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Introduction
Given the preponderance of mitochondria within cells, the late 
physician-scientist and essayist Lewis Thomas posited that he 
“could be taken for a very large, motile colony of respiring bacte-
ria” (1). At that time, despite their bacterial origins, there was little 
appreciation of the integral role of mitochondria in the regulation 
of immunity. Today, our recognition of the influence of mitochon-
drial fidelity on immune function extends beyond classical immu-
nology to include mitochondria-linked immune perturbations 
that contribute to inflammation of degenerative diseases and to 
autoimmunity (2). In contrast, recognition of the metabolic under-
pinnings of immune cell function has been evident since the 16th 
century as manifested by the persistence of the maxim that “starv-
ing a fever and feeding a cold” hastens recovery from infectious 
illnesses (3). Components of this adage have been experimentally 
validated (4), and intermittent fasting and caloric restriction show 
evidence of blunting inflammation-linked diseases (5–10).

The field of study exploring the interdependence between 
metabolism and immune cell fate and function is termed immu-
nometabolism (11–13). Additionally, given the persistence of bac-
terial signatures within mitochondria, mitochondrial components 
play diverse roles in triggering immune surveillance programs (2, 
14). These aspects of mitochondrial biology and metabolism, in 
addition to their role in disease pathophysiology and their poten-
tial for therapeutic targeting, are the focus of this Review.

Immunometabolism
Metabolic plasticity and immune cell fate. The bidirectional control 
between cellular metabolism and innate and adaptive immune 
cell fate and function has been most extensively explored in 
the modulation of macrophage polarization and of CD4+ T cell 

differentiation/activation, respectively (11–13). The metabolic 
pathways that contribute to immune cell activation and differ-
entiation are schematized in Figure 1A, and examples of how 
they support immune cell fate are summarized here. On the one 
hand, inflammatory macrophages (M1) employ aerobic glycoly-
sis for energy production and divert glycolytic intermediates into 
the pentose phosphate pathway for NADPH synthesis. NADPH in 
turn is catabolized by NADPH oxidase to generate reactive oxygen  
species (ROS) to facilitate antimicrobial effects (15). The corre-
sponding preference for glutamine oxidation additionally pro-
motes mitochondrial electron transfer chain (ETC) ROS produc-
tion (16). On the other hand, alternatively polarized macrophages 
(M2) rely more on glucose and fat oxidative metabolism to orches-
trate reparative functions (17, 18). However, the requirement for  
fatty acid oxidation in reparative macrophage function has recently  
been disputed by observations that genetic disruption of macro-
phage mitochondrial fat uptake did not prevent M2 polarization 
(19). It should be noted that the binary classification of macro-
phages is partially an experimental construct, given that macro-
phage polarity is a spectrum with multiple distinct signatures and 
functional phenotypes between these “poles” (20).

The transition from quiescent to activated effector CD4+ T 
cells is a growth- and energy-demanding event that is accom-
plished, in part, by a switch from preferential oxidative phosphor-
ylation to an increased reliance on aerobic glycolysis, the pentose 
phosphate pathway, and glutamine oxidation (21–24). Conversely, 
regulatory T cells (Tregs) retain reliance on oxidative phosphory-
lation (25), although they depend on glycolysis for migration (26).

The genetic requirement of these metabolic regulatory effects 
on immune cell fate is evident where the experimental disruption 
of glucose uptake impairs effector T cell proliferation and activa-
tion (21) and its promotion augments effector T cell function (27) 
and inflammatory macrophage polarity (28). This reliance on 
defined metabolic preference is further validated by the promotion 
of M2 polarization by experimental induction of glucose oxidation 
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systemic lupus erythematosus. A schematic 
summarizing metabolic remodeling links to 
immune cell fate is shown in Figure 1B.

TCA cycle “fragmentation” in immune 
activation. The tricarboxylic acid (TCA) 
cycle generates reducing equivalents for 
ETC function through oxidation of acetyl- 
CoA derived from glucose, fat, and amino 
acids. Immune Toll-like receptor (TLR) 
and cytokine signaling (36) disrupts coor-
dinated flux of intermediates through the 
TCA-inciting accumulation of distinct 
metabolites. Lipopolysaccharide (LPS) sig-
nals through TLR4 to upregulate immuno-
responsive gene 1 (IRG1), which encodes an 
enzyme that decarboxylates the TCA inter-
mediate cis-aconitase to produce itaconic 
acid (37). Itaconic acid exhibits antimicro-
bial activity (37) and macrophage antiin-
flammatory effects (38) and functions as 
an endogenous succinate dehydrogenase 
(SDH) inhibitor (39). Inhibition of SDH, in 
turn, promotes succinate accumulation in 
the TCA cycle in addition to inhibition of 
complex II of the ETC (38). The accumu-

lation of succinate additionally facilitates transactivation of the 
proinflammatory cytokine IL-1β (40).

Interestingly, modulation in metabolic intermediate flux 
through the TCA cycle also controls macrophage polarity (41). 
Here, levels of specific metabolites confer distinct macrophage 
functions, as evidenced by succinate and extramitochondrial  
acetyl-CoA functioning as key intermediates for optimal M1 func-
tion. These macrophages exhibit reduced isocitrate dehydroge-

(18), and by the facilitation of M1 polarization by genetic disruption 
of oxidative metabolism and promotion of glycolysis (29).

The characterization of immunometabolism is extending into 
other immune cells, and metabolic preferences support dendritic 
cell immunogenic function (30) and B cell quiescence, proliferation,  
antibody-generating capacity, and survival (31–35). As is discussed in 
the final section of this Review, therapeutics to modulate substrate 
preference are being tested in T and B cell–linked disease such as 

Figure 1. Overview of metabolic remodeling 
with immune cell differentiation and activa-
tion. Overview of metabolic remodeling with 
immune cell differentiation and activation. (A) 
Major pathways linked to immunometabolism 
include the generation of ATP from cytosolic 
glycolysis or from oxidative phosphorylation of 
pyruvate, fatty acids, and glutamine. Cytosolic 
NADPH oxidase or mitochondria produce ROS, 
which can signal, oxidize proteins, or exert anti-
microbial effects. The major sites of mitochon-
drial ROS production linked to immunometabo-
lism are generated at complexes I and III of the 
ETC. (B) In monocytes, metabolic remodeling is 
most extensively characterized in the differen-
tiation into the M1 and M2 cell fates. In CD4+ T 
cells, immunometabolism has been explored at 
multiple levels of differentiation, proliferation, 
activation, and migration. B cell immunomet-
abolic control is less well explored; however, 
metabolic remodeling is important for different 
B cell fates. FAO, fatty acid oxidation; Glut Ox, 
glutamine oxidation; Gly, glycolysis; GO, glucose 
oxidation; PPP, pentose phosphate pathway; 
RET, reverse electron transport in the electron 
transfer chain for ROS generation.
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signaling (16) and microbial RNA/NADPH oxidase (48) mech-
anisms have not been reconciled, they collectively support that 
numerous mechanisms of ETC disruption regulate IL-1β–driven 
inflammation. ETC-derived ROS similarly plays a critical role in 
antigen-specific T cell activation (50).

Mitochondrial cargo in immune activation
The role of mitochondrial constituents in immune activation 
stems in part from the incorporation of a prokaryotic endosymbi-
ont into more complex (archaeal) bacteria (51). During subsequent 
evolution into eukaryotic cells, the majority of the engulfed bacte-
rial genes were transferred to the nuclear genome (52). The resid-
ual bacterial genome persisted as the mitochondrial genome, and 
the hypomethylated CpG motifs of mitochondrial DNA (mtDNA) 
retained immunogenic properties of bacterial CpG DNA motifs 
(53). Additional mitochondrial features that phenocopy bacteria 
include protein synthesis, where mtDNA translation is initiated 
at N-formyl-methionine residues (54), and retention of the phos-
pholipid cardiolipin within the inner mitochondrial membrane 
(IMM) (55). A consequence of these bacterial remnants is that 
mitochondrial cargo is viewed as foreign by mammalian intra-
cellular and extracellular immune surveillance programs. These 
mitochondrial features are in a sense “immune-privileged” and 
isolated from the cytosol by encasement by the outer mitochon-
drial membrane (OMM). Loss of integrity of the mitochondria 
exposes these components to immune pattern recognition recep-
tors (PRRs), functioning as mitochondrial alarmins to trigger 
immune activation. The canonical immune surveillance pro-
grams that recognize signatures/components of mitochondrial 
stress are discussed below. It should be noted that although these 
programs are reviewed separately here, the potential for them to 
be activated contemporaneously is beginning to be recognized 
(56–58). Additionally, the OMM functions as a structural platform 
for the assembly of immune regulatory complexes (59–61), and 
mitochondria–endoplasmic reticulum (ER) contact sites operate 
as a signaling hub enabling metabolic remodeling to reactivate 
memory CD8+ T cells (62).

NLRP3 inflammasome. The inflammasome is an intracellular 
immune surveillance program that recognizes either pathogen- 
associated molecular patterns (PAMPs) or host cell–derived  
damage-associated molecular patterns (DAMPs). The inflamma
some is a multiprotein complex that assembles and self-oligomerizes 
to promote cleavage and activation of canonical cytokines, namely 
IL-1β and IL-18, to amplify immune responses (63, 64). The nucleo-
tide oligomerization domain–like (NOD-like) receptor family pyrin 
domain 3 (NLRP3) inflammasome is activated by sterile inflamma-
tion associated with crystal-linked diseases like gout, and by meta-
bolic diseases including obesity, diabetes, hyperlipidemia, and car-
diovascular disease (65), and its activation further exacerbates these 
diseases (66–69). For example, in obesity, the inflammasome is ini-
tiated through adipose tissue hypertrophy with macrophage infiltra-
tion and cytokine secretion; elevated circulating saturated fatty acids, 
glucose, and lipids; and/or obesity-linked endotoxemia mediated by 
upregulation of NLRP3 and its canonical cytokines (pro–IL-1β and 
pro–IL-18) via NF-κB (70–73). Transcriptional induction of NLRP3 
inflammasome components is termed “priming,” and mitochon-
drial ROS signaling contributes to this regulation (74, 75). Priming- 

nase (IDH) transcript levels with diminished IDH enzyme activity 
(41). This results in reduced citrate conversion to α-ketoglutarate, 
resulting in citrate accumulation. Excess mitochondrial citrate 
translocates into the cytosol through the mitochondrial citrate 
carrier (CIC). Cytosolic citrate conversion to acetyl-CoA pro-
motes production of proinflammatory prostaglandin, nitric oxide, 
and ROS (42). Interestingly, increased mitochondrial citrate also 
undergoes decarboxylation to generate itaconic acid, which func-
tions as described above (37–39), and genetic knockdown of CIC 
impairs LPS-induced M1 activation (42). Alternatively, increased 
TCA glutamine utilization fuels M2 polarization by upregulating 
TCA-encoding genes and chemokine production (41). Recent 
evidence also shows that itaconate directly alkylates cysteine  
residues on a transcriptional repressor, KEAP1. This in turn 
enables the transcriptional induction of antioxidant and anti-
inflammatory encoding genes to limit inflammation and mod-
ulate type I IFNs (43). A dimethyl derivative of another TCA 
intermediate, fumarate, also modulates metabolism via a post-
translational mechanism. Here, dimethyl fumarate covalently 
modifies catalytic cysteine residues on the glycolytic enzyme  
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in a pro-
cess termed “succination.” This blunts glycolysis in myeloid and 
lymphoid cells, conferring antiinflammatory effects (44). Together  
these data illustrate the integration of metabolism and immune 
cell function where inflammatory signaling induces alterations 
in intermediary metabolism to generate metabolites that serve as 
signal transducers and posttranslational modifiers to regulate sub-
sequent immune cell function.

ETC perturbations in the control of immune signaling. A role 
of LPS signaling in impairing the ETC has been recognized for 
decades (45), and recently was linked to LPS-induced mitochon-
drial ROS production (46). A mechanism underpinning the LPS-
ROS nexus is TLR4-driven succinate oxidation that orchestrates 
mitochondrial hyperpolarization with concomitant excess macro-
phage ROS production. This ROS signaling–induced inflammatory  
gene programing upregulates IL-1β, and inhibition of succinate  
oxidation during TLR4 activation promotes antiinflammatory gene 
expression signatures with induction of the canonical antiinflam-
matory cytokine IL-10 (16). The observation of blunting of this ROS 
generation by rotenone-mediated ETC complex I inhibition (16) 
implicates reverse electron transport (RET) as a mechanism prop-
agating complex I ROS generation (47).

Another identified mechanism is operational following mac-
rophage exposure to live E. coli or bacterial RNA. Here, bacterial 
components promote disassembly of mitochondrial supercom-
plexes with disruption of complex I respiration (48). This mecha-
nism depends on phagosomal NADPH oxidase ROS generation to 
oxidize specific complex I proteins to facilitate complex disassem-
bly (49). Complex I disruption in turn promotes increased respira-
tion through complex II in parallel with IL-1β-induction, and the 
inhibition of complex II under these conditions reduces IL-1β and 
increases IL-10 levels (48). Interestingly, activation of TNF-α by  
E. coli is independent of complex II activity, a finding consistent 
with prior studies showing that TNF-α production was less sensi-
tive to macrophage metabolic preference (40). Notably, complex 
I disassembly and its link to complex II activation are indepen-
dent of LPS and TLR4 signaling (48). Although the TLR4/RET 
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modifications preferentially reside on mtDNA fragments rather  
than on intact circular mtDNA (90), and mPTP activation is 
linked to mtDNA fragment extrusion in a CsA-dependent man-
ner (91). Additionally, the extent of this leak appears to be depen-
dent on mtDNA fragment size (92). CsA similarly blunts NLRP3 
activation in response to numerous ROS-dependent and ROS- 
independent inflammasome triggers (55). Finally, the interdepen-
dence of different immune activation triggers is further illustrated 
by the demonstration that E. coli–induced complex II–driven res-
piration is dependent on NLRP3 (48), although the mechanisms 
underpinning this are unclear.

mtDNA TLR9 signaling. Intracellular TLR9 is a distinct 
immune surveillance PRR that recognizes unmethylated DNA 
derived from bacteria, viruses, and extruded mtDNA (93, 94) to 
initiate a MyD88 signaling– and NF-κB transactivation–dependent 
inflammatory cascade (95). Interestingly, impaired mitochondrial 
turnover (94), traumatic injury (54), and nonalcoholic steatohep-
atitis (96) promote mtDNA extravasation, triggering TLR9 signal-
ing that results in organ-specific (94, 96) or systemic inflamma-
tion (54). Although the mechanisms underpinning recognition of 
nucleotides by TLR9 and their subsequent activation are better 
characterized for bacterial and viral nucleotides, the mtDNA- 
induced programs probably mirror these mechanisms. One poten-
tial mechanism whereby mtDNA engages TLR9 is via trafficking 
within mitochondrial-derived vesicles to the endosomes (97). 
This mechanism, or other mechanisms that traffic mtDNA, are 
postulated to facilitate antigen presentation given that TLR9, 
which resides on the ER, is recruited to the endosome-lysosome 
compartments (98) to undergo proteolytic cleavage and recep-
tor activation (99). In general, the CpG motifs that function as 
ligands for TLR9 activation sequester in the endosome-lysosome 
compartment before triggering this signaling pathway. In con-
trast, extracellular free or microparticle-encased mtDNA acti-
vates this pathway via canonical immune cell surface PRRs or via 
the immunoglobulin superfamily member receptor for advanced 
glycation end products (RAGE), which undergoes endocytosis to 
initiate TLR9-dependent signaling (100, 101). Interestingly, this 
RAGE-mediated inflammatory pathway regulates mitochondrial 
bioenergetics (102), although whether this potential mitochondrial  
feedback loop is triggered by mtDNA release does not appear to 
have been investigated.

cGAS-STING signaling. The cytosolic DNA-sensing cGAS/
STING (cyclic GMP–AMP synthase linked to stimulator of inter-
feron genes) pathway is activated in response to exogenous viral 
infections (103) and in response to endogenous DNA leakage 
associated with cancer and aging (104). The detection of cyto-
plasmic DNA by cGAS generates cyclic dinucleotide cGAMP as a 
second messenger to activate STING. The downstream phosphor-
ylation and activation of IFN regulatory factor 3 (IRF3) transac-
tivate expression of IFN-β and canonical IFN-stimulated genes. 
In parallel with NLRP3 activation and TLR9 signaling, mtDNA 
activates cGAS/STING and type I IFN signaling (2). An intriguing 
route for the escape of mtDNA during cGAS/STING activation has 
been identified through the OMM in the context of apoptosis, in 
which Bak and Bax apoptotic channels release mtDNA (105, 106). 
Normally this leakage is inert because mtDNA is lysed by concur-
rent activation of apoptotic caspases (105, 106). However, when 

induced mitochondrial ROS also facilitates externalization of car-
diolipin and promotes the association of NLRP3 and caspase-1 with  
mitochondria (76).

Following priming, subsequent activation is instigated by 
assembly and oligomerization of canonical inflammasome con-
stituents (65). NLRP3 complex oligomerization initiates caspase-1 
activation and cleavage of pro–IL-1β and pro–IL-18 into bioactive 
cytokines that function to amplify inflammation (63, 64). Multiple 
mitochondrial components function as NLRP3 DAMPs follow-
ing disruption of mitochondrial integrity, including mtDNA (53), 
cardiolipin (55, 76), and mitochondrial ROS (56, 77). The role of 
mitochondria in orchestrating this program is further supported 
by (a) the close association between mitochondria and NLRP3 
complex formation, with coordinated perinuclear localization 
during inflammasome induction (59, 76); (b) the role of the mito-
chondrial antiviral signaling protein (MAVS) in NLRP3 recruit-
ment to mitochondria following noncrystalline inflammasome 
activation (60, 78); and (c) evidence that depletion of mtDNA in ρ0  
(mtDNA-deficient) cells blunts inflammasome activation (77). 
Interestingly, mtDNA binds to both the NLRP3 inflammasome 
and the distinct double-stranded DNA–sensing inflammasome 
AIM2 (79), whereas oxidized mtDNA interacts exclusively with 
NLRP3 (79). Finally, mitochondria also function as a structural 
platform upon which multiple proteins that constitute the NLRP3 
inflammasome nucleate and assemble (59, 60, 76, 79, 80). Inter-
estingly, numerous degenerative conditions, including type 2 dia-
betes, atherosclerosis, chronic kidney disease, and aging, mani-
fest with sterile inflammation and mitochondrial dysfunction (66, 
69, 81, 82), although whether these features are mechanistically 
integrated has not always been experimentally confirmed.

Whether mitochondrial metabolic dysfunction rather than 
disruption per se activates the NLRP3 inflammasome is less well 
characterized (75). However, inhibition of mitochondrial respira-
tion, promotion of aerobic glycolysis (75, 83), and/or the selective 
induction of fatty acid oxidation (84) facilitate inflammasome 
activation. Additionally, NLRP3 activators diminish mitochon-
drial membrane potential and reduce intracellular NAD+ levels, 
thereby blunting SIRT2 deacetylase activity. The consequent 
acetylation of the SIRT2 target α-tubulin facilitates trafficking of 
NLRP3 inflammasome components to spatially align and bind to 
mitochondria and ER to facilitate inflammasome activation (80).

Investigation into whether the mitochondrial permeability  
transition pore (mPTP) regulates extrusion of mitochondrial 
content into the cytoplasm has also been explored. Although the 
structure of the mPTP remains contentious (85, 86), its ability to 
facilitate release of high–molecular weight molecules (approxi-
mately 1.5 kDa) through the IMM is established, as is the role of 
increased intracellular calcium (Ca2+) in opening the pore (87), 
and the inhibition of opening by cyclosporin A (CsA) (85, 86). 
The contribution of the mPTP to NLRP3 activation is supported 
by inflammasome activation as a result of increasing intracellular 
Ca2+ (88, 89) and by CsA blunting of mtDNA extrusion (77). The 
investigation of the mechanisms underpinning mtDNA extru-
sion through the mPTP has not been comprehensively defined. 
Nevertheless, given its proximity to ROS and its lack of protec-
tive histones, mtDNA is susceptible to oxidative stress with for-
mation of 8-hydroxydeoxyguanosine modifications. These base 
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type I IFN signaling (110). Interestingly, and possibly owing to the 
role of TFAM in controlling nucleoid packaging, distinct mtDNA 
fragments from the D-loop regulatory region were implicated in 
cGAS/STING activation (111). Whether the D-loop mtDNA region 
confers specificity for IFN signaling requires exploration. In paral-
lel with caspase-defective apoptotic signaling, reduction in TFAM 
levels also primes antiviral signaling in response to pathogen  
invasion and viral challenge.

Mitochondrial antiviral signaling. An additional PRR family  
linked to mitochondria are retinoic acid–inducible gene I–like 
(RIG-I–like) receptors (RLRs) (14). An OMM-anchored adaptor 
molecule, termed the mitochondrial antiviral signaling protein 
(MAVS), is an essential platform for antiviral RLR signal trans-
duction (61). The MAVS C-terminal transmembrane domain 
resembles other OMM protein transmembrane domains, and its 
depletion negated OMM MAVS localization (61). This transmem-
brane domain was shown to facilitate MAVS dimerization, provid-
ing an interface for direct binding and activation of downstream 
immune-effector molecules (112). Although mechanisms orches-
trating recruitment of RLR signaling molecules to mitochon-
dria remain uncertain, other OMM proteins function as MAVS  
cofactors. The TOM70 protein, which functions as an OMM 
pre-protein receptor for mitochondrial protein import, binds to 
MAVS, and the subsequent interaction between TOM70 and the 
chaperone HSP90 orchestrates binding of RLR effector mole-
cules to coordinate antiviral signaling (113). Interestingly, this 
requirement for mitochondrial localization to activate the MAVS 
signalosome is exploited by viruses, as epitomized by hepatitis C 
virus, which encodes a serine protease that cleaves MAVS from the 
OMM to prevent antiviral signaling (114).

An additional mtDNA immune triggering pathway has recently  
been described. Here, exposure of T cells, B cells, NK cells, mono-
cytes, and neutrophils to distinct oligonucleotides promulgates 
ejection of mtDNA out of the cell, which creates filamentous web-
like structures that activate type I IFN signaling in adjacent cells 
(115). This process is insensitive to inhibition by TLR9, cGAS/
STING, AIM2 inflammasome, ROS, or the permeability transition 
pore inhibitors (115). Although this process requires further char-
acterization, it adds a previously unrecognized trigger for rapid 
immune activation. The contribution of mitochondrial components 
to immune regulation is shown in Figure 2.

Taken together, there is evidence of considerable overlap 
between mitochondrial cargo–triggered immune surveillance  
programs, and it is conceivable that they may function independ
ently and/or may be coordinately activated (56, 57). Additional  
studies are required to assess whether shared or distinct mech-
anisms of mtDNA extrusion and mitochondrial ROS signaling 
(65, 116), as well as different mtDNA species, dictate engage-
ment of these various intracellular immune surveillance sensors.

Mitochondrial quality control programs
It stands to reason that if disruption of mitochondrial integrity  
propagates innate immune sensing and activation, enhancing 
mitochondrial quality control should confer immune resistance. 
Although an expansive discussion of these mitochondrial quality 
control programs is beyond the scope of this Review, emerging 
evidence supporting this proposition is briefly reviewed. The 

apoptotic caspases are inhibited or genetically disrupted, type I 
IFN signaling is initiated and manifests as enhanced resistance 
to viral infections (106). The enigma remains of how the IMM is 
breached given that this membrane is not necessarily disrupted  
during apoptosis (107). A recent finding shows that the OMM  
proteins Bak and Bax generate macropores that facilitate IMM 
herniation with the efflux of mtDNA (108). The possibility that 
this mechanism is operational in initiating cGAS/STING signaling 
is intriguing, but as yet unproven.

Nevertheless, the molecular machinery orchestrating mtDNA- 
initiated cGAS/STING activation has been further characterized 
following genetic disruption of transcription factor A, mitochon-
drial (TFAM), a regulatory protein that controls mitochondria 
transcription and translational and mitochondrial nucleoid integ-
rity (109). Haploinsufficient TFAM cells exhibit disrupted mtDNA  
repair capacity and distorted mtDNA distribution in parallel 
with cGAS/STING activation (110). The role of mtDNA in TFAM 
deficiency-induced inflammation was validated by evidence of 
blunted antiviral signaling following depletion of mtDNA through 
dideoxycytosine-mediated inhibition of mtDNA replication. In 
contrast, disruption of mitochondrial quality control programs 
(expanded upon below) in TFAM-heterozygous cells exacerbated 

Figure 2. Mitochondria-linked activation of immune pathways. Mito-
chondrial content and structure can play integral roles in the activation 
of inflammatory signaling in response to stress effects or viral infections. 
Extracellular mtDNA can activate NF-κB–driven inflammation via the 
intracellular TLR9 receptor. Alternatively, released mtDNA can initiate 
type I IFN signaling in adjacent immune cells. In response to mitochondrial 
stressors, ROS-damaged mtDNA, mitochondrial ROS, and the release of 
cardiolipin (CL) from the IMM can activate the NLRP3 inflammasome to 
promote IL-1β and IL-18 signaling. The loss of mitochondrial integrity with 
the extrusion of mtDNA can also activate the cGAS/STING pathway and 
type I IFN signaling. Finally, the mitochondrion functions as a platform 
for the dimerization of MAVS to activate a combination of NF-κB and IFN 
regulator signaling in response to viral infections.
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quality of mitochondria is controlled by numerous regulatory 
programs, including control of mitochondrial biogenesis (117) 
and dynamics (118), autophagy (119), and proteostasis (120, 121), 
and the role of “nutrient-sensing” programs to sustain mito-
chondrial fidelity (122).

Mitochondrial dynamics. The control of mitochondrial fission 
and fusion plays an important role in controlling mitochondrial 
integrity, metabolism, and levels of mtDNA (118). Furthermore, 
mitochondrial dynamics facilitate turnover of damaged mito-
chondrial components in coordination with other housekeeping 
programs including autophagy and proteostasis. The molecular 
machinery controlling mitochondrial dynamics is well character-
ized (123), and their genetic disruption is linked to immune mod-
ulation. This is epitomized by observations that knockdown of the 
OMM fusion protein mitofusin 2 (Mfn2) abrogated viral infection–
mediated NLRP3 inflammasome activation (124) and that mod-
ulation of Mfn2 levels controlled CD4+ T cell activation (125). A 
non-canonical function of Mfn2 similarly inhibits antiviral signal-
ing through interaction with MAVS (126), and genetic induction 
of mitochondrial fission to remove damaged mtDNA abrogates 
type I IFN signaling in TFAM-depleted cells (110). The regulation 
of mitochondrial dynamics is also tightly coupled to metabolic 
remodeling in T cells in that genetically driving mitochondrial 
fusion in glycolytic effector T cells forces reprogramming toward 
oxidative metabolism and memory T cell function (127). Interest-
ingly, the disruption of mitochondrial fusion in nonimmune cells 
can also evoke inflammation through TLR9 signaling in response 
to mtDNA leakage (128).

Mitochondrial autophagy. The recycling of complete or dam-
aged components of mitochondria occurs in isolation (mitoph-
agy) or as a component of broader recycling of cellular content 
(macroautophagy/autophagy) to maintain mitochondrial quality 
control. The molecular machinery governing both mitophagy and 
autophagy is well defined, and the molecular or pharmacologic 
disruption of these programs demonstrates their link to innate 
immunity (129). The genetic depletion of autophagy mediators 
disrupts autophagy and mitophagy with subsequent extrusion of 
mtDNA into the cytosol. The consequences of reduced mitochon-
drial clearance activate NLRP3 inflammasome and RLR type I 
IFN production (59, 77, 116). Conversely, activation of a bacterially 
induced inflammasome family member, NLRC4, by Pseudomonas 
aeruginosa that exhibited mitochondrial damage is abrogated by 
autophagy induction (130). The control of mitochondrial con-
tent by autophagy is also operational in sustaining the regener-
ative potential of hematopoietic stem cells (HSCs). Here, aging- 
associated reductions in autophagy increase mitochondrial con-
tent and metabolic activity, resulting in accelerated myeloid dif-
ferentiation and reduced HSC renewal (131). Mitophagy is also 
regulated, in part, by the E3 ligase parkin (132), and mutations in 
the parkin-encoding gene PARK2 lead to early-onset Parkinson 
disease (PD) (133). Neuroinflammation is increasingly recognized 
in PD (134), and parkin regulates inflammatory pathways (135–
137). However, whether the parkin-linked neuroinflammation is 
linked to mitophagy does not appear to have been investigated.

Sirtuins. The sirtuin family of deacylase enzymes, including 
three major NAD+-dependent deacetylases, play important roles 
in mitochondrial homeostasis (122). Briefly, the mitochondrial  
regulatory functions of these deacetylases can be exemplified by 
(a) SIRT1 contribution to nuclear regulatory control of mitochon-
drial biogenesis and to nutrient-sensing signal transduction (122); 
(b) SIRT2-mediated modulation of mitochondrial subcellular local
ization and control of nutrient-sensing signal transduction (138, 
139); and (c) SIRT3 deacetylation and regulation of mitochondrial 
metabolic and homeostatic proteins (140). Studies linking these 
sirtuin effects to immune modulation are limited. The plurality of 
SIRT1 immunoregulatory effects is not directly linked to mitochon-
drial function per se, but rather is linked via deacetylation and inac-
tivation of the RelA/p65 subunit of the canonical inflammatory  
NF-κB transactivator and via activation of the nutrient-sensing 
kinase AMPK, which modulates bioenergetics and activates auto-
phagy (141). Nevertheless, SIRT1 activation skews macrophages 
to their reparative polarity via increased fatty acid oxidation (142). 
SIRT2 deacetylates and destabilizes microtubules, resulting in  
disrupted intracellular organelle trafficking. As previously descr
ibed, inflammasome-mediated SIRT2 inhibition optimized micro-
tubule-directed spatial alignment of mitochondria to amplify the 
NLRP3 inflammasome (80). Activation of SIRT3 has been shown 
to deacetylate and activate mitochondrial superoxide dismutase 
(SOD2), which inhibits the NLRP3 inflammasome by blunting 
mitochondrial ROS generation and by reducing mtDNA leakage (6, 
56). The absence of SIRT3 similarly augments fatty acid–induced 
renal tubular inflammation via impaired mitochondrial oxidative 
metabolism and increased mitochondrial ROS (143).

Additional mitochondrial regulatory control programs linked 
to inflammation include regulation of mitochondrial biogene-

Figure 3. Metabolic remodeling and mitochondrial mediators of SLE. 
SLE pathology encompasses a broad array of immunometabolism- and 
mitochondria-initiated events. Immunometabolic remodeling is evident 
in both effector T cells, driving cytokine production, and in B cells, 
promoting antibody generation. Activation of neutrophils by immune 
complexes increases mitochondrial ROS, which promotes the oxidation 
of mtDNA. Subsequently, the concurrent extrusion of ROS-damaged 
mtDNA and nuclear/genomic DNA from NETs triggers mtDNA-depen-
dent, STING-mediated type I IFN signaling. In parallel, the ROS-dam-
aged mtDNA can also trigger cGAS/STING signaling in immune cells in a 
mechanism distinct from NETosis.
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sis and modulation of uncoupling protein 2 (UCP2). Interesting-
ly, IFN-γ drives a transcriptional regulatory program governing  
mitochondrial biogenesis (144). Induction of biogenesis augments 
mitochondrial respiratory function and ROS to control bacterial  
infections, and genetic disruption of mitochondrial biogenesis  
reduces ROS production with diminished murine bacterial- 
clearance capacity (144). At a distinct regulatory level, the inner 
mitochondrial membrane UCP2 modulates myeloid cell mitochon-
drial ROS. Here, genetic ablation of UCP2 heightens TLR4-initiated 
ROS-sensitive inflammatory signaling (145). Moreover, UCP2-KO 
mice display increased myeloid mitochondrial ROS and increased 
resistance against intracellular microbial infections (146).

Human disease, mitochondria, and  
immune modulation
In addition to the readily apparent disruption of mitochondrial 
integrity in response to intracellular viral and bacterial infections 
as well as traumatic cellular injury (54), the pathophysiology of 
autoimmune and inflammatory diseases is similarly linked to 
immunometabolism and to mitochondrial immunogenicity.

Systemic lupus erythematosus. The autoimmune disease sys-
temic lupus erythematosus (SLE) is characterized by multiorgan 
damage from dysregulated innate and adaptive immunity. Immune 
cell metabolic remodeling, mitochondrial ROS, and mtDNA per-
turbations contribute to this pathophysiology (147). Immuno
metabolism signatures include evidence that SLE-linked cytokine 
B cell–activating factor (148) promotes B cell metabolic remodeling 
with enhanced glycolysis and a greater antibody generation capac-
ity (33), and that CD4+ T cells from humans with lupus and mouse 
models exhibit increased oxidative phosphorylation and glycolysis 
compared with controls (149).

Mitochondrial ROS and mtDNA concurrently contribute to neu-
trophil extracellular trap (NET) formation, in which ROS-induced 
oxidized mtDNA incorporates into, and amplifies, NETosis. Oxidized 
mtDNA also activates STING-dependent type I IFN signaling to exac-
erbate lupus (150). The roles of immunometabolism and mitochondri-
al-linked immune activation in SLE is schematized in Figure 3.

Rheumatoid arthritis and other autoimmune diseases. Rheuma-
toid arthritis (RA) is predominantly characterized by inflamma-
tion of the joint synovium resulting in a polyarthritis. The immuno
genic role of mitochondria in this pathophysiology is supported by 
markedly increased mitochondrial ROS production in circulating 
monocytes (151) and evidence of excessive mtDNA levels in the 
synovial fluid of RA patients (152, 153). Furthermore, the intra- 
articular injection of mtDNA but not nuclear DNA evokes arthri-
tis in animal models (153), and in humans, levels of joint mtDNA 
correlate with inflammatory biomarkers of disease severity (151, 
152). It has yet to be determined whether these mitochondrial 
triggers initiate or amplify RA.

Additional immune diseases linked to mitochondria include 
fibromyalgia, a disease in which cytochrome B gene mutations 
correlate with NLRP3 inflammasome activity (154). Additional-
ly, antibodies directed against nuclear-encoded mitochondrial 
enzymes, termed anti-mitochondrial antibodies, are pathogno-
monic biomarkers of primary biliary cirrhosis (155).

Mitochondrial haplotypes have also been linked to inflamma-
tory diseases such as age-related macular degeneration (156), and 

mtDNA-dependent inflammation is associated with cardiovascu-
lar and liver disease and linked to immunosenescence and other 
aging-associated degenerative conditions (2).

Targeting mitochondria to control inflammation
Given the importance of mitochondrial metabolic remodeling in 
immune cell polarity and activation and the impact of mitochon-
drial integrity on inflammation, the modulation of these mitochon-
drial effects is an intriguing target to regulate immune activity.

Metabolic modulators of immune function. Numerous com-
pounds that remodel metabolic pathways could be potential tar-
gets to control immunometabolism. The use of these compounds 
to temper human diseases or for evaluation in murine disease 
models is beginning to be explored, and examples are briefly 
reviewed below.

Similar to findings that succinate oxidation promotes M1 polar-
ity, dimethyl malonate (DMM) and 3-nitroproprionic acid blunted 
SDH activity and ameliorated E. coli infection in mice, and DMM 
similarly blunted LPS-induced murine sepsis (16, 48). As described 
in the TCA cycle section, the TCA intermediates dimethyl fuma-
rate and itaconate directly modulate metabolic and immune reg-
ulatory proteins via posttranslational modifications (43, 44). In an 
extension of these findings, heptelidic acid, which covalently mod-
ifies the same catalytic cysteine residues on GAPDH to inhibit its 
activity, blunts autoimmune encephalopathy in mice (44), and the 
cell-permeable itaconate derivative 4-octyl itaconate counteracts 
LPS-induced inflammation in macrophages and in mice (43).

Furthermore, given the parallel induction of mitochondrial 
oxidative phosphorylation and glycolysis in SLE CD4+ T cells, a 
combination of metformin to block mitochondrial respiration and 
2-deoxyglucose (2-DG) to reduce glucose uptake and glycolysis 
was tested in primary human cells and in murine lupus models 
(149, 157). Given separately, metformin or 2-DG prevented murine 
T cell activation, and metformin alone blunted human lupus CD4+ 
T cell IFN-γ secretion (149, 157), whereas the combined agents 
were required to reverse murine lupus (157).

Interventions to enhance mitochondrial integrity. Given that 
NAD+ functions as a cofactor in sirtuin activation, numerous 
NAD+ metabolic intermediate precursors have been employed to 
test their effects on improving mitochondrial integrity in disease 
(158–160). Nicotinamide riboside (NR), a precursor in the NAD+ 
salvage pathway, activated SIRT3 targets and blunted the NLRP3 
inflammasome in primary human peripheral blood mononuclear 
cells (6) and in a murine model of hepatic steatosis (161). Addition-
ally, administration of the NAD+ precursor nicotinamide mononu-
cleotide similarly blunted pancreatic islet IL-1β production in dia-
betogenic mice (162). Finally, the administration of a neutralizing 
antibody to disrupt the CD38 NADase increased T cell NAD+ lev-
els, conferred metabolic remodeling, and augmented antitumor 
functioning of these effector cells (163).

TLR9 antagonists. TLR9 antagonists are being developed for 
clinical use, and their efficacy following mtDNA extrusion–mediated 
TLR9 activation was evident in disease models including protection 
against murine mitophagy-defective myocarditis and nonalcoholic 
steatohepatitis (94, 96). TLR9 antagonists similarly blunt mtDNA- 
induced NETosis in primary human neutrophils (164) and reduce 
autoimmune symptoms in a chemically induced murine lupus (165).
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immune systems (11, 57, 63, 166, 167). This caveat reinforces our 
need to sustain the exploration of human subjects to understand 
the role of mitochondria in orchestrating immune function and 
pathology (168). Conversely, the relative accessibility of human 
immune cells affords the opportunity for rapid advancement in 
the exploration and interrogation of mitochondria to understand 
their role in immune function. Finally, given our expanding 
understanding of the role of mitochondria in immune activation, 
the commentary by Lewis Thomas that “mitochondria are stable 
and responsible lodgers, and I choose to trust them” (169) should 
include the proviso, “if they retain their fidelity and appropriate 
location within cells.”
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Mitochondrial ROS inhibitors. The role of mitochondrial 
ROS in immune modulation has been described throughout this 
Review, and the effect of blunting mitochondrial ROS on immune 
modulation has been explored. Examples of this include admin-
istering the mitochondrial-targeted SOD mimetic mitoTEMPO to 
blunt the inflammasome in human macrophages (6) and to ame-
liorate type I IFN signaling in murine lupus (150).

Caloric-restricted diets. Although intermittent fasting has 
been found to blunt inflammatory diseases and markers of innate 
immune activation, the mechanisms underpinning this regulation 
are incompletely characterized (5, 7–10). To explore the mitochon-
drial contribution to this biology, prolonged fasting was interrogat-
ed in human subjects and in a mouse model and showed that the 
NLRP3 inflammasome was blunted, in part, via SIRT3 activation 
with improvement in mitochondrial respiration and enhanced 
mitochondrial fidelity (6, 56).

In light of the recognition of the role of mitochondria in immune 
modulation, numerous ongoing studies will exploit this link to explore 
the role of mitochondrial modulation to control immune responses.

Conclusions
The field of immunometabolism is in its infancy, and our under-
standing of how diverse immune surveillance programs integrate 
with mitochondrial fidelity is identifying novel targets for the 
modulation of innate immune activity. Further characterization 
of these pathways should cement the centrality of the mitochon-
drion in directing health and disease. An important caveat in this 
field is the significant differences between murine and human 
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