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Introduction
While prokaryotes can be viewed as immortal, their seemingly more 
advanced cousins, eukaryotes, all are cloaked in a more complex but 
mortal shell. What regulates this mortality and controls why humans 
age is undoubtedly multifactorial. Here, however, we focus on one 
appealing cause of aging that can be traced back to an unwitnessed 
event that occurred over 1.5 billion years ago. The event in question 
involved the entry of an immortal prokaryote into a eukaryote cell 
(1). This beneficial union, or symbiogenesis, would eventually lead 
the invading prokaryote to evolve into what we now more common-
ly call the mitochondria. The notion that the seed of our mortality 
can somehow be linked to this unlikely billion-year-plus marriage 
has been appreciated for quite some time. In the 1920s, Raymond 
Pearl noted that metabolic rates appeared to inversely correlate with 
lifespan (2). Building on this, Denham Harman, in the 1950s, pro-
posed the free radical theory of aging. Harman’s conjecture was that 
the generation of reactive oxygen species (ROS), which he viewed 
as likely coming from the mitochondria, gave rise to the subsequent 
accumulation of damaged proteins, lipids, and DNA, thereby fueling 
aging and age-related diseases in an inevitable but stochastic pro-
cess (3). While the notion that increased mitochondrial ROS directly 
causes aging has fallen into disfavor (4), in its wake, other aspects 
of mitochondrial biology have grown increasingly more appealing. 
Some links between aspects of mitochondrial biology and aging 
have been the subject of many excellent recent reviews (5–8). Here, 
we focus on those aspects of mitochondrial physiology that have 
perhaps the strongest connection to human aging. These processes 
include the emerging role that mitochondria play in inflammation; 
how dysregulation of mitochondrial quality control and age-related 
mitochondrial dysfunction contributes to aging, age-related mito-
chondrial dysfunction, and the notion of retrograde signaling; and 
why a little mitochondrial stress might ultimately be a good thing.

Mitochondria and the inflammation of aging
Aging is associated with evidence of an activation of the innate 
immune system that leads to a condition known as “inflammag-

ing” (9). This is particularly true of elderly individuals who age less 
successfully than their peers, as the both the frail and the pre-frail 
exhibit higher circulating levels of inflammatory mediators such 
as C-reactive protein, IL-6, and fibrinogen (10). These relation-
ships exist even in the absence of associated age-related diseases 
(e.g., cancer, cardiovascular disease, etc.), suggesting a potential 
causative relationship between activation of the immune system 
and accelerated aging (11). Perhaps because of its stability and 
ease of measurement, the data are most compelling with respect 
to circulating IL-6, as elevated IL-6 serum levels are predictive of 
incident disability, frailty, walking speed, and overall mortality 
(10, 12, 13). Analysis of T cells from elderly individuals suggests 
that although basal levels of cytokine production are elevated, 
invoked responses to a cytokine challenge are reduced (14). This 
appears to be due to a chronic activation of JAK-STAT signaling in 
the circulating immune cells of elderly patients who demonstrate 
markers of chronic inflammation (14).

Besides evidence for augmented basal cytokine signaling, 
chronic activation of the inflammasome with elevated IL-1β lev-
els appears to identify a subset of elderly individuals with higher 
rates of essential hypertension, arterial stiffness, and all-cause 
mortality (15). Consistent with this, evidence for activation of the 
NLRP3 inflammasome is seen in a wide range of age-related con-
ditions, including atherosclerosis (16), Alzheimer’s disease (17), 
and metabolic syndrome (18). Interestingly, a number of preclini-
cal observations suggest that the activation of the inflammasome 
may be maladaptive. For instance, in mice, genetic deletion of 
NLRP3 appears to reduce the inflammation associated with aging 
and slow the age-dependent incidence of insulin resistance, cog-
nitive decline, and frailty (19, 20). In that regard, the success of 
the recent CANTOS trial using canakinumab, a humanized anti-
body that neutralizes IL-1β, might be instructive. In this trial, over 
10,000 patients who had suffered a previous myocardial infarction 
were randomized to placebo or one of three doses of canakinumab. 
Interestingly, this antiinflammatory strategy appeared to reduce 
subsequent cardiovascular events (21). Secondary analysis more-
over suggested that the development of fatal lung cancers might 
also be reduced (22). This supports the notion that activation of the 
innate immune system in the elderly might have broad deleterious 
effects that are amenable to targeted therapies.
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mitochondrial DAMPs could recapitulate much of the neutrophil- 
mediated organ injury seen following a traumatic event, includ-
ing a rise in IL-6 levels without any tissue injury (26). Interest-
ingly, circulating mtDNA appears to increase gradually with age 
after the fifth decade of life (27). This level of circulating mtDNA 
appears sufficient to elicit augmented cytokine production from 
cultured monocytes (27). Moreover, in patients, levels of circulat-
ing mtDNA correlate with serum inflammatory markers and may 
have a genetic underpinning (27).

DAMPs and the related pathogen-associated molecular pat-
terns (PAMPs) can also trigger the assembly of the inflammasome, 
a high–molecular weight protein complex that functions to activate 
caspase-1 (28). As previously mentioned, inflammasome activa-
tion appears to identify a subset of at-risk elderly individuals (15), 
and genetic inhibition of this pathway in mice appears to protect 
animals from certain age-related deficits (19). While a number 
of distinct forms of inflammasome complexes exist, the majori-
ty of work has centered on NLRP3, since it appears to respond to 
the broadest range of stimuli. Stimulation of the NLRP3 inflam-
masome results in the activation of caspase-1, which in turn results 
in the proteolytic activation of potent cytokines such as IL-1β and 
IL-18 (28). Interestingly, caspase-1 activation can also induce 
mitochondrial damage (29). This relationship is just one of many 
between the inflammasome and the mitochondria. For instance, 
MAVS, the mitochondria-associated adaptor molecule that is 
found on the outer mitochondrial membrane, can serve as a plat-
form for inflammasome activation (30). There is also evidence that 
the mitochondrial phospholipid cardiolipin can directly bind and 
activate NLRP3 (31). A number of other mitochondrial-derived sig-
nals have been implicated in inflammasome activation. A wealth of 
evidence suggests that ROS generated in the mitochondria partic-
ipate in NLRP3 activation (32), although the absolute requirement 
for oxidants is unclear, as is the precise mechanism or target that is 
dependent on redox modification (33). Release of mtDNA into the 
cytosol can also activate the inflammasome (34). This, however, 
differs from previously discussed circulating mtDNA, which exerts 
its effects by binding and activating TLR9 signaling (Figure 1).

How mtDNA finds its way into either the cytosol or the circu-
lation remains a bit mysterious. Certainly this is understandable 
in the case mentioned previously involving massive trauma, or 
other forms of cell death (26). Yet circulating mtDNA can be read-
ily detected in human serum under a wide range of conditions, 
including normal aging (35). One possibility is that the release of 
mtDNA is kept in check by quality control mechanisms, particu-
larly through autophagic/mitophagic removal of dysfunctional 
mitochondria. Consistent with this notion, disrupting autophagy 
increased free mtDNA in the cytosol and increased IL-1β secre-
tion (36). Similarly, recent evidence suggests that in macrophages, 
mitophagy acts to restrain inflammasome activation by again 
removing damaged mitochondria that could act as NLRP3 acti-
vators via the release of ROS or mtDNA (37). Moreover, a very 
recent report has demonstrated that the cytokine IL-10 can pro-
mote mitophagy in macrophages by inhibiting the mTOR pathway 
and inducing metabolic reprogramming in this cell type (38). The 
absence of IL-10 was shown to lead to dysregulated NLRP3 acti-
vation and increased IL-1β production (38). This is consistent with 
the altered mitochondrial morphology seen in IL-10–deficient 

There is increasing evidence that mitochondria might play an 
important role in the inflammaging phenotype (23). The immune 
system is capable of sensing and responding to tissue damage and 
views the release of intracellular molecules in an analogous fash-
ion to dangerous pathogens. This “danger theory” argues that cer-
tain molecules released from senescent or dying cells might con-
stitute signals that trigger an immune response (24), often termed 
damage-associated molecular patterns (DAMPs). In that context, 
the mitochondria, derived several billions of years ago from the 
endosymbiosis of α-proteobacteria into a eukaryotic cell, repre-
sent a smorgasbord of potential immune-stimulating DAMPs. 
Putative mitochondrial DAMPs include the release of mitochon-
drial DNA (mtDNA), N-formyl peptides generated by transla-
tion of mitochondrial-encoded protein, and unique lipid species 
such as cardiolipin, a unique phospholipid enriched on the inner 
mitochondrial membrane (25). In the case of circulating mtDNA, 
immune activation occurs, in part, by activation of Toll-like recep-
tor 9 (TLR9) signaling, while for mitochondrial proteins, activa-
tion occurs through binding to formyl peptide receptor-1. This 
was first demonstrated in the case of trauma, where the release 
of mtDNA and formyl peptides activated circulating neutrophils 
to mediate tissue injury (26). These early experiments were also 
able to show that, without any tissue injury, direct infusion of 

Figure 1. Immune activation by mtDNA release through both intracellular 
and extracellular pathways. The innate immune system has at least three 
sensors for detecting mtDNA: TLR9 for sensing circulating (extracellular) 
mtDNA, and the NLRP3 inflammasome and the cGAS/STING pathway for 
sensing cytoplasmic (intracellular) mtDNA release. A host of downstream 
signaling pathways and cytokines are induced following activation of each 
of these distinct pathways. The precise mechanism through which mtDNA 
is released into the cytosol or the circulation remains uncertain.
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potential may actually be an important determinant of immune 
responsiveness (48). Moreover, succinate appears to be just one 
of many mitochondrial-derived metabolites that might modulate 
the immune response and thereby contribute to the age-depen-
dent alteration in immunity. Other examples include a regulatory 
role for mitochondrial fatty acid oxidation, as well as for other 
individual metabolites including citrate, acetate, acetyl-CoA, and 
itaconate (49). Evidence suggests that these metabolic pathways 
and individual metabolites can each shape the immune response 
and potentially link alterations in mitochondrial function with 
age-dependent alteration in immune function. Interestingly, 
in model organisms, such as yeast and worms, levels of TCA 
metabolites appear to regulate overall lifespan (50, 51).

Mitochondrial DNA and aging
Levels of mitochondrial mutations certainly increase with age 
(52). Yet the abundance of mitochondrial genomes, ranging 
from hundreds to thousands of copies per cell, makes the mere 
presence of a detected mutation more difficult to functionally 
interpret. Indeed, next-generation sequencing methods have 
determined that a low level of mutant mitochondrial genomes 
(termed heteroplasmy), which are inherited from mother to child, 
are readily apparent in almost everyone (53). Yet the function-
al implications of these sequencing results are less clear. While 
mtDNA encodes critical proteins required for electron transport, 
it is generally believed that any pathogenic mtDNA mutation 
would need to reach a threshold of more than 60% and perhaps 
closer to 90% in a given cell or tissue to have a measurable bioen-
ergetic effect (6). Most likely, the increase in mtDNA mutational 
load is a correlate of aging rather than being primarily responsi-
ble for the aging phenotype. Nonetheless, experimental evidence 
suggests that the germline load of mtDNA mutations can shape 
the subsequent rate of aging (54). Moreover, there are engineered 
mouse models, such as the proofreading-deficient, mtDNA poly-
merase (POLγ) mouse, that do accumulate extremely high levels 
of mitochondrial mutations. Notably, these animals also exhibit 
a shortened lifespan, along with certain visible age-related phe-
notypes including gray hair and kyphosis (55–57). Thus, mtDNA 
mutations can, at high levels, drive mammalian aging. This is also 
evident in human subjects who carry mutations in the mitochon-
drial replication machinery. Indeed, over 300 pathological muta-
tions exist in human POLγ, and these mutations are linked to the 
development of a wide spectrum of conditions, including Par-
kinson’s disease and other age-related pathologies (58). Another 
potentially more common example is the growing realization that 
patients with chronic HIV infection exhibit aspects of accelerated 
aging, including increased frailty, augmented cardiovascular dis-
ease, and significantly higher rates of bone fractures (59). While 
these conditions might be secondary to the chronic low-level 
inflammation associated with viral infection, it is of interest to 
note that certain HIV therapeutics have known off-target effects, 
including an ability to inhibit POLγ activity (60). This raises the 
possibility that this growing clinical syndrome might pheno-
copy aspects of the proofreading-deficient POLγ mouse. Indeed, 
HIV-positive patients treated with nucleoside analog drugs have 
increased levels of mitochondrial mutations that correlate with 
the duration of antiretroviral therapy (61, 62).

mice (39), perhaps the most widely used and established mouse 
model for frailty (40). Together, these observations suggest an 
important intersection between mitophagy, inflammasome acti-
vation, and the prevention of age-associated impairment.

While we have already discussed how mtDNA can activate 
TLR9 signaling and inflammasome activation, there appears 
to be yet another means through which mtDNA can activate the 
immune system. Given its evolutionary origins, it is not surprising 
that, like foreign bacterial and viral DNA, mtDNA can also be rec-
ognized by cyclic GMP-AMP synthase (cGAS), a cytosolic sensor 
of double-stranded DNA (dsDNA). Once bound to dsDNA, cGAS 
induces signaling through the adaptor protein STING, leading to 
activation of the transcription factor IRF3. In turn, IRF3 orches-
trates the induction of type I IFNs and IFN-stimulated genes, a 
process that is critical in the response to viral infection. Interest-
ingly, mouse embryonic fibroblasts that are haploinsufficient for 
the mitochondrial transcription factor TFAM show a reduction in 
mtDNA content and evidence of a constitutive activation of the 
cGAS/STING/IRF3 pathway (41). These observations are broadly 
consistent with previous reports that had linked TFAM to inflam-
mation in microglia (42). Remarkably, infection with certain her-
pesviruses also caused depletion of mtDNA in cells (41). Similar to 
what was observed in TFAM+/– cells, viral infection also triggered 
mitochondrial-dependent IRF3 activation. Obviously, while this 
strategy of releasing mtDNA to augment antiviral defenses has 
short-term appeal, the implications for triggering long-term dele-
terious consequences are also evident. Since aging involves invo-
lution of the thymus, decreased repertoire of T cells, and evidence 
for chronic and persistent viral infections (43), this mitochondri-
al-initiated, virally triggered pathway might play a significant role 
in the associated inflammation seen in the elderly.

Finally, there are other important ways in which mitochondria 
could participate in the observed age-dependent sterile inflamma-
tion. Increasingly, the tricarboxylic acid (TCA) metabolites gen-
erated by mitochondrial metabolism appear to be able to shape 
the immune response. The activation of macrophages by the 
Gram-negative bacterial product lipopolysaccharide (LPS) switch-
es their metabolism from oxidative phosphorylation to glycoly-
sis. This metabolic shift has been shown to result in the buildup 
of the TCA metabolite succinate (44). Interestingly, this increase 
in succinate can stabilize HIF-1α by inhibiting prolyl hydroxylase 
domain (PHD) enzyme activity that normally regulates HIF-1α 
stability. This succinate-dependent HIF-1α induction can in turn 
regulate IL-1β production (44). Mitochondrial-produced succinate 
can also work as a chemokine, as specific G protein–coupled suc-
cinate receptors exist on both immune and nonimmune cells (45). 
Besides its role in HIF-1α stabilization, succinate accumulation in 
the setting of LPS stimulation can also be metabolized by a pro-
cess known as reverse electron transport (46). This reverse flow 
of electrons from mitochondrial complex II to complex I is known 
to produce ROS. Reverse electron transport appears to increase as 
animals age and may actually be beneficial and extend lifespan in 
certain settings (47). However, in the context of LPS stimulation of 
macrophages, the combination of a high mitochondrial membrane 
potential along with succinate oxidation drives mitochondrial ROS 
production, producing a proinflammatory response (46). Other 
examples have also demonstrated that mitochondrial membrane 
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dopaminergic region of the brain affected in Parkinson’s disease 
(69). This suggests that there may be separate programs for basal 
mitophagy and stress-induced mitophagy. This conjecture is also 
supported by recent technical improvements that have led to the 
ability to more accurately monitor in vivo mitophagy, including 
the development of the fluorescence-based mt-Keima (70) and 
the mito-QC reporter mouse (71). Adaptation of these techniques 
has demonstrated that in flies, the absence of Pink1 or parkin did 
not alter basal mitophagy (72). Similarly, in mice expressing the 
mito-QC reporter, there was no effect of Pink1 deletion on basal 
mitophagic flux (73). Thus, the precise in vivo role of PINK1 and 
parkin remains to be fully discerned.

While definitive roles for PINK1 and parkin have not been 
established, the biochemical underpinnings of mitophagy are 
clearly expanding. For instance, during development, certain tis-
sues such as the oocyte, reticulocyte, and the ocular lens target 
all or part of their normal-functioning mitochondria for removal. 
In reticulocytes, the inner mitochondrial BCL2-related protein 
NIX (also known as BNIP3L) appears to play an essential role in 
mitochondrial clearance (74, 75). In reticulocytes, as well as in the 
clearance of paternal mitochondria in the Caenorhabditis elegans  
oocyte, this process is seemingly parkin-independent (76). This 
suggests that different tissues might have different mechanisms 
for mitophagic removal. This is also consistent with the wide vari-
ation seen in mitophagic flux between tissues (70).

The recognition of ubiquitinated and presumably damaged 
mitochondria occurs through adaptor proteins that link the mito-
chondria to the isolation membrane/phagophore of the expanding 
autophagosome. In the reticulocyte, there is evidence that NIX 
might play this role (77). Recently, another inner mitochondrial 
protein, prohibitin 2, was also identified as a mitophagy adaptor 
protein (78). In this case, parkin-dependent ubiquitination trigged 
proteosomal-mediated outer mitochondrial membrane rupture, 
exposing prohibitin 2 to stimulate mitophagy (78). Interestingly, 
the prohibitin family had been previously linked to a wide array of 
age-related maladies, in part owing to its ability to regulate mito-
chondrial ROS levels (79). Other classic autophagy adaptors such 
as p62, NBR1, NDP52, Tax1BP1, and optineurin also can play a 
role, with the strongest evidence to date implicating NDP52 and 
optineurin as important mitophagy regulators (80).

There is evidence that the level of mitophagy markedly 
declines in mammalian tissues during normal aging (70, 81). It is 
tempting to speculate that this decline underlies the known accu-
mulation of damaged mitochondria and provides a mechanism 
for the observed functional deficits and increased oxidative stress 
commonly observed in aging tissues and organs. In animal mod-
els in which essential autophagy genes are deleted (e.g., Atg7), 
dysfunctional mitochondria accumulate (81, 82). Interesting-
ly, in these various models, disruption of autophagy produces a 
marked rise in ROS levels, and the functional deficits observed in 
these tissues can be significantly mitigated by antioxidant thera-
pies (81, 82). This suggests that a decline in autophagy, and more 
specifically mitophagy, might fuel the vicious circle of oxidative 
stress–induced, age-related tissue damage (ref. 83 and Figure 2). 
Model organisms have also strengthened the connection between 
mitophagy and aging. For instance, various genetic perturbations 
that extend the lifespan of C. elegans all appear to increase mito-

Mitophagy and aging
Analysis of mitochondrial function in tissues, such as the skeletal 
muscle of older subjects, reveals a decline in mitochondrial respi-
ratory capacity to roughly 50% of what is seen in younger subjects 
and a reduction in ATP (63, 64). These mitochondrial deficits 
track closely with functional decline in muscle strength and are 
believed by most to be a causal factor for age-related sarcopenia 
(65). While, as mentioned above, in certain rare cases, accumula-
tion of mtDNA mutations might contribute to this functional defi-
cit, it is likely that other mechanisms are at play. An increase in 
the steady-state levels of dysfunction could be due to an increase 
in age-dependent damage to mitochondria, an age-dependent 
decline in the removal of dysfunctional mitochondria, or some 
combination of both mechanisms. The removal of damaged but 
intact mitochondria occurs through the process of mitophagy. We 
have already briefly discussed this process in the setting of inflam-
masome activation, where mitophagy, by keeping the level of 
damaged mitochondria low, prevents immune activation (36–38). 
The molecular regulation of mitophagy is incompletely under-
stood. One known stimulus is the accumulation of ubiquitinated 
proteins on the outer mitochondrial membrane. This process can 
be catalyzed by the E3-ubiquitin ligase parkin, which in turn is acti-
vated by PTEN-inducible putative kinase 1 (PINK1) (66). In cul-
tured cells, mitochondrial dysfunction has been shown to stabilize 
PINK1 levels, thereby activating this cascade (67). The fact that 
both parkin and PINK1 are found as causes of inherited forms of 
Parkinson’s disease has strengthened the link between mitophagy 
and age-related pathologies (68). Nonetheless, important cave-
ats remain, suggesting our knowledge is far from complete. First, 
at least in mice, germline deletion of Parkin has relatively subtle 
effects. In particular, these animals do not develop Parkinson’s dis-
ease, although recent observations have demonstrated that when 
crossed to the proofreading-deficient POLγ mouse, Parkin–/– mice 
do exhibit neuronal cell death in the substantia nigra, the specific 

Figure 2. Aging impairs mitophagic removal of stressed mitochondria. 
The age-dependent decline in mitophagy might provide the mecha-
nism to explain the known interrelationship between increased ROS, 
decreased bioenergetic capacity, and age-dependent functional decline. 
Agents such as spermidine and urolithin A appear to stimulate mitoph-
agy and thereby prevent age-related pathologies, which are described in 
more detail in the main text.
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ways that damaged mitochondria can signal back to the nucleus to 
orchestrate a nuclear transcriptional response that reduces mito-
chondrial stress and thereby prevent subsequent damage. These 
retrograde signaling pathways are increasingly being seen as crit-
ical for maintaining functional capacity in aging tissues. In this 
context, mitochondrial quality control can be viewed as a broad 
spectrum of responses where the initial response (retrograde sig-
naling, MDVs, or mitophagy) depends on the nature and magni-
tude of the underlying stress. The fact that parkin appears to play a 
role in both MDV formation and mitophagy argues that, at least at 
a molecular level, these processes are not wholly distinct. At pres-
ent, the relative importance of these pathways to mediate aging or 
age-related pathology is largely unknown.

In the context of aging, the impetus to understand retrograde 
signaling originated from a series of counterintuitive observa-
tions in model organisms where genome-wide or targeted RNAi 
screens revealed that impairing mitochondrial electron trans-
port paradoxically resulted in increased lifespan (90, 91). Even 
more counterintuitive were studies in which the release of mito-
chondrial ROS, long thought to be the cause of aging, actually 
appeared to extend lifespan (92, 93). These observations are also 
supported by observations in mammalian models. While severe 
mitochondrial dysfunction is either incompatible with life or a 
cause of significant morbidity, some mouse models with a mod-
est increase in mitochondrial ROS levels or defects in oxidative 
phosphorylation capacity, like their worm counterparts, appear to 
also have an increase in lifespan (94, 95).

These sets of observations have concentrated efforts to under-
stand how the cell knows its mitochondria are encountering stress, 
and to define the nuclear response to an SOS sent from this critical 
organelle. What has emerged from these studies is a still-incom-
plete picture, but a number of tantalizing clues suggest this retro-
grade intracellular communication may be critically important. 
One such pathway that fits within this rubric is the mitochondrial 
unfolded protein response (UPRmt), a coordinated response clas-
sically triggered by mtDNA depletion or by protein misfolding in 
the mitochondrial matrix (96). The initial genetic characterization 
of this pathway has been most extensively explored in worms, in 
which mitochondrial dysfunction results in the transcription fac-
tor ATFS-1 being directed away from the mitochondria and into 
the nucleus (97). While initial studies of the transcriptional out-
put of the UPRmt mostly centered on mitochondrial chaperones, 
which allow the stabilization of misfolded matrix proteins, it now 
appears this response is more comprehensive, with the induction 
of hundreds of genes including proteases, antioxidant enzymes, 
and genes involved in mitochondrial protein import, mitochondri-

phagy (84). Moreover, this increase in mitophagy is required for 
the observed increased longevity (84). Similarly, in flies, overex-
pression of parkin can extend lifespan (85). In mammals, strat-
egies that extend survival, such as calorie restriction in rodents, 
appear to preserve mitochondrial morphology (86). In addition, 
certain naturally occurring compounds such as the polyamine 
spermidine appear to increase autophagy and mitophagy, result-
ing in an increase in lifespan and a protection from age-related 
diseases (87). Similarly, urolithin A, a metabolite of ellagitannins, 
compounds enriched in pomegranate juice, also stimulate mito-
phagy and appear to extend the lifespan of worms and improve 
muscle function in old mice (88). These studies imply that more 
targeted, and presumably more effective, approaches to stimu-
late mitophagy might have widespread beneficial effects in com-
bating age-related functional decline.

Retrograde signaling: from mitochondria  
to nucleus
It is important to stress that the removal of mitochondria through 
mitophagy represents only one aspect of mitochondrial quality 
control. Lysosomal destruction of an entire mitochondrion comes 
at a high thermodynamic cost, and therefore efforts short of com-
plete destruction are likely to predominate when damage is less 
severe (Figure 3). One approach appears to be that, rather than 
complete removal, only a small region of the mitochondrion, pre-
sumably the most heavily damaged, is targeted for removal. This 
can occur through the creation of mitochondrial-derived vesicles 
(MDVs), a parkin-dependent process (89). Even more efficient are 

Figure 3. A range of quality control mechanisms exist to deal with stress 
in the mitochondria. The magnitude of these mechanisms ranges in accor-
dance with the severity of the perceived stress. From lowest to highest 
magnitude of response, they include activation of the UPRmt to initiate a 
transcriptional program to potentially relieve the stress; removal of part 
of the mitochondria into a mitochondrial-derived vesicle (MDV) in hopes 
of preserving the undamaged part; activation of mitophagy to remove the 
entire damaged mitochondria; and induction of cell death through apopto-
sis or necrosis to remove the entire damaged cell. As such, the magnitude 
of response can be titrated to the level of perceived stress.
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al dynamics, and cellular metabolism (96). To date, the bulk of this 
analysis has been done in model organisms, particularly the worm 
C. elegans. There are reasons to suspect that significant differences 
exist in the corresponding mammalian UPRmt. For instance, there 
is likely not a precise single mammalian equivalent of ATFS-1, 
although the bZIP transcription factors ATF4 and ATF5 appear 
to be important in coordinating a similar response in mammals 
(98, 99). Similarly, factors known to play a role in C. elegans do not 
appear to play similar roles in mammals. As one example, in the 
worm, the mitochondrial ClpP protease plays a central role in the 
UPRmt response (100), while the mammalian ortholog does not 
appear to significantly regulate this response (101).

The connection between the UPRmt response and lifespan 
came from analysis of long-lived worm mutants with defects in 
their electron transport. Remarkably, in these models, activation 
of the UPRmt response was essential for the observed lifespan 
increase but this longevity response appeared to be induced in a 
non–cell-autonomous fashion (102). In particular, mitochondrial 
dysfunction in neurons caused a UPRmt response in the intestines, 
implicating a soluble factor that the authors deemed a mitokine 
(102). Although the precise nature of the mitokine(s) remains 
obscure, in the worm, neurotransmitters like serotonin as well as 
neuropeptides appear to be involved (103, 104). There is also an 
epigenetic memory associated with these effects, as mitochondri-
al dysfunction only produces lifespan extension in the worm when 
it occurs during a specific developmental window (102). Later 
studies have implicated histone methyltransferases (105) and the 
Jumonji family of histone lysine demethylase as important epigen-
etic regulators of the UPRmt (106). Moreover, the expression of the 
mouse Jumonji orthologs appears to correlate with activation of the 
mammalian UPRmt response and, more importantly, with longevity 
in the BXD mouse genetic reference panel, a collection of over 150 
distinct mouse lines (106). In addition, there is also evidence that 
the mTOR kinase, linked to lifespan regulation in a wide range of 
organisms, can also regulate the UPRmt response (107). That said, 
the absolute requirement for the UPRmt response in regulating 
lifespan has not been established (108).

Besides longevity, the UPRmt response is increasingly implicated 
in age-related diseases. For instance, in model organisms, toxic poly-
glutamine repeat protein aggregates seen in Huntington’s disease 
can bind directly to mitochondria and induce the UPRmt response 
(103). A similar role for the UPRmt response has been observed in 
Alzheimer’s disease, where the UPRmt activation is seen in individ-
uals with cognitive impairment (109). In model organisms, boosting 
the UPRmt response appears to lessen the severity of amyloid-β pro-
teotoxicity (109). In addition, a number of pharmacological inter-
ventions linked to increasing lifespan, including metformin, resver-
atrol, rapamycin, and NAD+ supplementation, all appear to activate 
retrograde signaling from the mitochondria (110–112).

Conclusion
The mitochondria have traditionally been viewed as simple, auton-
omous energetic factories whose waste product, ROS, fueled the 
aging process. As our knowledge of this organelle has expanded, 
so too have the connections between mitochondrial function and 
aging biology. Besides what has been discussed here, we should 
note that there is also an important role for mitochondria dysfunc-

tion in cellular senescence, important links between altered mito-
chondrial dynamics and biogenesis in age-related conditions, and 
an emerging role for mitochondrial dysfunction to regulate age- 
related stem and progenitor cell decline (6, 8, 113). These areas, 
when added to what was presented here, firmly link mitochon-
drial biology to aging biology. Nonetheless, important gaps in our 
knowledge remain. For instance, while circulating mtDNA might 
trigger an innate immune response, it is unclear how much this 
phenomenon contributes to the inflammaging phenotype. Simi-
larly, what role mitochondrial-dependent inflammasome activa-
tion plays in aging remains largely unknown. In addition, while a 
general decline in mitophagy occurs with age (70), and while this 
could drive the age-dependent accumulation of dysfunctional 
mitochondria, firm genetic proof that a decline in mitophagy con-
tributes to age-dependent mitochondrial dysfunction, much less 
age-related functional decline, remains elusive. The absence of 
obvious effects of PINK1 or parkin deletion on in vivo mitophagy 
(72, 73) suggests that our understanding of this process is limited. 
For instance, largely missing from the current analysis is an under-
standing of how mitochondrial deubiquitinases might contribute 
to this process (114). In that regard, USP30, a mitochondrial deu-
biquitinase that antagonizes parkin’s function and appears to res-
cue Pink1-deficient flies, may warrant more attention (115).

Finally, the mammalian UPRmt response remains poorly 
understood and its implications largely unexplored. The power-
ful genetics of C. elegans demonstrates that this pathway is clearly 
important in this model organism. Yet, could this be a case where 
we are being misled by the idiosyncrasies of a purely postmitotic 
organism (e.g., C. elegans) and/or a case where evolution has found 
better or different answers? Indeed, an important caveat to all the 
analysis discussed here is that the link between mitochondria, 
metabolism, and aging may be species-dependent. For instance, 
arguments have been advanced that the profound lifespan effects 
of caloric restriction observed in rodents may not be as evident in 
long-lived species (e.g., humans) in which energy depot storage, 
reproductive span, and reproductive costs are markedly different 
(116). Similar arguments could also be advanced for the relative 
role of mitochondria in short-lived organisms with a high meta-
bolic rate compared with long-lived, lower-metabolic-rate species.

Whatever the magnitude of effects in humans, further dissec-
tion of mitochondrial signaling pathways seems essential to under-
stand the best points for therapeutic manipulation. The concept 
of a little mitochondrial stress being beneficial is attractive, but it 
may be difficult to clearly define the boundary between therapeu-
tic mitochondrial hormesis (mitohormesis) and bioenergetic col-
lapse. This is perhaps best illustrated by the historical experience 
with dinitrophenol, a mitochondrial uncoupler and an inducer of 
mitochondrial stress. In the 1930s, nearly 100,000 Americans 
were taking or had taken this drug, which produced an increase in 
metabolic rate and a subsequent capacity for profound weight loss 
(117). Unfortunately, due to its narrow therapeutic index, it also 
produced concomitant muscle, liver, and cardiovascular toxicity, 
including cardiac arrest (117, 118). These historical efforts serve as 
a cautionary tale and suggest that “drugging” the mitochondria 
remains a formidable challenge. That said, a new cadre of biolog-
ically active molecules targeting mitochondrial quality control or 
retrograde signaling are being described and carry the promise 
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of clinical applicability to a wide swath of age-related conditions. 
These mitochondria-centric small molecules, some found in high 
abundance in naturally occurring substances such as blue cheese 
(spermidine) or pomegranate juice (urolithin A), provide a literal 
new diet of opportunities to potentially tinker with human aging. 
That’s exciting and welcome news to hopefully spice up a relation-
ship that hasn’t seen much change over the last few billion years.
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