Previous studies suggested that tyrosine kinase activation is an important signal transduction event in the IL-1 response of chondrocytes. The present study identifies the mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase (ERK)-1 and ERK-2 as major tyrosine phosphorylated proteins in IL-1 stimulated chondrocytes. Kinase assays on immunoprecipitates with myelin basic protein as substrate showed that ERK-1 and ERK-2 activation was detectable within 5 min after IL-1 stimulation and decreased to baseline within 60 min. Analysis of other members of the MAP kinase family showed that chondrocytes also express c-Jun NH2 terminal kinase (JNK)-1, JNK-2, and p38 proteins. These kinases were time-dependently activated by IL-1. Among other chondrocyte activators tested, only TNF activated all three of the MAP kinase subgroups. JNK and p38 were not activated by any of the other cytokines and growth factors tested. However, ERK was also activated by PDGF, IGF-1, and IL-6. Phorbol 12-myristate 13-acetate, calcium ionophore, and cAMP analogues only increased ERK activity but had no significant effects on JNK or p38. These results suggest differential activation of MAP kinase subgroups by extracellular stimuli. ERK is activated in response to qualitatively diverse extracellular stimuli and various second messenger agonists. In contrast, JNK and p38 are only activated by IL-1 or TNF, suggesting that these kinases participate in the induction of the catabolic program in cartilage.
Y Geng, J Valbracht, M Lotz
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 204 | 13 |
53 | 17 | |
Citation downloads | 59 | 0 |
Totals | 316 | 30 |
Total Views | 346 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.