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Abstract

Wehypothesized that platelet-activating factor (PAF), a po-
tent inflammatory mediator, could induce gas exchange abnor-
malities in normal humans. To this end, the effect of aerosol-
ized PAF (2 mg/ml solution; 24 jig) on ventilation-perfusion
(VA/Q) relationships, hemodynamics, and resistance of the
respiratory system was studied in 14 healthy, nonatopic, and
nonsmoking individuals (23±1 ISEMI yr) before and at 2, 4, 6,
8, 15, and 45 min after inhalation, and compared to that of
inhaled lyso-PAF in 10 other healthy individuals (24±2 yr).
PAF induced, compared to lyso-PAF, immediate leukopenia (P
< 0.001) followed by a rebound leukocytosis (P < 0.002), in-
creased minute ventilation (P < 0.05) and resistance of the
respiratory system (P < 0.01), and decreased systemic arterial
pressure (P < 0.05). Similarly, compared to lyso-PAF, PaO2
showed a trend to fall (by 12.2±4.3 mmHg,mean±SEMmaxi-
mumchange from baseline), and arterial-alveolar O2 gradient
increased (by 16.7±4.3 mmHg)(P < 0.02) after PAF, because
of VA/Q mismatch: the dispersion of pulmonary blood flow and
that of ventilation increased by 0.45±0.1 (P < 0.01) and
0.29±0.1 (P < 0.04), respectively. Weconclude that in normal
subjects, inhaled PAF results in considerable immediate VA/Q
inequality and gas exchange impairment. These results rein-
force the notion that PAFmay play a major role as a mediator
of inflammation in the human lung. (J. Clin. Invest. 1994.
93:188-194.) Key words: airway microvascular permeability .
asthma - inflammatory mediators . pulmonary gas exchange -

pulmonary hemodynamics and mechanics

Introduction

Platelet-activating factor( PAF) ' is a potent phospholipid medi-
ator of inflammation with a wide spectrum of activity, includ-
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1. Abbreviations used in this paper: AaPO2, alveolar-arterial 02 gra-
dient; ARDS, adult respiratory distress syndrome; DISP R-E*, root
mean square difference among measured retentions (R) and excretions
(E) of the inert gases (except acetone) corrected for dead space; f,
respiratory rate; FEV,, forced expiratory volume in the first second;
HR, heart rate; log SDQ, dispersion of blood flow distribution (second
moment); log SDV, dispersion of ventilation distribution (second mo-
ment); MIGET, multiple inert gas elimination technique; PAF, plate-
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ing chemotaxis and activation of neutrophils and eosinophils
( 1, 2), and induction of both airway and pulmonary microvas-
cular leakage (3-5). Wheninfused into conscious sheep, PAF
increases pulmonary vascular resistance, alveolar-arterial 02
gradient (AaPO2), and lymph-to-plasma protein concentration
ratio (6, 7). In humans, inhaled PAFinduces bronchoconstric-
tion and an increase in bronchial responsiveness to methacho-
line associated with a transient neutropenia and with increased
number of neutrophils in bronchoalveolar lavage fluid (8, 9).
However, little is known about the potential effects of inhaled
PAF or of other inflammatory mediators on pulmonary gas
exchange. By contrast, methacholine, a potent bronchocon-
strictor agent, induces considerable bronchoconstriction in pa-
tients with mild asthma, but only mild to moderate ventilation-
perfusion (VA/Q) deterioration related to maldistribution of
ventilation (10).

Because of these effects of PAFon the pulmonary vascula-
ture and airways ( 11), we postulated that PAF could disturb
gas exchange in normal humans, perhaps mimicking some of
the abnormalities naturally observed in patients with bronchial
asthma or adult respiratory distress syndrome (ARDS). In
asthma, the mechanism of abnormal pulmonary gas exchange
is VA/Q mismatch without shunt, whereas intrapulmonary
shunting predominates in ARDS( 12).

To test the hypothesis that PAF could induce pulmonary
gas exchange abnormalities, we studied the effects of inhaled
PAF on pulmonary gas exchange and hemodynamics and
compared to those of inhaled lyso-PAF, the biologically inac-
tive PAFprecursor and metabolite, in a group of healthy young
volunteers.

Methods

Individuals. 24 healthy individuals (21 males and 3 females, ages 18-
36 yr) were recruited from the community for the study, which was
approved by our center's Research Committee on Human Investiga-
tions. All subjects gave written informed consent after the purpose,
risks, and potential of the study were explained and understood.
Anthropometric, white blood cell, and baseline functional data appear
in Table I. All were nonsmokers and nonatopic as judged by one or
more wheal-and-flare responses to skin prick tests with commonaller-
gen extracts. All subjects were free of respiratory infection for 2 6 wk
preceding the study. They demonstrated normal spirometry (values
> 80% predicted) and a negative abbreviated methacholine bronchial
challenge.

Procedures. Blood samples were collected anaerobically through
catheters inserted into the radial and pulmonary arteries. Arterial and
mixed venous 02 pressure, CO2 pressure, and pH were analyzed in
duplicate using standard electrodes (IL 1302; Instrumentation Labora-

let-activating factor; Pa02, partial 02 pressure in arterial blood; PAP,
pulmonary arterial pressure; QT, cardiac output; Rrs, respiratory sys-
tem resistance; RSS, remaining sum of squares; VE, minute ventila-
tion; V02, 02 uptake.
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Table I. Anthropometric, White Blood Cell, and Baseline
Functional Data (Mean±SEM) on Entry of the Study

PAF Lyso-PAF

n 14 10
Gender (male/female) 12:2 9:1
Age (yr) 23±1 24±2
Height (cm) 173±2 176±3
Weight (kg) 70±2 76±4
Leukocytes (X 109/liter) 5.9±0.3 8.3±0.8*
FEVy (liter) 4.3±0.2 4.6±0.2

(% pred) 103±3 106±3
FVC (liter) 5.2±0.2 5.6±0.2

(% pred) 103±3 104±3
FEV1/FVC (%) 82.6±1.8 83.3±2.5
Pao2 (mmHg) 103.4±1.2t 103.7±2.0
PaCO2 (mmHg) 38.4±0.60 38.5±0.8
AaPO2 (mmHg) 4.9±0.9t 4.0±1.4
Pvo2 (mmHg) 41.6±0.5t 43.3±1.2

FVC, forced vital capacity. Predicted equations for spirometry are
those of Roca et al. (13). * P< 0.05 (Mann-Whitney's test). (* n = 13).
pred, predicted; PVo2, mixed venous O2 pressure in blood.

tories, Milano, Italy). Hemoglobin concentration was measured by a
co-oximeter (IL 482; Instrumentation Laboratories). A low dead
space, low resistance, and nonrebreathing valve (model no. 1500; Ru-
dolph Instruments, Kansas City, MO) connected to a heated metal
mixing chamber was used to collect the mixed expired gas. Oxygen
uptake (0Vo2) and CO2production were calculated from mixed expired
02 and CO2concentrations measured by mass spectrometry (multigas
monitor MS2; BOC-Medishield, London, United Kingdom). Minute
ventilation (VE) and respiratory rate (f) were measured using a cali-
brated Wright spirometer (Respirometer MK8; BOC-Medical, Essex,
United Kingdom). The alveolar-arterial 02 gradient (AaPO2) was cal-
culated according to the alveolar gas equation using the measured respi-
ratory exchange ratio.

Total respiratory system resistance (Rrs) was measured by forced
oscillation applied at the mouth, its analysis being restricted to frequen-
cies between 6 and 10 Hz. Details of the measurement of Rrs in our
laboratory are reported in reference 10.

A three-lead electrocardiogram, heart rate (HR), and systemic (Ps)
as well as pulmonary arterial (PAP) pressures (using a Swan-Ganz
catheter) were continuously recorded throughout the whole study (HP
7830A monitor and HP7754B recorder; Hewlett-Packard, Waltham,
MA). Cardiac output (QT) was calculated according to the Fick princi-
ple using the measured Vo2 and the calculated 02 contents of arterial
and mixed venous blood. VA/Q distributions were estimated by the
multiple inert gas elimination technique (MIGET) (14), the inert
gases being dissolved in normal saline and infused through a peripheral
venous cannula. Specific features of this technique in our laboratory
have been reported earlier (15, 16). Ventilation-perfusion distribu-
tions were estimated from inert gas data using a least square algorithm
with enforced smoothing (17). The duplicate samples of each set of
measurements (at baseline, and at 8, 15, and 45 min after each chal-
lenge, only; see below) were treated separately, resulting in two VA/Q
distributions at each time point, the final data being the average of
variables determined from both distributions at each time.

Arterial and mixed venous blood were taken for measurement of
circulating blood cells. Total white blood cell and differential cell
counts were performed (H. 1 TMSystem; Technicon, Tarytown, NY).

Design of the study. All studies were performed with individuals
breathing room air and seated in an armchair. Once all the hemody-
namic and respiratory parameters were stable and the inert gas solution
had been infused for 2 45 min to allow for the establishment of ade-

quate steady-state conditions (see below), baseline measurements were
performed. 14 subjects were then challenged with PAF(C16) ( 1-0-hexa-
decyl-2-acetyl-sn-glycero-3-phosphocholine, fully saturated; Novabio-
chem AG, Laufelfingen, Switzerland). PAFwas kept as stock solution
of 10 mg/ml in ethanol at -80'C. Solutions of 2 mg/ml in 0.35%
bovine serum albumin were freshly prepared on each study day. Details
of the PAFchallenge performed in our laboratory have been reported
elsewhere ( 18, 19). PAFwas delivered from a nebulizer attached to a
dosimeter (Morgan Nebichek, PK Morgan, Chatham, Kent, United
Kingdom), driven by compressed air at a pressure of 22 lb/in2 (152
kPa). The output of the nebulizer was 6 ti/breath. Weadministered
two breaths of PAF(24 ,g), subjects inhaling from functional residual
capacity to total lung capacity over a period of 5 s followed by a 10-s
breathhold for each.

Because the time course of gas exchange response to PAFwas un-
known, we took single measurements 2 min apart during the first 6 min
after challenge (at 2, 4, and 6 min ), and then duplicate measurements
at 8, 15, and 45 min. In 8 out of the 14 subjects, all sets of measure-
ments consisted of the following steps in sequence: (a) inert gas sam-
pling and recording of VE and f, (b) respiratory gas sampling, (c) sys-
temic and pulmonary hemodynamic recordings (available at all time
points in two of the eight individuals only), and (d) sampling for circu-
lating blood cells. In the other six individuals, to better evaluate pulmo-
nary artery pressures, identical sets of measurements without inert gas
sampling were carried out. Likewise, in the latter six subjects, measure-
ments of Rrs only were performed 1 wk later following identical time
course, as the circuit for sampling expired respiratory and inert gases is
not suitable for Rrs measurements.

Identical procedures and study design were followed with lyso-PAF
(C16) (1-0-hexadecyl-sn-glycero-3-phosphocholine, fully saturated;
Novabiochem AG) challenge (two breaths, 24 gg) in 10 other individ-
uals. All these subjects had a complete sets of measurements as after
PAF, including measurements of pulmonary artery pressures; in addi-
tion, seven only had measurements of Rrs 1 wk later using identical
protocol. Except for total white cell counts, no differences were ob-
served in any of the parameters at baseline between the participants
who received PAF or lyso-PAF (Tables I-III).

Maintenance of steady-state conditions after the PAFand lyso-PAF
challenges was demonstrated by stability (±5%) of hemodynamic (FHR
and Ps) and spirometric (fand tidal volume) variables, and by the close
agreement between duplicate measurements of mixed expired and arte-
rial respiratory gases (within ±5%). These conditions were reached in
all but one participant in whom respiratory gases only were measured
after PAF. The reliability of the inert gas data is indicated by the re-
maining sum of squares ( RSS) between the measured data and the least
squares fit (by the smoothing algorithm [ 17 ]). Wefound that the distri-
bution of RSS was within expected levels for a set of six randomly
distributed error terms with unit variance at all time points. The mean
RSS at each time point was 6.5±0.9 (baseline), 6.1±2.0 (2 min),
6.3±1.4 (4 min), 3.9±0.7 (6 min), 4.7±0.7 (8 min), 3.8±0.5 (15
min), and 5.6+1.0 (45 min). 94% of RSS were < 15.0, 86% were
c 10.0, and 59% < 5.0, and the mean RSS was 5.3±0.3 (150 sets of
data obtained). The chi square distribution predicts 97% to be < 15.0,
90%tobe< 10.0, and 55% tobe<5.0(20).

Safety precautions. Individuals were instructed that the study could
be immediately terminated should unusual symptoms other than
flushing and coughing develop, but this was never required. Three phy-
sicians were present at all times, with one devoted exclusively to the
observation of subjects.

Statistical analysis. Data are reported as mean±SEM. Because the
time course of changes after PAF clearly showed an initial response,
some plateauing and then return toward baseline conditions, a conven-
tional analysis of variance to determine significance of PAFeffects was
considered inappropriate. Accordingly, the maximum change from
baseline for each outcome variable was considered a suitable summary
measure of its individual response profile (21 ). This considers the indi-
vidual as the basic unit and uses the responses for each subject to con-
struct a single number that summarizes some aspect of that individual's
response curve. Wechose the maximum change from baseline, which
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Table I. Respiratory and Inert Gas Responses to PAFand Lyso-PAF Challenges (Mean±SEM)

After challenge

Baseline 2 min 4 min 6 min 8 min 15 min 45 min P

Pao2 (mmHg) PAF 103.4±1.2 95.4±4.7 93.6±4.5 94.5±4.4 95.2±4.5 97.1±4.2 101.3±1.5 <0.09
Lyso-PAF 103.7±2.0 101.0±3.2 102.3±2.2 102.4±1.9 102.8±1.6 101.8±1.1 103.8±2.4

AaPO2 (mmHg) PAF 4.9±0.9 16.4±4.2 19.6±3.9 18.5±3.7 15.5±3.8 13.6±2.9 8.9±1.2 <0.02
Lyso-PAF 4.0±1.4 5.3±1.7 4.9±1.7 4.9±1.5 5.3±1.6 4.2±1.1 4.8±1.4

PvO2 (mmHg) PAF 41.6±0.5 42.1±1.0 40.0±1.0 39.2±0.7 39.5±0.7 39.6±0.8 39.4±0.8 =0.05
Lyso-PAF 43.3±1.2 42.9±1.2 42.2±1.0 42.2±1.0 42.4±0.9 42.4±1.0 41.6±1.1

Log SDQ PAF 0.36±0.1 0.69±0.1 0.73±0.1 0.75±0.1 0.75±0.1 0.64±0.1 0.44±0.1 <0.01
Lyso-PAF 0.36±0.1 0.38±0.1 0.37±0.1 0.36±0.1 0.37±0.1 0.41±0.1 0.38±0.1

Log SDV PAF 0.37±0.1 0.60±0.1 0.61±0.1 0.56±0.1 0.55±0.1 0.51±0.1 0.43±0.1 <0.04
Lyso-PAF 0.40±0.1 0.43±0.1 0.38±0.1 0.43±0.1 0.40±0.1 0.43±0.1 0.40±0.1

DISP R-E* PAF 2.2±0.4 6.4±1.8 6.6±1.5 5.9±1.3 5.7±1.3 4.8±1.2 3.1±0.5 <0.03
Lyso-PAF 2.2±0.3 2.3±0.3 2.3±0.4 2.3±0.3 2.2±0.5 3.0±0.8 2.5±0.6

P refers to differences between the maximum changes from baseline after PAFand Lyso-PAF challenges, using Mann-Whitney's test.

may be interpreted as a measure of the maximum effect of PAF. Since Except at 4 min after PAF, no overall significant differences
distributions of these summary measures clearly showed skewness, were observed between arterial and mixed venous white cell
these maximum changes from baseline after PAFand lyso-PAF chal- counts; at that time point, however, both arterial leukopenia
lenges were treated as raw data and compared using commonnonpara- (3.0±0.4 x 109/liter) (P < 0.007) and neutropenia (1.5±0.4
metric methods (Mann-Whitney's test). Spearman's correlations were X 109/liter) (P < 0.004) were more pronounced.
used to assess the relationships between variables. Wilcoxon's test was Respiratory and inert gas responses (Table III and Figs.
used to compare paired arterial and mixed venous white cell counts 1-3). As expected, baseline Pao,, Paco (PAF, 38.4±0.6 vs
within each group. Significance was set at P . 0.05 in all instances. 1-3).PAs 38pected mms g), AaPO2 AF, pH

vs
lyso-PAF, 38.5±0.8 mmHg), AaPQ2, arterial pH (PAF,
7.41±0.01 vs. 7.39±0.01, PVo2 and Vo2 (PAF, 250+16 vs lyso-

Results PAF, 312±32 ml/min) were within normal limits and not dif-
ferent between the subjects who received PAF or those who

Clinical data. All but one subject receiving PAF (19 out of 20 received lyso-PAF (Table II). Compared to lyso-PAF, Pao2
challenges) noticed facial flushing, and coughing occurred in showed a trend to fall by 12.3±4.3 (mean±SEM maximum
seven; no other symptoms developed. By contrast, lyso-PAF change from baseline) after PAF (P < 0.09), and returned
inhalation did not cause any symptoms. towards baseline values at 45 min. Thus, there was a significant

Circulating white blood cells. Compared to lyso-PAF (from (threefold) immediate increase in AaPO2 (by 16.7±4.3
8.3±0.8 to 8.0±0.8 X 109/liter, total white cell count in mixed mmHg)(P < 0.02), which fell towards baseline values at 45
venous blood decreased transiently (from 5.9±0.3 to 3.5±0.3 min. Similarly, Pvo2 decreased initially by 3.9±0.6 mmHg(P
X 109/liter)(P < 0.001) within 4 min after PAF inhalation = 0.05). Fig. 1 illustrates the individual time courses of AaPO2,
followed by a rebound leukocytosis at 8 min (8.6±0.5 X 109/ in which it is shown that six participants were highly respon-
liter, which persisted at 15 min (10.0±0.8 X 109/liter) and at sive, two were mildly responsive, and five failed to respond to
45 min (9.6±0.6 X 109/liter) (P < 0.002), as noted previously PAF, and Fig. 2 depicts the mean±SEMmaximum changes
(18). The fall of total white cell count accounted for an early (4 from baseline of AaPO2, after PAF and lyso-PAF challenges.
min) reduction (from 4.0±0.3 to 2.0±0.3 x 109/liter) (P There were no significant differences in the baseline data for
<0.001) in circulating mixed venous blood neutrophils and a those six subjects who were high responders. By contrast,
rebound neutrophilia at 8, 15, and 45 min (to 6.5±0.4, Pa o2, pH, and Vo2 remained essentially stable without signifi-
7.9±0.8, and 7.8±0.6 X 109/liter, respectively) (P < 0.002). cant differences between PAF and lyso-PAF challenges.

Table III. Ventilatory, Lung Mechanic, and Hemodynamic Responses to PAFand Lyso-PAF Challenges (Mean±SEM)

After challenge

Baseline 2 min 4 min 6 min 8 min 15 min 45 min P

VE (liter/min) PAF 7.8±0.5 9.9±1.0 10.2±1.0 10.4±1.0 10.2±1.0 10.2±1.0 8.7±0.3 <0.05
Lyso-PAF 8.5±0.8 9.2±0.7 8.8±0.7 8.8±0.8 8.6±0.6 9.1±0.7 8.9±0.7

Rrs (cm H2O* liter' - s) PAF 2.78±0.2 3.59±0.3 3.65±0.4 3.30±0.3 3.27±0.2 3.12±02 2.98±0.2 <0.02
Lyso-PAF 2.58±0.3 2.49±0.3 2.55±0.2 2.56±0.2 2.40±0.2 2.32±0.2 2.38±0.2

Ps (mmHg) PAF 85.5±3.2 83.0±3.9 77.8±3.5 75.2±3.6 80.8±3.0 81.7±2.8 80.9±2.1 <0.05
Lyso-PAF 88.8±2.0 91.6±2.9 91.0±2.4 89.8±3.3 88.6±4.9 94.4±4.0 89.0±3.9
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Figure 1. Individual time courses of the alveolar-ar-
terial P02 difference and the dispersion of pulmonary
blood flow (log SDQ) (in their respective units) after
PAFand lyso-PAF. After inhalation of PAF, AaPO2
values (A) immediately increased in six individuals,
to persist thereafter and to approach baseline values
by 45 min (solid lines, high responders), two others
showed slight increases (dotted lines, mild re-

sponders), and the five remainders did not respond
(dashed lines, nonresponders). The values of the lat-
ter seven subjects were essentially less than the mean

+ 2 SD ( 12.3 mmHg)of the mean values of AaPO2 at

all time points after lyso-PAF of each individual
(dashed lines, Cand D). The profiles of the individual
time courses of log SDQchanges after PAFchallenge
(B) were similar to those of AaPO2, as shown by
identical line type. No changes were shown after lyso-
PAF.

Baseline VA/Q ratio distributions were narrow and unimo-
dal in all subjects, in agreement with previous inert gas studies
in healthy individuals (22-24). After PAF the distribution of
pulmonary blood flow and that of alveolar ventilation broad-
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Figure 2. Mean±SEMmaximum changes from baseline (in their re-

spective units) after PAFand lyso-PAF of minute ventilation, respi-
ratory system resistance, systemic arterial pressure, alveolar-arterial
Po2 difference, and VA/Q distributions (dispersion indices, log SD
Q and log SD V). Note that the changes after PAF in the first three
parameters were modest compared to those of the three indices of
gas exchange. Minute ventilation and respiratory system resistance
increased by 39 and 35%, respectively, and systemic arterial arterial
pressure decreased by 15%. These changes contrast with the remark-
able increases in the alveolar-arterial P02 difference (by 34 1%), log
SDQ(by 125%),andlogSDV(by78%).

ened in all subjects, and in three bimodal blood flow distribu-
tion profiles with distinct low VA/Q regions were observed be-
tween 2 and 15 min. Distributions returned essentially to nor-

mal at 45 min. We quantify the dispersion of pulmonary
perfusion (log SDQ) and that of alveolar ventilation (log SD
V), as the second moment of the VA/Q distributions about
their mean on a log scale (normal range = 0.3-0.6 [25]), and
also by an overall index of VA/Q heterogeneity of lung func-
tion (DISP R-E*, i.e., the combined dispersion of both blood
flow and ventilation distributions corrected for dead space)
(normal values < 3.0 [22]). All of these indices of VA/Q in-
equality increased (worsened) (by 0.45±0.1 [P < 0.01)], by
0.29±0.1 [P < 0.04], and by 5.1±1.2 [P < 0.03], respectively)
after PAF inhalation (Table II; Fig. 2), in some cases to consid-
erably abnormal values (Fig. 1) during the above time se-

quence. Fig. 1 shows the individual time courses of log SDQ
values and Fig. 2 illustrates mean±SEMmaximum changes
from baseline of log SDQand log SDV, after PAF and lyso-
PAF challenges. Shunt (trivial at baseline) and dead space ex-

pressed as milliliters per breath (PAF, 117±16 vs lyso-PAF,
144±1 1) did not show any significant effect after PAF. Like-
wise, the first moments of the VA/Q distributions (the mean

VA/Q ratios of the blood flow (Q) (PAF, 0.87+0.1 vs lyso-
PAF, 0.83±0. 1 ) and that of ventilation distributions (v) (PAF,
1.04±0.1 vs lyso-PAF, 0.97±0.1 ) did not change after PAF.

No significant differences (P = 0.78) were shown between
predicted Pao2 (reflecting the amount of VA/Q mismatch com-

puted by MIGET) and measured Pao2 throughout the period of
study after PAF, suggesting that other potential mechanisms of
hypoxemia, such as diffusion limitation for 02, increased in-
trapulmonary parenchymal Vo2 or increased postpulmonary
shunt (bronchial and Thebesian circulations), were not pres-
ent (23).

Indices of respiratory gas exchange and those of VA/Q mis-
match described above correlated closely: Pao2 and AaPO2
correlated with log SDQ (r, -0.86, and 0.87), log SD V (r,
-0.75, and 0.68), and DISP R-E* (r, -0.89, and 0.87) (P
< 0.05, each), respectively. The VA/Q distributions of one of
the three subjects with a bimodal pattern are illustrated in Fig.
3. As shown, immediately after challenge the blood flow distri-
bution was clearly bimodal with abnormally low VA/Q areas

now present and accounting for 53%of total pulmonary blood
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flow. This markedly altered pulmonary gas exchange and re-

sulted in considerable hypoxemia, still present at 15 min. How-
ever, gas exchange indices reverted towards baseline values by
45 min.

Ventilatory, lung mechanic, and hemodynamic responses
(Table III and Fig. 2). PAFand lyso-PAF both had no effects
on respiratory frequency (PAF, 14±0.6 vs lyso-PAF, 14±1.0
min-') or tidal volume (PAF, 0.58±0.1 vs lyso-PAF, 0.63±0.1
liter/min), but there was a small effect of PAF on minute
ventilation (increase by 3.1±0.8 liter/min) (P < 0.05), with
return to baseline levels at 45 min. Likewise, Rrs slightly in-
creased (by 0.97±0.2 cmH2O* liter-' * s) after PAF inhalation
(P < 0.02) to approach normal values at 45 min, and Ps imme-
diately decreased (by 12.9±3.1 mmHg) (P < 0.05) but re-

turned to baseline values by 8 min (Table III). In Fig. 2 are

shown the mean±SEMmaximumchanges from baseline of the
latter three variables after PAF and lyso-PAF challenges.

There were no differences in HR(PAF, 71±2 vs lyso-PAF,
75±2 min'), QT (PAF, 5.7±0.4 vs lyso-PAF, 6.8±0.7 liter/
min), total systemic vascular resistance (Ps/QT) (PAF,
16.0±1.5 vs lyso-PAF, 14.3±1.3 mmHg/liter per min), PAP
(PAF, 7.9±0.7 vs lyso-PAF, 7.5±0.9 mmHg), and total pulmo-
nary vascular resistance (PAP/QT) (PAF, 1.5±0.2 vs lyso-
PAF, 1.1±0.2 mmHg/liter per min) between PAF and lyso-
PAF challenges. No increases in the respiratory fluctuation of
PAP, suggestive of the generation of negative intrathoracic
pressures caused by increased inspiratory airway resistance,
were recorded after PAF challenge.

Discussion

Principal findings. The most novel finding of our study was

that after inhaled PAF, healthy individuals with a negative
methacholine challenge developed transient, sometimes strik-
ing, pulmonary gas exchange abnormalities, together with mild
increases in total ventilation and the resistance of the respira-
tory system and a mild reduction in systemic arterial pressure.

The gas exchange abnormalities were the result of increased
VA/Q inequality with resultant decrements in the Pao2 and
increases in the AaPO2, in a pattern similar to those commonly
observed in patients with bronchial asthma but not with those
shown during ARDS, in whomintrapulmonary shunting is the

.B Ps 02, 100 #5-m-
-L Figure 3. Representative sequence of VAP) distribu-

PsC02,38M A tions in one individual challenged with PAF. At 4
.6

Log SD 00.66" min after challenge, Pao2 fell and there was moderate

Log
SD V, to severe VA!Q mismatch, as shown by marked in-

11- t Ycreases in the dispersion of blood flow (log SDQ) and

2- g ) 1that of ventilation (log SDV). Note that immediately.2-
iafter PAFblood flow distribution was clearly bimodal.

0 E At 15 min, these functional findings were still present
0 0.0 0.1 1.0 10.0 00 but, by 45 min, all variables returned to or towards

I baseline values.

principal component of hypoxemia ( 12 ). Yet, the increase in
Rrs was small (of the order of 35%), at least compared to that

induced in patients with mild asthma after a dose-response
curve bronchial challenge with methacholine (of the order of
88%) ( 10 ). By contrast, lyso-PAF, a substance chemically simi-
lar to PAF, albeit biologically inactive, had essentially no effect
on any of the variables studied, including pulmonary gas ex-

change, thereby suggesting that the effects seen after PAFwere

not related to a nonspecific effect of inhaling a phospholipid.
Overall, these results confirm our hypothesis that inhaled PAF
is also capable of causing deterioration of VA/Q relationships
in healthy individuals.

Methodological concerns. We were especially concerned
with ensuring that adequate steady-state conditions were

reached. Because of the unknown effects of PAF on the time
course of pulmonary gas exchange, we began collecting data at
2 min after challenge. However, by the criteria listed above (see
Methods), adequate steady-state conditions were achieved and
maintained at each time point, even by 2 min.

Work of other investigators. To our knowledge, this is the
most thorough study to investigate the pulmonary hemody-
namic and gas exchange responses to PAF in healthy humans
to date. Mojarad et al. (5) studied respiratory gases in a canine
model of lung edema induced by PAF, but failed to show
changes in the edema-induced hypoxemia. By contrast, Den-
jean et al. (26) demonstrated that in baboons, immediately
after intratracheal administration of PAF, marked hypoxemia
indirectly related to an increase in unperfused lung areas oc-

cuffed. Christman and co-workers (7) demonstrated in sheep
that PAFinfusion increases AaPO2, at doses that cause signifi-
cant changes in lung mechanics and pulmonary vascular resis-
tance. In humans, similar results to those of Denjean et al. (26)
were obtained after instilling PAF intratracheally (at a dose
-100% larger than in the present study) in seven patients

presenting with cerebral death while breathing 100% oxygen

(27). However, they did not use MIGETto characterize VA/Q
changes. PAF has been previously shown to be not only a po-
tent systemic hypotensive agent (28), but also a pulmonary
vasoconstrictor (29) or vasodilator (30), depending on the dos-
age and the mode of administration, the animal species stud-
ied, and the tone of the underlying vasculature. In our study,
inhalation of PAF induced a slight reduction in systemic arte-
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rial pressure, while pulmonary artery pressure remained essen-
tially unchanged. These minor hemodynamic changes are con-
sistent with the flushing we and others have observed, suggest-
ing that PAF or related products may act systemically after
bronchial inhalation.

Interpretation of gas exchange abnormalities. It is of inter-
est to discuss not only the magnitude but also the similarity of
PAF-induced VA/Q changes to those of natural asthma. The
deterioration of VA/Q relationships resulted from an increase
in the dispersion of pulmonary blood flow rather than of venti-
lation, because of the development of low VA/Q regions. This
is qualitatively similar to what is seen in patients with bronchial
asthma, of moderate (25), severe chronic (31), or the most
severe life-threatening acute clinical forms (32, 33). That the
dispersion for blood flow is more abnormal than that for venti-
lation is commensurate with the underlying pathophysiology
of gas exchange abnormalities in patients with asthma, in
whom widespread airway narrowing leads to the presence of
areas that remain perfused but are poorly ventilated; i.e., areas
Of low VA/Q ratios. It should be noted that the VA/Q abnormal-
ities and reduced Pao2 occurred in the face of any increase of
total ventilation, which would be expected to improve both
Pao2 and VA/Q relationships, other factors equal (34). The fall
in Pao2 caused by the deterioration of VA/Q relationships after
PAF was, therefore, partly offset by the simultaneous effect of
increased ventilation.

Another point of interest was the magnitude of change. In
absolute terms, and examining mean data, the degree of VA/Q
inequalities caused by PAF was mild to moderate. However,
given that these were healthy individuals with a nonuniform
response to PAF, the changes in some individuals were rela-
tively severe (Fig. 1 ). By comparison, in studies designed to
assess the effects of gas exchange of both exercise and simulated
high altitude in young healthy men (22, 23), the development
Of VA/Q mismatch was much smaller than that seen in the
present investigation. Likewise, the administration of the po-
tent vasodilator nifedipine during hypoxia, at rest, in normal
volunteers showed a very small increase in the VA/Q disper-
sion (24).

Mechanism of action. The mechanism by which PAF in-
duced VA/Q mismatching in our subjects may be related to at
least two factors: bronchoconstriction and airway microvascu-
lar leakage ( 11). However, the possibility that the small in-
creases in Rrs shown after PAF in the present study can also
reflect changes in the viscoelastic resistance of the lung paren-
chyma (potentially induced by mild pulmonary edema) rather
than to reduction in airway caliber, cannot be ruled out. In
addition to overall airways resistance, it is considered that Rrs
includes also tissue resistances of the lung and chest wall ( 10).
Conceivably, both bronchoconstriction and airway leakage
may contribute synergistically to widespread airway narrow-
ing, hence leading to the development of areas of low VA/Q
ratios.

However, we suggest that the VA/Q inequalities seen after
PAF are more related to altered airway vascular permeability
rather than to bronchoconstriction and are consistent with a
large body of evidence based upon three complementary find-
ings. First, we have previously shown that inhalation of PAF in
anesthesized guinea pigs induced a large degree of airway micro-
vascular leakage, but small increases in lung resistance, com-
pared with inhaled histamine and 5-hydroxytryptamine, which
have direct contractile effect on airway smooth muscle (35).

Since airway microvascular leakage correlated significantly
with changes in lung resistance, it was suggested that airway
edema could be a marked component of airway narrowing in-
duced by PAF. Airway microvascular permeability may occur
by either a direct local effect of PAF on the airways (36) or,
indirectly, via the activation of neutrophils (3). Although PAF
may induce airway narrowing by causing airway edema in ad-
dition to airway smooth muscle contraction ( 18), PAF has
been reported to have either no effect (37) or a modest but
variable effect on the contraction of human isolated air-
ways (38).

A second argument comes also from another study of our
group on the effects of methacholine challenge on gas exchange
in mild asthma (10). In that study, although methacholine
(which has a primary effect on airway smooth muscle) caused,
in a subgroup of seven patients with a forced expiratory volume
in the first second (FEVy) > 90% predicted and mild VA/Q
inequality (mean log SD Q, 0.67) at baseline, a 30% fall in
FEVI and a marked increase in the resistance of the respiratory
system (of the order of 103%) it induced much less VA/Q mis-
match (mean increase in log SD Q, 42%) than in the present
study. This suggests that even considerable bronchoconstric-
tion per se does not cause necessarily much VA/Q inequality,
at least acutely.

Finally, a third line of evidence comes from the study by
Rubin et al. (39), which documented that inhaled PAF, at
similar doses used in the present study, induced very small
changes in FEV1 (of the order of 5%) in comparison to rela-
tively larger changes in more sensitive tests of airflow obstruc-
tion in healthy subjects; similarly, asthmatic patients showed a
10% decrease in FEV, at the same PAFconcentration. Wenow
demonstrate similar Rrs changes in our study that indicate that
PAF is not potent in inducing airway narrowing. Our data are
further reinforced by a recent observation of our group that,
using a similar design in another series of healthy subjects (40),
inhalation of PAF caused similar changes in Rrs and in gas
exchange. However, each of these arguments is indirect and,
therefore, the mechanism by which PAF induces VA/Q abnor-
malities in humans requires more direct investigation.

Despite the lack of a significant correlation between pre-
and post-PAF challenge changes in leucocytes and gas ex-
change, it is clear that there was a temporal association between
the two parameters. The question arises as to whether white
blood cell changes may be related directly to the mechanism of
PAF-induced gas exchange abnormalities. Reversible pulmo-
nary neutrophil sequestration within the lung after inhaled
PAF has been recently shown in healthy individuals (41). In
our study, we observed more leukopenia and neutropenia in
arterial blood than in the mixed venous blood after PAF, possi-
bly reflecting transient lung sequestration of neutrophils. How-
ever, it is of interest to outline that the sequestration of leuco-
cytes in the pulmonary vasculature during hemodialysis, a con-
dition also associated with transient hypoxemia, does not
aggravate VA/Q mismatching, or induce 02 diffusion disequi-
librium in humans (42) or animals (43); and if it did, one
would expect the development of high VA/Q regions, which we
never saw.

In summary, we have shown that inhaled PAF in healthy
volunteers has variable, occasionally marked, transient effects
on pulmonary gas exchange, resulting in considerable VA/Q
mismatch in a pattern similar to that of asthma. These results
support the notion that PAFmay play a major role as a media-
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tor of inflammation in human airways but the importance of
PAF in the pathogenesis of bronchial asthma or ARDSre-
mains to be determined.
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