (Benjamini-Hochberg adjusted p-

value of pairwise Wilcoxon test > 0.05). With 53.7-59.6% of the predictions showing an error 

of ≤2 h, our predictors’ performances are comparable to those of previously published inter-

nal cross-validation predictors (21, 22). The MdAEs show no significant variation over the en-

tire constant routine (Kruskal-Wallis test on 3 h time bins, p-value > 0.05) for any of the pre-

dictors, indicating that the cumulative sleep deprivation experienced by the subjects does not 

affect prediction accuracy. Likewise, there is no statistically significant difference in terms of 

MdAE between samples obtained during day 1 [0-24 h] and day 2 [24-40 h] of the constant 

routine (Mann-Whitney U test, p-value > 0.05). The accuracies of the external time of day 

predictors (MdAE=1.2-1.6 h, IQR=1.8-2.4 h; Figure 2A, Table 1) are similar to those of the in-

ternal time predictors. Likewise, the 1-sample (MdAE=1.4-1.6 h, IQR=1.8-2.0 h) and 2-sample 

methods (MdAE=1.2-1.4 h, IQR=2.3-2.4 h) perform comparably. The global gene sets of all 

predictors are shown in Figure 2B. The global gene set of a predictor aggregates all genes 

identified by ZeitZeiger for prediction (biomarkers) across the internal cross-validation runs. 

For reasons of comprehensibility, the composition of the global gene sets will be specified in 

the context of migration to the NanoString platform (stage 2). 

Together, our results indicate that monocyte transcriptome time series data are well suited to 

extract time-telling genes with internal cross-validation performance similar to previous stud-

ies (21, 22). However, the MdAEs as well as the frequencies of predictions with an error ≥1 h 
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indicate that the accuracy of predictions can still be improved, since for internal time it is be-

low the accuracy established by the gold standard saliva melatonin radioimmunoassay that 

was used to determine DLMO in our study cohort (30 minutes to 1 hour (16, 17)). 

 

Stage 2: Platform migration – selection of a candidate biomarker set for internal time 

Following the biomarker extraction process and internal validation, the next stage 

aimed to adapt candidate biomarkers (time-telling genes) to a clinically applicable assay plat-

form (Figure 1A). It is crucial which and how many time-telling genes are selected for migra-

tion to the NanoString platform. Therefore, we predefined the following selection criteria: (i) 

the final number of genes should be as small as possible, and (ii) the genes selected for migra-

tion should have robust time-telling properties. Our selection of a candidate set of time-telling 

genes is based on the global gene sets of the best-performing predictors (Table 1, Figure 2B). 

The global gene set of a predictor aggregates the genes extracted by ZeitZeiger for prediction 

across the internal cross-validation runs. In case of leave-one-subject-out cross-validation, as 

performed here, the number of cross-validation runs equals the number of subjects (N=10). 

Since our predictors use two sparse principal components for prediction, the maximal times a 

gene can be identified is N x nSPC=20. Figure 2B summarizes the global gene sets of the best-

performing predictors in terms of which genes were identified and how often. A total of 119 

genes were extracted at least once across all predictors. Gene ontology (GO) functional en-

richment analysis revealed that they are significantly associated (p-value < 10-5) with biological 

processes related to the immune system (e.g. immune response, defense response, cell acti-

vation; for a full list see Supplemental Table 3). Furthermore, four genes have previously been 

related to the circadian clock (DBP, NR1D2, PER1 and PER2) (1).  
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Out of the 119 genes, 34 were selected as candidates for migration to the NanoString 

platform because they were frequently identified during cross-validation of the individual pre-

dictors and across predictors: ABHD5, AGFG1, C7orf50, CD99, CLEC4E, CRISPLD2, CX3CR1, 

CYP51A1, DBP, ELMO2, FASN, FKBP4, FKBP5, FUS, HNRNPDL, HSPA1A, HSPH1, IRAK3, IRS2, 

LGALS3, LILRA5, MLKL, NID1, NR1D2, PER1, PER2, PHC2, RBM3, RSRP1, SERPINB9, SMAP2, 

TSC22D3, TSPAN4 and UBE2J1. Due to the size of the candidate set, we opted for a 48-plex 

configuration for the NanoString assay. In addition to the 34 candidate genes we chose to 

further include 4 housekeeping genes (GAPDH, HPRT1, PPIA, PSMB2), 3 clock (or clock associ-

ated) genes that were not part of the RNA-Seq data set because of low expression (KLF9, 

NR1D1, PER3), 2 clock genes that were not identified in the biomarker extraction process 

(CRY1, CRY2) as well as 5 genes that showed high frequencies of detection when the RNA-Seq 

data set was still incomplete (CPED1, DHRS9, HGSNAT, ODC1, PLAC-8). 

To assess the impact of migration of our candidate set to the NanoString platform on 

prediction accuracy, we performed platform comparison. To this end, gene expression profiles 

using the 48-plex NanoString gene set were acquired for all blood monocyte RNA-preparations 

obtained during the BOTI study (Supplemental Table 4). Afterwards, internal cross-validation 

predictors for both the RNA-Seq and the NanoString data sets were built only using the genes 

shared by both assays (n=41) and all samples that passed quality control for both assays 

(n=136). We again followed the 4-predictor leave-one-subject-out approach; predictor perfor-

mances are shown in Figure 2C, predictor performance measures are summarized in Supple-

mental Table 5. Most strikingly, all predictors’ performances significantly increase after mi-

gration to the NanoString platform (internal time 1-sample: p < 0.0008, internal time 2-sam-
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ple: p < 0.005, external time 1-sample: p < 0.0001, external time 2-sample: p < 0.03; Benja-

mini-Hochberg adjusted p-value of pairwise Wilcoxon test). The MdAEs improved by about 1 

hour ranging between 0.6 and 0.9 hours for the different predictors. Moreover, the spread of 

MdAEs narrowed by about a factor of 2, now reaching values in the range of 1 hour. Conse-

quently, the frequencies of predictions with an error ≤1 h or ≤2 h increased up to >50% and 

>70%, respectively. Of particular note is that the NanoString predictors performed equally well 

for different values of sumabsv; that is, a predictor using just 2 genes for prediction achieved 

the same accuracy as a predictor using ≥12 genes. Spearman’s correlation and Bland-Altman 

analyses further revealed that, in terms of prediction error, there was no relevant bias be-

tween the two platforms ( ≤ 0.33, Supplemental Figure 2; Bland-Altman mean difference 

[-0.2 to 0.5 h], Supplemental Figure 3). Taken together, the migration of our candidate set to 

the NanoString platform was not only successful, but in fact significantly improved its perfor-

mance. 

After migration of the candidate set of time-telling genes to the NanoString platform, 

we sought to establish and validate a final assay to assess internal circadian time. By means of 

internal cross-validation (leave-one-subject-out approach), we first identified the optimal pa-

rameter values for ZeitZeiger-based prediction of internal time in the NanoString data set of 

the BOTI study. This analysis differed slightly from the one performed for platform compari-

son, in that here all genes (m=44) and all samples that passed quality control were considered 

(n=154 in 11 subjects) and not only those that are also present in the RNA-Seq data set. Re-

garding accuracy and optimal parameters (nSPC=2, sumabsv={1, 2}) the results of the final 1-

sample and 2-sample assays’ internal validation were essentially identical to those described 
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above for platform comparison (for a detailed view on performance measures and a descrip-

tion of the global gene sets see Table 1 and Supplemental Figure 4, respectively). 

Using the identified optimal parameter combinations, we next trained two final inter-

nal time predictors on all samples in the 1-sample and 2-sample NanoString data set of the 

BOTI study (Figure 3A). Both the 1-sample and the 2-sample predictor trained with sumabsv=1 

are formed by just two genes (NR1D2, PER2). The predictors trained with sumabsv=2 comprise 

12 genes (SPC1: NR1D2, PER3, NR1D1, LGALS3, PER2, ELMO2, FKBP4, HSPH1, CRY1; SPC2: 

CRY1, PER2, CRISPLD2, KLF9, PER1) and 13 different genes (SPC1: NR1D2, PER3, NR1D1, 

LGALS3, TSPAN4, FKBP4, ELMO2, CRY1; SPC2: CRY1, PER2, CRISPLD2, CPED1, CX3CR1, KLF9, 

ELMO2, PER3), respectively. More importantly, the 1-sample and 2-sample predictors show a 

strong overlap in terms of genes that form SPC1 and SPC2, emphasizing the high time-telling 

capacity of these very small sets of genes. In line with this, the expression levels of the identi-

fied genes show consistent circadian oscillations in each subject of the BOTI study (Figure 3C). 

Interestingly, the graphical illustration of the course of SPC1 and SPC2 over internal time re-

sembles a clock (12-gene 1-sample predictor, Figure 3B; for the other predictors see Supple-

mental Figure 5B-D). When plotted in the two-dimensional SPC-space, the BOTI study’s sam-

ples describe a virtually perfect circle with the progression of internal time following an anti-

clockwise trajectory. Such behavior is observed for each individual subject (Supplemental Fig-

ure 5A) and might form the basis for future personalized approaches to detect perturbations 

of the circadian clock in humans. Taken together, we established not one but four final 

BodyTime predictors that all show comparably high accuracy and use a very small set of genes. 
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Stage 3: External validation of the final BodyTime assay in an independent study 

Predictors often perform better on data they were built on than on independent sam-

ples (30). Therefore, it is essential to validate them externally before implementation for clin-

ical or research use. We thus sought to validate the final BodyTime predictors in an independ-

ent study (VALI study). In contrast to the BOTI study, the VALI study used a broad cohort design 

(11 male + 17 female subjects, mean age=26.9 ± 5.7 y, range [18-41 y]; mean DLMO=21:04 ± 

2:08, range [16:42-00:28]) (Figure 1C, Supplemental Table 6). In addition, in contrast to the 

BOTI study, where we chose a controlled laboratory setting (constant routine), now we de-

cided on a setting better reflecting real life conditions, i.e., subjects of the VALI study were 

allowed to sleep, to eat meals and to be exposed to light at their habitual times. Most im-

portantly, however, all subjects were classified as extreme or moderate early or late chrono-

types (based on questionnaires; see Materials and Methods) prior to inclusion in the study to 

characterize the prediction range of the BodyTime assay with respect to chronotype. 

For each subject, two blood samples were taken (in the morning and 6 hours later in 

the afternoon), monocytes were sorted and mRNA abundance profiles against the 48-plex 

NanoString gene set were acquired (Supplemental Table 4). To assess and compare the pre-

diction of internal time by the four BodyTime predictors trained on the BOTI study data set, 

we applied them to the mRNA abundance profiles acquired during the independent VALI study 

(Figure 1C) (note that external time prediction is not meaningful for extreme chronotypes 

since their individual DLMOs are spread over ~9 hours, Supplemental Table 6). The 1-sample 

2-gene and 12-gene BodyTime predictors applied to the VALI study morning samples achieved 

the best prediction accuracy of internal time (Figure 4A, Table 2). With MdAEs of 0.54 h 

(IQR=0.82 h) or 0.69 h (IQR=0.87 h) and 100% or 96.3% of samples showing an error of ≤2 h, 
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both predictors performed as well as they can, considering that the error of the gold-standard 

reference method (DLMO determined from saliva melatonin concentrations measured by ra-

dioimmunoassay, RIA) itself lies between 0.5 and 1 h (16, 17). The agreement of our BodyTime 

predictors with the current gold-standard is further emphasized by the high (circular Pearson 

r≥0.9) and significant (p<0.0001) correlation of DLMO estimated by our predictors with DLMO 

determined from saliva melatonin concentrations (Figure 4B). Moreover, Bland-Altman anal-

yses showed that there is no systematic difference between the two methods (Bland-Altman 

mean difference [-1.02 to 0.24h]; Figure 4C and Supplemental Figure 6). Application of the 1-

sample BodyTime predictors to the afternoon samples resulted in a small but statistically in-

significant loss of accuracy in terms of MdAE (2-gene: 0.99 h, 12-gene: 0.80 h). Likewise, the 

accuracies of the two 2-sample predictors (2-gene: 0.75 h, 13-gene: 0.74 h) were somewhat 

better than those of the 1-sample predictors with the difference not being statistically signif-

icant. Furthermore, the accuracy of prediction does not depend on the phase of entrainment 

(Supplemental Figure 7). 

Taken together, we succeeded in establishing the first externally validated assay that 

estimates internal circadian time from a single sample. Hallmarks of this BodyTime assay are 

its high accuracy, its robustness and low complexity in that it requires expression profiling of 

just a handful of genes. Most importantly, it provides a much more convenient alternative to 

the current gold-standard multi-sample methods. 
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Discussion 

Following a three-stage biomarker development strategy, we established and vali-

dated a novel assay (BodyTime) for assessing internal circadian time using monocyte NanoS-

tring-based gene expression profiles. Our BodyTime assay achieves similar accuracy (MdAE: 

0.54-0.69 h) as the current gold standard DLMO assay (error: 0.5-1 h (16, 17)) while eliminat-

ing its shortcomings. It requires only one blood sample taken at any time during the day and 

there is no need for a dim light environment during sampling. Moreover, it depends on just a 

handful of genes (≤12), is of low complexity and, thus low cost (<100$ per test). In its current 

form, our assay is readily useable in a research or clinical context, since the requirements re-

garding equipment (MACS sorting device) and staff are easily met. If not available in-house, 

NanoString gene expression analysis can be out-sourced to one of many external service pro-

viders. In Supplemental Table 7, we provide an Excel-based tool, where users can paste their 

expression values from NanoString to get an estimate of their DLMO based on our 12-gene 1-

sample BodyTime predictor. 

What distinguishes our approach from all previous attempts (21, 22) to establish an 

assay for internal time is that we focused on biomarker development strategy and decision-

making instead of bioinformatics tool development. While bioinformatics is certainly crucial 

for biomarker discovery, our approach demonstrates that, on its own, it is not sufficient. In 

fact, the success of our BodyTime predictors can be attributed in large part to the decision to 

migrate the assay to the NanoString platform. Just the migration increased the accuracy of 

our predictors significantly. We used ZeitZeiger to identify the time-telling genes for use in our 

multiplex assay for internal time. ZeitZeiger has the advantage that it performs both model 

construction for internal time estimation and feature extraction to find the best multiplex for 
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use in the assay. Other established methods (molecular time table (19) or partial least squares 

(22) use theoretically sub-optimal approaches to find the best combination of time-telling 

genes. We used the maximum likelihood scheme (described in (29)) to estimate internal time 

from a subject sample. However, other machine learning methods (LASSO and partial least 

squares) resulted in very similar internal time estimation performances (Supplemental Figure 

8, Supplemental Table 8), further emphasizing that biomarker discovery and the analysis plat-

form (NanoString) rather than a bioinformatics approach had a greater influence on the suc-

cess of our approach. 

Our choice of monocytes as a source material was driven by a desire to reduce the 

cellular noise in the data, at the cost of a slightly more expensive and complex assay. In con-

trast to whole PBMCs or other PBMC subsets, monocytes have been shown to comprise a 

homogenous blood cell population with a high-amplitude circadian clock (24, 25). Whether 

this decision significantly contributes to our success in establishing the BodyTime assay is dif-

ficult to assess, because all previous attempts (while being PBMC-based) did not go beyond 

stage 1 of the biomarker development pipeline (21, 22). That is, direct comparison cannot be 

made. However, some observations during initial biomarker extraction suggest that the choice 

of monocytes had a favorable impact on the performance of the assay: (i) independent of the 

predicted variable (internal or external time) and the data input format (1-sample or 2-sam-

ple), we observed a strong overlap in the genes extracted by ZeitZeiger (Figure 3A), (ii) com-

pared to other PBMC-based internal-cross validation approaches with similar performance 

our predictors need a much smaller set of genes (12-15 versus ~100) (22). We believe that 

these observations reflect a combination of reduced cellular noise of monocytes in terms of 

gene expression compared to PBMCs and an improved clinically proven gene expression 
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measurement platform (NanoString) leaving the possibility that our final assay would perform 

just as well on PBMCs.  

The accuracy of the BodyTime assay is the same for all chronotypes (Supplemental 

Figure 7), even the extreme ones as revealed in our external validation study. It is thus not 

affected by where the sleep period of a person is located during the 24-hour window of a day 

as long as sleep occurs at the person’s normal time (i.e. similar phase angle with respect to 

the melatonin rhythm and assuming no internal desynchronization). Archer et al. (31) previ-

ously showed that when sleep was scheduled out of circadian phase (i.e. out of phase with 

the melatonin secretion rhythm) the blood transcriptome was affected such that the expres-

sion of circadian genes may become arrhythmic or low-amplitude. That is, a predictor includ-

ing such genes may fail for individuals sleeping out of phase such as shift workers, with or 

without internal desynchronization. However, when using the information provided by Archer 

et al. and comparing it with our BodyTime predictors, the majority of genes were unaffected 

when sleeping out of phase (31). Moreover, the accuracy of our internal cross-validation pre-

dictors was not affected by the cumulative sleep loss experienced by the subjects enrolled in 

the BOTI study. We therefore assume that the BodyTime assay should be able to reliably as-

sess internal time even in the case of circadian rhythm disorders or circadian misalignment 

that may occur during shift work. Whether BodyTime works similarly well in patients or co-

horts with known lower circadian amplitudes (e.g. the elderly, shift workers) and/or in the 

presence of internal circadian desynchronization remains to be elucidated. It is important to 

note that neither BodyTime nor DLMO determined from saliva melatonin concentrations re-

port the circadian phase of the SCN; rather BodyTime estimates DLMO, and the classical mel-

atonin RIA directly measures the time of onset of melatonin secretion. Onset of melatonin 
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secretion is a characteristic of circadian rhythms in the pineal gland, although in clinical circa-

dian and sleep research it serves as the gold standard proxy for SCN phase. 

Among the BodyTime predictors were several core clock genes or genes associated 

with the circadian clock, which is in contrast to biomarker sets previously suggested based on 

analysis of data acquired on high-content discovery platforms such as microarrays (21, 22). 

Since the BodyTime predictors are small in size (2 to 15 genes) we cannot deduce any further 

biological meaning. However, although they did not make it into the final BodyTime predic-

tors, we identified many time-telling candidate genes that are associated with biological pro-

cesses related to the immune system. This is in line with the previously suggested biomarker 

sets for internal time and hints at modulation of immune processes by the circadian clock (32). 

Our assay provides a simple yet effective tool for chronotyping individuals from a single 

blood sample. This assay should therefore become a useful tool for example during drug de-

velopment to assess whether the effectiveness and side effects of a drug are influenced by 

the administration schedule. Beyond that, it opens up the opportunity to investigate the dy-

namics of the internal circadian phase in response to environmental changes and interven-

tions (in large study cohorts), e.g. shift work, jet lag, season (photoperiod), light level, daylight 

saving time as well as with age. In addition, the BodyTime predictor genes may have the diag-

nostic potential to assess molecular perturbations of the circadian system. When plotted in 

the SPC-space defined by the BodyTime predictor genes, the time series data of the BOTI study 

describe a circle with the progression of internal time following an anti-clockwise trajectory 

(Figure 3B). Hughey et al. have previously reported a similar behavior for a predictor of exter-

nal time of day in mice (29). Importantly, they were able to show that genetic perturbations 

of the clock result in characteristic changes in relation to the circular trajectory, such as axis 
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shifts (muscle Bmal1-/-) and shrinking of the radius (liver Nr1d1-/- Nr1d2-/-). If this is also true 

for humans, the circular trajectory of our BodyTime predictors may provide the basis for the 

establishment of diagnostic tests. 

In summary, our BodyTime assay is a new precision medicine tool that allows the per-

sonalization of diagnostics and therapy according to an individual’s circadian phase – an un-

der-recognized yet important physiological parameter. BodyTime is simple (it requires only a 

single blood sample taken anytime during the day) and highly accurate (as good as the current 

gold standard) and therefore should foster the spread of chronomedicine. 
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Materials and Methods 

Study 1 (BOTI) – Study design, protocol and participants 

Study Design: The 4-day laboratory study was conducted between May 2015 and January 2016 

and consisted of an adaptation and a baseline night in the sleep laboratory, followed by a 40-

h episode of sleep deprivation and an 8-h recovery sleep episode. The entire protocol was 

carried out under constant routine (CR) conditions (<6 lx, constant room temperature, semi-

recumbent posture in bed, regularly small isocaloric snacks and water, and no time cues (28)). 

Continuous polysomnographic recordings and core body temperature measurements started 

before the first baseline night. During the CR part, salivary samples for hormone analyses were 

collected hourly, and blood samples via indwelling catheter were obtained every three hours.  

Study Protocol: Participants had to keep a regular sleep wake cycle 7 days before the labora-

tory part of the study, with self-selected target bed and wake times (± 30 min), and an approx-

imate 8-h sleep episode. Compliance was verified by activity watches (Motion Watch 8, 

Camntech, Cambridge, UK) and sleep diaries. On the laboratory admission day, participants 

had to abstain from caffeine and alcohol after 2 pm. They came to the sleep laboratory on the 

evening of day 1. After completion of a urinary drug screen (möLab GmbH, Langenfeld, Ger-

many), participants were prepared for the polysomnographically recorded adaptation night in 

the laboratory. Habitual sleep and wake times were determined by centering an 8-hour sleep 

episode to the averaged times of mid-sleep obtained at home, during the 7 days preceding 

the study. On day 2, participants stayed in their room (illuminance ~500 lx in a vertical direc-

tion). In the evening of day 2, i.e. 6 h before habitual bedtime, participants remained in dim 

light (<6 lx). Salivary samples were obtained for hormonal analyses every hour. Participants 

were then again prepared for polysomnographic recordings for the baseline night. After wake 
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time on day 3 (in dim light), the CR protocol in bed and in dim light began. An indwelling cath-

eter was inserted in a peripheral vein of the left or right forearm. An isotonic electrolyte infu-

sion (1000 ml Ringer Lactate / 24 h), with 10´000 IE Heparin / 24 h was continuously applied 

via an automatic infusion pump system. The following 40 hours, participants stayed awake in 

a semi-recumbent position in bed. They produced a salivary sample every hour, and every 3 

hours, a blood sample (8 ml each) was drawn via indwelling catheter by a trained assistant. 

For this purpose, the indwelling catheter was flushed with 10 ml saline solution (0.9% NaCl) 

and the first 5 ml of the first drawn blood/saline mix were voided. During the entire CR proto-

col, an assistant was present and constant wakefulness and compliance with the protocol was 

verified. During the CR, participants were allowed to read (no light emitting devices, no cell 

phones), play an instrument or to engage in conversation with the assistant. Wake EEG and 

performance data obtained during the CR will be reported elsewhere. After the 40 hours of 

extended wakefulness, the 8 h recovery sleep episode started and the CR protocol ended on 

the next morning (day 5) after wake time. Blood platelet concentrations were regularly con-

trolled (at least 3 times, according to local regulations) in order to prevent a heparin-induced 

thrombocytopenia (HIT). Before, during and after the study, venous hemoglobin concentra-

tions were measured in order to monitor changes in blood volume concentrations. 

Participants: Twelve healthy men (mean age 25.3 ± 2.6 yrs; range: 22-30 yrs; Supplemental 

Table 1) without any medical, psychiatric or sleep disorder were included in the study. Before 

their first visit, participants completed five questionnaires: entrance questionnaire, the Mu-

nich Chronotype Questionnaire (MCTQ; MSF_sc=corrected for sleep duration on free days), 

Horne-Ostberg Morning Eveningness Questionnaire (HO), Pittsburgh Sleep Quality Index 
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(PSQI), Seasonal Pattern Assessment Questionnaire (SPAQ). The mean scores, standard devi-

ations (SD) and ranges are shown in Supplemental Table 1. Participants also underwent a 

physical examination, completed the Ishihara color plates for normal color vision, and a poly-

somnographically recorded adaptation night in the sleep laboratory. All participants were 

healthy, non-smokers, had no recent history of drug abuse and were not extreme morning or 

evening chronotypes. The questionnaires had to be within a normal range (as reported in the 

literature) for each participant. Exclusion criteria for the study were travels across more than 

one time zone within the last three months and/or shift work during the last eight weeks be-

fore the study. 

 

Study 2 (VALI) – Study design, protocol and participants 

Study Design and Protocol: The validation study with extreme morning and evening types was 

conducted between February and April 2017 and consisted of three ambulatory visits on the 

same day. During the first visit, a venous blood sample (15 ml) was taken from a peripheral 

arm vein at the laboratory for Medical Immunology at Charité Universitätsmedizin Berlin (Ger-

many). The blood sample was drawn approximately two hours after habitual wake time and 

was immediately processed. The participants then left the laboratory and returned after 6 

hours for the second blood sample (15 ml). Finally, the participants came to the sleep labora-

tory 6 hours prior to their habitual bed time for assessment of circadian phase by means of 

DLMO. For this purpose, participants remained in constant sitting position in dim light (<6 lux) 

for six hours and provided a salivary sample every 30 min. They received small snacks and 

water and were allowed to read or to engage in conversation with other participants and the 

assistant. Twenty minutes before each salivary sample, participants were instructed to stop 
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drinking/eating and to rinse their mouth with water. After the last sample, participants left 

the laboratory. As already in the first study, participants had to keep a regular sleep wake cycle 

7 days before the study day, with self-selected target bed and wake times, and an approximate 

8-h sleep episode. Compliance was verified by activity watches (Motion Watch 8, Camntech, 

Cambridge, UK) and sleep diaries. The procedures for salivary samples were the same as in 

the first study, except that the sampling interval was 30 min for the validation study. 

Participants: Extreme morning and evening types (‘larks’ and ‘owls’) were recruited via flyers 

at schools and universities in the area of Berlin and Potsdam (Germany). Out of 172 returned 

questionnaires (MCTQ, HO, PSQI, SPAQ, entrance questionnaire, see first study for abbrevia-

tions), only participants who met the initial criteria for morning or evening types, based on 

MCTQ and the HO scores, were invited for the screening visit. They had to have an MCTQ 

(MSF-sc; sleep duration corrected on free days) score below 3 (= extreme morning type), or 

higher than 6 (extreme evening type), and to be at least a moderate morning (59 - 69) or 

moderate evening type (31 - 41) in the HO questionnaire. Or conversely, participants had to 

be an extreme morning (>69) or extreme evening type (<31) based on the HO score, and at 

least a moderate chronotype in the MCTQ score (i.e. <4 for morning types; or >5 for evening 

types). We also accepted two moderate morning types with a MCTQ between 3 and 4 and a 

HO score between 59 and 69 as study participants. Two participants were extreme morning 

types only in either the HO (score=77) or the MCTQ (score=6.47). Exclusion criteria were med-

ical or psychiatric disorders, recent drug abuse, PSQI scores <10, recent shift work and travels 

across more than one time zone within the last two months. A total of 14 morning (12 extreme 

and 2 moderate) and 14 evening types (Supplemental Table 6) completed the study. A sample 
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size of 28 was targeted based on the power calculation for a power of 0.8 with an alpha level 

of 0.05 and a large effect size of 0.5. 

 

Melatonin and cortisol measurement and DLMO determination 

Salivary samples were obtained with salivettes (Salivette®, Sarstedt AG & Co, Nümbrecht, Ger-

many) for melatonin (study 1 and study 2) and cortisol (study 1) assays. Individual secretion 

profiles of both hormones during the CR (study 1) are shown in Supplemental Figure 9. Upon 

collection, each salivary sample was frozen at -20° C. All samples were sent for radioimmuno-

assay (RIA) to an external laboratory after study completion (study 1: IBL International GmbH, 

Hamburg, Germany; study 2: Chrono@work, Groningen, The Netherlands). To assess circadian 

phase, DLMO was calculated by using melatonin concentrations on the first evening of the CR 

(study 1). Two different methods for determination of DLMO were applied (33): The two-

standard deviation (2-SD) method (for study 1) and the threshold method (for study 2). For 

the 2-SD method, DLMO was defined as the time when melatonin concentrations exceeded 

two standard deviations (2 SD) of three low daytime concentrations. The threshold method 

defined DLMO as the time when melatonin concentrations exceeded 10 pg/ml (study 1) or 3 

pg/ml (study 2; due to higher sensitivity of the antibody used for the RIA (Bühlmann Labora-

tories, Schönenbuch, Switzerland)). For both methods, the software ‘HOCKEYSTICK’ devel-

oped by Danilenko et al. was used (16). Both methods led to similar timing for DLMO. By visual 

inspection of the melatonin profiles of study 2, some melatonin concentrations in between 

two samples were very high and considered as ‘outliers’, which might have happened due to 

remaining small food particles in between two samples. These high values were linearly inter-

polated prior to DLMO assessment, which was done for a total of 14 values out of 336 (4.17%). 
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For the same reason, four measurements (at the beginning of the study) were omitted 

(=1.20%). Intra- and inter-assay coefficients of variability (CV) are given in Supplemental Ta-

ble 9. 

 

Blood collection, monocyte sorting and RNA preparation 

Eight ml of EDTA whole blood taken every 3 hours in the BOTI study and twice (6 hours apart) 

in the VALI study were immediately processed. CD14+ blood monocytes were collected by 

MACS sort using whole blood CD14-microbeads (Miltenyi Biotec, Bergisch Gladbach, Ger-

many) and the Auto-MACS-Pro device. All steps were performed at 4 °C according to the man-

ufacturer’s instructions. Median purity of monocyte preparations (BOTI study) was 89% as re-

vealed by analytical FACS sorting (CD11b+/CD15- fraction; anti-CD11b: #558123 (BD Biosci-

ences); anti-CD15: #560828 (BD Biosciences)). The CD14+ cell fraction was pelleted by centrif-

ugation and frozen at -80° C. After completion of the entire time series, total RNA was isolated 

using TRIzol reagent (Thermo Fisher Scientific). Quality and quantity of isolated RNA was ana-

lysed using the NanoDrop 2000c (Thermo Fisher Scientific) and the Qubit RNA BR Assay Kit 

(Thermo Fisher Scientific). 

 

RNA libraries preparation 

Total RNA was treated with DNase I (NEB) following the manufacturer's protocol. Stranded, 

ligation-based, digital gene expression RNA libraries preparation was modified from Shishkin 

et al. (34) as follows: 400 ng of total RNA was fragmented in FastAP buffer (Thermo Scientific) 

for 3 min at 94 0C, dephosphorylated with FastAP, cleaned (using SPRI beads, Agencourt) and 

then ligated to a linker1 (5Phos/AXXXXXXXXAGATCGGAAGAGCGTCGTGTAG/3ddC/, XXXXXXXX 
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is an internal barcode specific for each sample), using T4 RNA ligase I (NEB). Ligated RNA was 

cleaned, and 16 samples of each subject were pooled together into a single tube using RNA 

Clean & Concentrator columns (Zymo Research). The pooled RNA was then PolyA selected 

(using Oligo(dT) beads, Invitrogen) according to the manufacturer's protocol. RT was per-

formed for the pooled, PolyA+ samples, with a specific primer (5´-CCTACACGACGCTCTTCC-3´) 

using AffinityScript Multiple Temperature cDNA Synthesis Kit (Agilent Technologies). Then, 

RNA-DNA hybrids were degraded by incubating the RT mixture with 10% 1 M NaOH at 70 0C 

for 12 minutes. PH was then normalized by addition of corresponding amount of 0.5 M AcOH. 

The reaction mixture was cleaned up using Silane beads (Dynabeads MyOne, Life Technolo-

gies) and a second ligation was performed, where the 3’-end of the cDNA was ligated to linker2 

(5Phos/AGATCGGAAGAGCACACGTCTG/3ddC/) using T4 RNA ligase I. The sequences of linker1 

and linker2 are partially complementary to the standard Illumina read1 and read2 barcode 

adapters, respectively. Reaction Mixture was cleaned up (Silane beads) and PCR enrichment 

was set up using enrichment primers 1 and 2 (5’-AATGATACGGCGACCACCGAGATCTACAC-

TCTTTCCCTACACGACGCTCTTCCGATCT-3’, 5’-CAAGCAGAAGACGGCATACGA-

GATXXXXXXXXGTGACTGGAGTTCAGAC). 

 

3’-end RNA-Seq screen 

The libraries were 3’-end sequenced (35) using Illumina NextSeq 500 and the results obtained 

in fastq format. After quality control using RSeqQC (36), technical replicates for the same sam-

ple were combined. 3’-end reads were aligned to the human genome (hg19) using STAR (37) 

with the following settings: --outFilterMultimapNmax 1 --clip3pNbases N (where N was cho-

sen between 0-8 if there was a loss of quality at the end of reads), and saved as .bam files. 
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Expression counts of high-quality reads for each gene were then extracted from the .bam files 

using the End Sequence Analysis tool (ESAT) (version 1) (38) with the following command: java 

-jar -Xmx20g esat.v1.jar -annotations (hg19 Refseq annotation) -wExt 2000 -quality 20. We 

retained only genes with at least 2.5 counts per million in at least half the number of samples 

of each subject. The resulting count table was normalized for library size and composition 

using the trimmed mean of M-values (default method in the edgeR package (39)) and log2 

transformed using the cpm function in edgeR to obtain the whole transcriptome RNA-seq time 

series data (in log2 counts per million). Raw data have been deposited in the SRA archive 

(SRP133635). The alignment statistics of the RNA-seq are provided in Supplemental Table 10. 

 

Rhythmicity analysis 

Rhythmicity analysis was performed (Supplemental Figure 1) on the raw count data obtained 

from the ESAT tool (see section on 3’end RNA-seq screen). The count data was analysed using 

the limma-voom R package that accounts for the dependence of noise in the read counts on 

the mean gene expression. We assess rhythmicity by fitting cosine curves with a 24 h period 

with respect to external time to the count data. After FDR correction using Benjamini-

Hochberg, genes were called circadian if their adjusted p-value was below 0.05. This analysis 

was repeated for each subject independently. 

 

NanoString 48-plex data acquisition 

A 48-plex NanoString panel was designed comprising 44 candidate time-telling genes and four 

control housekeeping genes (GAPDH, HPRT1, PPIA, PSMB2). The custom-designed probes in-

cluded a 3’-end biotinylated capture probe and a 5’-fluorescence-barcoded reporter probe for 
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each gene target (Supplemental Table 11). Hybridization of the probes and 250 ng monocyte 

RNA was carried out according to the manufacturer’s instructions. Raw expression data were 

obtained using a NanoString nCounter Digital Analyzer (NanoString Technologies, Seattle, 

Washington, USA). Normalization was carried out in three steps according to the bioconductor 

package NanostringQCPro: (i) normalization by the arithmetic mean of the positive spike-in 

controls, (ii) subtraction of the mean of the negative controls and (iii) normalization by the 

geometric mean of the four housekeeping genes. For all further down-stream analyses, data 

were log2-transformed. 

 

Establishment and evaluation of internal time predictors using ZeitZeiger 

To build and evaluate predictors of time based on monocyte transcriptomics data, we applied 

the supervised learning method ZeitZeiger developed and described by Hughey et al. (29) us-

ing the statistics environment R (40). The R-package of ZeitZeiger can be downloaded from 

https://github.com/jakejh/zeitzeiger. ZeitZeiger extracts a time-telling gene set by means of 

supervised sparse principal component analysis (SPCA). The sparsity of a gene set, i.e. the 

number of genes it includes, is controlled by the parameter sumabsv. The smaller the value of 

sumabsv, the higher the sparsity, i.e., the fewer genes. To predict the time stamp of a test 

observation, ZeitZeiger applies maximum-likelihood estimation in which the number of genes 

involved in prediction is controlled by number of sparse principal components (nSPC). During 

both the biomarker extraction and the platform migration process, we trained and evaluated 

ZeitZeiger predictors based on the BOTI study time series data sets (RNA-Seq or NanoString) 

following a leave-one-subject-out internal cross-validation strategy. The latter provides a well-

https://github.com/jakejh/zeitzeiger
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established and convenient solution to assess a predictor’s performance within a single da-

taset. For each subject, a predictor is trained on all the other subjects and subsequently used 

to predict the time stamps of the left-out subject’s samples. To identify the optimal parame-

ters for training of a predictor, internal cross-validation was performed for a range of values 

of sumabsv={1, 2, 3] and nSPC={1, 2, 3}. In the external validation process, we trained ZeitZei-

ger predictors on the complete BOTI NanoString time series data and subsequently used them 

to predict the time stamps of the samples included in the VALI study. For calculation of pre-

diction errors, we used the calcTimeDiff function for periodic variables provided by the Zeit-

Zeiger R package; calcTimeDiff makes the error as close to zero as possible (for details, see 

(29)). To assess and compare the performance of ZeitZeiger predictors, we calculated the me-

dian absolute difference (MdAE) between the predicted and the observed time stamps and its 

interquartile range (IQR). ZeitZeiger predictors were trained for two different formats of data 

input, referred to as 1-sample and 2-sample format. The difference between the two formats 

is the mRNA abundance profile assigned to each measurement (Mi) in the time series (1-sam-

ple: single profile recorded at Mi; 2-sample: ratio of two profiles recorded 6 h apart, Mi/Mi+2). 

 

Excel-based prediction tool 

For platform migration and assay validation using NanoString, we normalized all data (from 

BOTI and VALI studies) together as previously described. However, a sample-by-sample nor-

malization is necessary to make predictions based on a newly obtained blood samples profiled 

by NanoString. We developed such a scheme by replacing the first and last steps outlined 

previously by a combination of two scale factors (computed only from BOTI data) and arith-

metic mean of positive spike-in controls (of the new sample) and the geometric mean of the 



Wittenbrink et al.                      33 

housekeepers (in the new sample only). We subsequently verified this scheme by confirming 

that prediction performance on the sample-by-sample normalized VALI data was unchanged 

(Supplemental Table 12). Once a new sample is thus normalized, a simple look-up table allows 

the prediction of the internal time of the sample that we implement as an Excel-based tool 

(Supplemental Table 7).  

 

Functional enrichment analysis 

Gene ontology analysis of the 119 selected time telling genes (biomarkers) was carried out 

using the topGO package in R within the biological process (BP) categorization of the genes 

with p< 0.01 and annotated within the org.Hs.eg.db database in Bioconductor. We used a 

custom (monocyte specific) background gene set for the analysis consisting of the 9115 genes 

identified as expressed across all subjects in our RNA-seq analysis. 

 

Prediction using LASSO and partial least squares regression 

Similar to the ZeitZeiger-based predictors, prediction models were constructed using LASSO 

and partial least squares regression (PLS) in order to test the relative performance of different 

machine learning algorithms (41). Both approaches found linear predictors (of time in our 

case) based on the features (genes). The use of either approach required transforming time 

(the predicted quantity) to a pair of predicted variables (cos(2πt/24), sin(2πt/24)), like in (22). 

The predicted time was finally obtained by inferring time from the two predicted components 

using the arctan function. For the 2-sample assay, we predicted the difference of the log2 

normalized data at the two time points (that is the ratio of the data before log2 normalization) 

as this is more optimal approach with PLS and LASSO. To find the optimal LASSO model, we 
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used the glmnet R package under the “mgaussian” family. Similarly, for the PLS model we used 

the pls R package with standard settings. Both internal cross-validation using leave-one-sub-

ject-out cross-validation of the BOTI NanoString data as well as predicted DLMO for the VALI 

data were computed by selecting optimal models using cross-validation with the “one-sigma” 

selection criteria (available in the packages). The analysis thus closely parallels the ZeitZeiger-

based analysis of the NanoString data. 

 

Statistics 

The subjects included in the BOTI study experienced cumulative sleep deprivation over the 

sampling period of 40 h. To assess whether the accuracy (MdAE) of ZeitZeiger predictors 

showed variation across sampling time, a Kruskal-Wallis test on 3 h time bins was performed. 

In addition, a Mann-Whitney U-test was performed to test for differences between samples 

obtained during day 1 [0 h-24 h) and day 2 [24 h-40 h] of the sampling period. Differences 

between predictors in terms of accuracy (MdAE) were assessed by pairwise Wilcoxon tests 

with p-values being corrected for multiple comparison according to Benjamini-Hochberg (42). 

Bland-Altman and circular Pearson correlation analyses were performed to evaluate the level 

of agreement in terms of prediction accuracy between both different platforms (RNA-Seq, 

NanoString) and different assays (saliva melatonin RIA, BodyTime assay). For Bland-Altman 

analyses the R-package BlandAltmanLeh was used. For circular Pearson correlation analysis, 

the R-package circStats was used. P-values lower than 0.05 were considered as statistically 

significant. All statistical analyses were performed in the statistics environment R (40). 
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Figures 

Figure 1. Biomarker discovery strategy, sampling schemes and study cohorts. (A) Biomarker 
discovery pipeline. (B) Sampling scheme and composition of the BOTI study cohort (N=12 sub-
jects) by gender, age and dim light melatonin onset (DLMO). Blood samples were drawn at 
regular 3-hour intervals over a period of 40 hours (M=14 samples per subject). Each sample 
was assigned an external time (CET) and an internal time (hours past DLMO according to saliva 
melatonin RIA). The displayed sampling scheme is representative of the subject highlighted by 
a circle in the study cohort plot (green lines indicated sampling times on the second day). (C) 
Sampling scheme and composition of the VALI study cohort (N=28 subjects) by gender, age 
and DLMO. The spread of the BOTI study cohort (B) in the same coordinate system is shaded 
in grey. In contrast to the BOTI study, the VALI study includes extreme and moderately ex-
treme chronotypes. For each subject two blood samples were obtained, drawn 6 h apart (M1: 
morning sample, M2: afternoon sample). Each sample was assigned an external time (CET) 
and an internal time (hours past DLMO derived from saliva melatonin secretion profiles). 
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Figure 2. Extraction of candidate biomarkers and migration to the NanoString platform. (A) 
Cumulative frequency distributions of the absolute prediction errors for four types of ZeitZei-
ger internal cross-validation predictors of either internal or external time by 1- or 2-sample 
mRNA abundance profiles (n=136). Each type of predictor was built for nine combinations of 
the ZeitZeiger parameters sumabsv={1, 2, 3} and nSPC={1, 2, 3}. Insets show the average num-
ber of genes ± SD in the internal cross-validation predictors as a function of sumabsv and nSPC. 
(B) Global gene sets of the best-performing internal cross-validation predictors shown in panel 
A. Each column depicts a predictor defined by the type of the predictor variable (internal or 
external time), the format of the data input (1-sample or 2-sample) and the ZeitZeiger param-
eters (sumabsv, nSPC). Each predictor includes ten leave-one-subject-out cross-validation 
runs, i.e. ten gene sets. The ordering (from top to bottom) and the colors indicate how often 
a gene was identified as time-telling and assigned to SPC1, SPC2 or both among those ten gene 
sets. 34 genes that showed a high frequency of identification among cross-validation runs and 
were consistently identified across the best-performing predictors were chosen as a candidate 
biomarker set for internal time and migrated to the NanoString platform (highlighted in bold 
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font). (C) Impact of platform migration on the performance of the candidate biomarkers for 
internal time. Given are cumulative frequency distributions of the absolute prediction errors 
of ZeitZeiger internal cross-validation models built on either RNA-Seq (blue) or NanoString 
data (red) obtained from the same RNA preparations. Platform comparison was performed 
for four types of predictors of either internal or external time by 1- or 2-sample mRNA abun-
dance profiles (n=136).  
 

 
 
Figure 3. Composition and properties of the final NanoString BodyTime predictors. (A) 1-
sample and 2-sample predictors trained on the NanoString data of the BOTI study (n=154 sam-
ples) for sumabsv={1, 2} and nSPC=2. Genes assigned to SPC1 or SPC2 as well as their loadings 
are shown. (B) NanoString expression profiles of the BOTI study’s samples (n=154) in the SPC 
space of the 1-sample 12-gene predictor. Colors indicate bins of the internal time. (C) Time 
course of expression of the genes building the 1-sample 12-gene predictor. Colors indicate the 
individual subjects of the BOTI study. Each time course starts with the internal time of the first 
sample of a subject (M1, day 1) and ends with its last (M14, day 2). 
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Figure 4. External validation and performance of the NanoString BodyTime predictors. (A) 
Cumulative frequency distributions of the absolute prediction errors of the 1-sample and 2-
sample NanoString BodyTime predictors when they were applied to the VALI study data set. 
In case of the 1-sample assay, the internal time stamps of all morning (M1) or afternoon (M2) 
samples were predicted; in case of the 2-sample assay the time stamp of the sample ratio was 
predicted (M1/M2). Proportion refers to the number of predictions with an absolute error 
that is less or equal to the specified value divided by the total number of predictions (1-sam-
ple, M1: n=28, 1-sample, M2: n=28, 2-sample, M1/M2: n=28). (B) Correlation of DLMO esti-
mated by the BodyTime predictors and DLMO determined by the saliva melatonin RIA kit (gold 
standard); circular Pearson correlation coefficients (r) and p-values are indicated. (C) Bland-
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Altman analysis of the bias between saliva melatonin RIA and BodyTime estimations. The 
dashed horizontal line indicates the mean of the differences (bias), dotted lines represent the 
upper and lower limits (mean of the differences ± 2 standard deviations) with their 95% con-
fidence intervals being shaded light gray. The morning sample of one subject was excluded 
from A-C because its 12-gene predictor maximum likelihood curve was ambiguous. 
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Tables 

Table 1. Best-performance internal cross-validation predictors built on the BOTI RNA-Seq or 
NanoString data sets.a 

Predictor 
(time) 

Assay Data 
source 

Parameters 
(sumabsv, nSPC) 

Number of 
genes 

(mean±sd) 

MdAE 
[IQR] 

AE ≤ 1 h 
[% of samples] 

AE ≤ 2h 
[% of samples] 

internal 1-sample RNA-Seq 2, 2 15 ± 3 1.6 [3.2] 39.0 53.7 

 internal 1-sample RNA-Seq 3, 2 32 ± 2 1.6 [2.4] 38.2 59.6 

internal 2-sample RNA-Seq 2, 2 12 ± 2 1.7 [1.9] 35.7 59.1 

internal 2-sample RNA-Seq 3, 2 30 ± 3 1.4 [1.9] 40.9 58.7 

external 1-sample RNA-Seq 2, 2 14 ± 2 1.6 [2.0]* 33.8 59.6 

external 1-sample RNA-Seq 3, 2 35 ± 3 1.4 [1.8] 34.6 64.0 

external 2-sample RNA-Seq 2, 2 12± 1 1.2 [2.3]* 43.5 66.1 

external 2-sample RNA-Seq 3, 2 31± 4 1.4 [2.4]* 40.9 64.3 

internal 1-sample NanoString 1, 2 2 ± 0 0.9 [1.2] 55.2 79.2 

internal 1-sample NanoString 2, 2 14 ± 1 0.8 [1.1] 59.7 88.3 

internal 1-sample NanoString 3, 2 30 ± 1 0.8 [1.1] 59.1 87.0 

internal 2-sample NanoString 1, 2 2 ± 0 0.8 [1.1]* 61.4 85.6 

internal 2-sample NanoString 2, 2 13 ± 2 0.7 [1.0] 64.4 90.9 

internal 2-sample NanoString 3, 2 29 ± 1 0.7 [1.0]* 61.4 90.9 
aAsterisks indicate cases where the absolute prediction error showed significant variation across 3 h time bins 
(Kruskal-Wallis test p-value < 0.05).  
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Table 2: External validation of the BodyTime predictors in the independent VALI study. 

Predictor Type of validation 
sample 

Absolute 
prediction 

error 
median [IQR] 

Absolute prediction 
error ≤ 1 h 

[% of samples] 

Absolute prediction 
error ≤ 2 h 

[% of samples] 

1-sample, 12-gene morning 0.69 [0.82] 63.0 96.3 

afternoon 0.80 [0.62] 60.7 92.9 

1-sample, 2-gene morning 0.54 [0.87] 71.4 100.0 

afternoon 0.99 [1.00] 50.0 78.6 

2-sample, 13-gene morning/afternoon 0.74 [1.10] 60.7 92.9 

2-sample, 2-gene morning/afternoon 0.75 [0.72] 64.3 92.9 
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