The obese (ob) gene has recently been isolated through a positional cloning approach, the mutation of which causes a marked hereditary obesity and diabetes mellitus in mice. In the present study, we isolated rat ob cDNA and examined the tissue distribution of the ob gene expression in rats. We also studied the gene expression in genetically obese Zucker fatty (fa/fa) rats. The rat ob gene product, a 167 amino acid protein with a putative signal sequence, was 96 and 83% homologous to the mouse and human ob proteins, respectively. Northern blot analysis using the rat ob cDNA probe identified a single mRNA species of 4.5 kb in size in the adipose tissue, while no significant amount of ob mRNA was present in other tissues in rats. The ob gene was expressed in the adipose tissue with region specificities. The rank order of the ob mRNA level in the adipose tissue was epididymal, retroperitoneal, and pericardial white adipose tissue > mesenteric and subcutaneous white adipose tissue > or = interscapular brown adipose tissue. The ob gene expression occurred in mature adipocytes rather than in stromalvascular cells isolated from the rat adipose tissue. Expression of the ob gene was markedly augmented in all the adipose tissue examined in Zucker fatty (fa/fa) rats at the stage of established obesity. The present study leads to the better understanding of the physiologic and pathophysiologic roles of the ob gene.
Y Ogawa, H Masuzaki, N Isse, T Okazaki, K Mori, M Shigemoto, N Satoh, N Tamura, K Hosoda, Y Yoshimasa
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 239 | 4 |
58 | 18 | |
Scanned page | 227 | 13 |
Citation downloads | 47 | 0 |
Totals | 571 | 35 |
Total Views | 606 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.