JCI The Journal of Clinical Investigation

Protease nexin-2/amyloid beta-protein precursor: a cerebral anticoagulant?

D D Cunningham

J Clin Invest. 1993;92(5):2090-2090. https://doi.org/10.1172/JCI116807.

Editorial

Find the latest version:

https://jci.me/116807/pdf

In this issue of *The Journal*, Schmaier et al. (1) report the potent inhibition of blood coagulation factor IXa by protease nexin-2 (PN-2), which is a secreted isoform of the Alzheimer's disease amyloid β -protein precursor (A β PP). A β PP is the large, transmembrane parent protein of the amyloid β -protein (A β) that is found deposited in senile plaques in the neuropil and in the walls of cerebral blood vessels of individuals afflicted with Alzheimer's disease and certain related disorders (2). $A\beta PP$ is encoded by a gene on chromosome 21 that can give rise to alternatively spliced forms of the protein that contain or lack a 57-amino acid domain that is homologous to Kunitz-type serine protease inhibitors. The constitutive proteolytic processing of A β PP that occurs under normal conditions results in secreted forms of the protein. The secreted isoforms that contain the Kunitz protease inhibitor domain are identical to PN-2 (3). The present paper by Schmaier et al. (1) provides biochemical evidence that PN-2 may serve as a cerebral anticoagulant. Along with other recent studies, it suggests the provocative hypothesis that excess PN-2 could lead to spontaneous intracerebral hemorrhage.

Hemostasis is regulated by a series of serine proteases, which in turn, are controlled by a group of serine protease inhibitors known as SERPINS. Antithrombin III, heparin cofactor II, protease nexin-1, α_1 -protease inhibitor, and C1-inhibitor are examples of SERPINS that can regulate proteases involved in blood coagulation. The recognition that tissue factor pathway inhibitor (TFPI), a Kunitz-type serine protease inhibitor, is a potent inhibitor of factor VIIa-tissue factor complex indicates that another class of serine protease inhibitors can also regulate hemostasis (4). The present finding of Schmaier et al. (1) that PN-2/A β PP is a potent, tight-binding inhibitor of factor IXa indicates a second Kunitz-type protease inhibitor could regulate hemostasis. It is noteworthy that these two Kunitz-type protease inhibitors both regulate enzymes that activate factor X. Factor Xa, in turn, activates prothrombin to thrombin, the final protease in the coagulation pathway.

Several findings suggest that PN-2/A β PP has an intimate interrelationship with the hemostatic system. PN-2/A β PP is an abundant platelet α -granule protein that is secreted upon platelet activation (5, 6). Moreover, PN-2/A β PP is a potent inhibitor of coagulation factor XIa, a protease in the intrinsic pathway (6). The present finding by Schmaier et al. (1) that PN-2/ A β PP is also a potent inhibitor of factor IXa is particularly important because factor IXa is a major hemostatic enzyme whose deficiency leads to a severe bleeding state. PN-2/A β PP has been recognized as a membrane-associated protein; thus, it

0021-9738/93/11/2090/01 \$2.00

could function to modulate factor IXa activity on the surface of cells. This is an important point since studies have shown that physiologic activation of factor X occurs on the surface of endo-thelial cells and activated platelets. (7, 8).

Is there a relationship between the hemostatic function of PN-2/A β PP and its presence in the brain? A rare disorder, hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D), is characterized by extensive cerebrovascular deposits of $A\beta$ and recurrent, often fatal spontaneous intracerebral hemorrhages by mid-life. Recent studies revealed that HCHWA-D patients have pronounced accumulations of PN- $2/A\beta PP$ (in addition to $A\beta$) in the walls of their cerebral blood vessels (9); Schmaier et al. (1) hypothesized that cerebral hemorrhage in these patients might result from excess PN-2/A β PP, which could inhibit factor IXa and compromise physiologic blood coagulation. It remains to be determined if the mutation leading to HCHWA-D leads to excess accumulation of PN-2/ $A\beta PP$ in the cerebral vasculature. Nevertheless, the studies of Schmaier et al. (1) underscore the importance of exploring the roles of PN-2/A β PP in the regulation of cerebral hemostasis and exploring directly if alterations in PN-2/A β PP in certain pathological conditions might imbalance proteolytic mechanisms involved in blood coagulation.

Dennis D. Cunningham

Department of Microbiology and Molecular Genetics University of California, Irvine

References

1. Schmaier, A. H., L. D. Dahl, A. J. M. Rozemuller, R. A. C. Roos, S. L. Wagner, R. Chung, and W. E. Van Nostrand. 1993. Protease nexin-2/amyloid β -protein precursor: a tight-binding inhibitor of coagulation factor IXa. J. Clin. Invest. 92:2540–2545.

 Selkoe, D. J. 1991. The molecular pathology of Alzheimer's disease. Neuron. 6:487–498.

3. Van Nostrand, W. E., S. L. Wagner, M. Suzuki, B. H. Choi, J. S. Farrow, J. W. Geddes, C. W. Cotman, and D. D. Cunningham. 1989. Protease nexin-II, a potent antichymotrypsin, shows identity to the amyloid β -protein precursor. *Nature (Lond.).* 341:546–549.

4. Rao, L. V. M., and S. I. Rapaport. 1987. Studies of a mechanism inhibiting the initiation of the extrinsic pathway of coagulation. *Blood.* 69:645–651.

5. Van Nostrand, W. E., A. H. Schmaier, J. S. Farrow, and D. D. Cunningham. 1990. Protease nexin-II (amyloid β -protein precursor): a platelet α -granule protein. *Science (Wash. DC)*. 248:745-748.

6. Smith, R. P., D. A. Higuchi, and G. J. Broze. 1990. Platelet coagulation factor XIa-inhibitor, a form of Alzheimer amyloid precursor protein. *Science (Wash. DC).* 248:1126-1128.

7. Stern, D. M., P. Nawroth, D. Handley, and W. Kisiel. 1985. An endothelial cell-dependent pathway of coagulation. *Proc. Natl. Acad. Sci. USA*. 82:2523-2527.

8. Ahmad, S. S., R. Rawala-Sheikh, and P. N. Walsh. 1989. Platelet receptor occupancy with factor IXa promotes factor X activation. J. Biol. Chem. 264:20012-20016.

9. Rozemuller, A. J. M., R. A. C. Roos, G. T. A. M. Bots, W. Kamphorst, P. Elkelenboom, and W. E. van Nostrand. 1993. Distribution of $\beta/A4$ and amyloid precursor protein in hereditary cerebral hemmorhage with amyloidosis-Dutch type and Alzheimer's disease. *Am. J. Pathol.* 142:1449–1457.

J. Clin. Invest.

[©] The American Society for Clinical Investigation, Inc.

Volume 92, November 1993, 2090