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Effects of Oxidant Stress and Exposure to Human Neutrophils
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Abstract

Westudied the effects of oxidant stress on the catalase activity
and hydrogen peroxide sensitivity of Neisseria gonorrhoeae. N.
gonorrhoeae is an obligate pathogen of man that evokes a re-

markable but ineffective neutrophil response. Gonococci make
no superoxide dismutase but express high catalase activity.
Gonococcal catalase activity increased threefold when organ-

isms were subjected to 1.0 mMhydrogen peroxide. This in-
crease in catalase activity was marked by a parallel increase in
protein concentration recognized by a rabbit polyclonal anti-
body raised against the purified gonococcal enzyme. Catalase
was primarily localized to the gonococcal cytoplasm in the pres-

ence or absence of stress; only a single isoenzyme of catalase
could be identified. Exposure of gonococci to neutrophil-de-
rived oxidants was accomplished by stimulating neutrophils
with phorbol myristate acetate or by using gonococcal Opa vari-
ants that interacted with neutrophils with different degrees of
efficiency. Gonococci exposed to neutrophils demonstrated a

twofold increase in catalase activity in spite of some reduction
in viability. Exposure of gonococci to 1.0 mMhydrogen perox-

ide made the organisms significantly more resistant to higher
concentrations of hydrogen peroxide and to neutrophils than
control organisms. These results suggest that catalase is an

important defense for N. gonorrhoeae during attack by human
neutrophils. The rapid response of this enzyme to hydrogen
peroxide should be taken into consideration in studies designed
to evaluate the interaction between neutrophils and gonococci.
(J. Clin. Invest. 1992. 90:1000-1006.) Key words: Neisseria
gonorrhoeae- catalase - neutrophils * hydrogen peroxide

Introduction

Neisseria gonorrhoeae is an obligate pathogen of man primar-
ily confined to mucous membranes (1). Most strains of this
organism evoke a remarkable neutrophilic exudate (2). How-.
ever, this organism can be recovered from inflammatory foci
without difficulty, suggesting a variety of adaptive mechanisms
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that allow bacterial survival even after phagocytosis (3). Sev-
eral mechanisms of resistance have been examined. These in-
clude failure of the organism to express surface components
required for maximal formation of chemotactic complement
components (2), lack of expression of surface components that
facilitate attachment to phagocytes (4, 5), expression of anti-
phagocytic factors (6), and/or other mechanisms of resistance
(7, for review see reference 8).

Professional phagocytes use a combination of mechanisms
to kill bacterial pathogens. These are generally divided into
mechanisms that require the use of molecular oxygen for the
formation of free radicals (9) and/or those that depend on
microbicidal proteins that can work under anaerobic condi-
tions ( 10). In vivo, these mechanisms almost certainly work in
concert.

Phagocytic cells possess a unique NADPHoxidase system
that allows the transfer of a single electron to molecular oxygen
resulting in the formation of superoxide ( 11). Superoxide is
dismutated to hydrogen peroxide (H202) and may lead to the
generation of more toxic reactive oxygen intermediates such as

hypochlorous acid (HOCI) and/or hydroxyl radical (HO0)
under appropriate conditions of incubation (9). To survive
reactive oxygen intermediates, microbes possess a variety of
antioxidant defenses, including superoxide dismutase (which
eliminates superoxide) and catalase (which detoxifies H202).
A correlation between survival of microbial pathogens and the
level of antioxidant defenses has been reported (for review see
reference 12).

N. gonorrhoeae is unique relative to most aerobic organ-
isms because it does not produce superoxide dismutase (13-
15). However, gonococci generate catalase in high concentra-
tion (14, 16). The current study was undertaken to examine
the response of gonococci to H202 and polymorphonuclear
neutrophils. The results demonstrate that expression of cata-
lase is dynamic and increases during exposure of these organ-
isms to neutrophil attack. Increase in gonococcal catalase activ-
ity provides protection from exogenous H202 and from human
neutrophils.

Methods

Reagents. Chloramphenicol, H202, bovine erythrocyte SOD, bovine
liver catalase, paraquat, desferrioxamine mesylate (Desferal), phorbol
myristate acetate (PMA), and TCAwere purchased from Sigma Chem-
ical Co. (St. Louis, MO).

Growth ofgonococci and generation ofsubcellularfractions. N. gon-
orrhoeae strain FA 1090, a clinical isolate provided by P. Frederick
Sparling (University of North Carolina at Chapel Hill), was subcul-
tured daily on 0.18% (wt/vol) Bacto agar and 3.6% GCMedium Base
(Difco Laboratories Inc., Detroit, MI) that contained 1 and 0.1% (vol/
vol) Kellogg supplements I and II, respectively ( 16). Broth cultures
were obtained by inoculating a single colony into proteose peptone
GCBbroth containing 2% supplement I and 5 mMsodium bicarbon-
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ate; bacteria were grown to mid-log phase on a platform shaker at 140
cycles/min, 37°C, in an atmosphere of 5%CO2. Cell density was mon-
itored with a spectrophotometer (DMS-80; Varian Associates Inc.,
Palo Alto, CA). A reading of OD0.5 at 600 nm indicated the presence
of - 2.5 x 108 CFU/ml. Bacteria were pelleted by centrifugation and
resuspended in ice-cold 50 mMTris-HCl, pH 8.0. To generate prepara-
tions representing different cellular compartments ( 17), 109 gonococci
were sonicated for 30 s at setting 60 in a sonic dismembrator (model
300; Fisher Scientific, Pittsburgh, PA) followed by cooling on ice for 30
s; this was repeated three times. Cells were centrifuged 3,000 gfor 5 min
to remove debris. The supernatant represented the whole-cell extract.
A portion of the whole-cell extract was subjected to further sonication
and centrifuged at 100,000 g for 60 min; the supernatant contained the
cytoplasmic proteins. The pellet was resuspended in 10 mMHepes
buffer, 1%Na-laurylsarcosine, 10 mMMgCl2, pH 7.4 and sonicated as
described above. This extract was centrifuged at 100,000 g for 60 min;
the supernatant contained the cytoplasmic membrane proteins. The
pellet containing the outer membrane was resuspended in 100 ,ul H20.

Preparation of neutrophils. Whole blood from normal human do-
nors was obtained in heparinized syringes. Neutrophils were separated
from erythrocytes by incubation of 25 ml of whole blood with 10 ml
Plasmagel (Roger Belon, Neuilly, France) for 1 h. Leukocyte popula-
tions were further separated on a Ficoll-Hypaque gradient as previ-
ously described (7). Contaminating erythrocytes were eliminated by
osmotic lysis. Neutrophils were resuspended in cold HBSSand the
concentration of cells determined by an automated cell counter
(Coulter Electronics Inc., Hialeah, FL). Viability was assessed by try-
pan blue dye exclusion and was > 95%.

Determination of catalase and glucose 6-phosphate dehydrogenase
(G-6PDH)' activity. Catalase activity was assayed on the basis of the
decomposition of H202 monitored at 240 nm in a spectrophotometer
as previously described ( 18 ). One unit of catalase activity was defined
as the amount that decomposes 1 Amol of H202/min at room tempera-
ture using 17.6 mMH202. The protein concentration in different cell
fractions was measured by the method of Bradford ( 19). Proteins (2-
10 ;ig) from different cellular compartments were separated by electro-
phoresis on 5% polyacrylamide gels. Before application of samples,
materials for catalase native gels were electrophoresed in the presence
of 0.1 mMsodium thioglycollate to remove gel impurities that might
cause multiple activity bands. Catalase was visualized with an activity
stain as previously described (20). Subcellular fractions were also
examined for G-6PDH activity, which was measured as previously de-
scribed (21 ).

Determination of catalase protein concentration. Antibodies to
gonococcal catalase were raised in a rabbit to use in Western blotting
experiments. Gonococcal catalase was partially purified by column
chromatography as previously described ( 14). Partially purified cata-
lase was subjected to electrophoresis through a 5%SDS-PAGEgel and
was soaked overnight in 50 mMpotassium phosphate buffer, pH 7.4. A
band with retained catalase activity was cut from the gel, subjected to
three cycles of freeze-thawing, and passed through a 25-gauge needle.
Gel fragments were then dissolved in an equal volume of Freund's
complete adjuvant (Sigma Chemical Co). A rabbit was immunized
with this preparation and was bled, as previously described (22).

To eliminate cross-reacting antibodies, rabbit serum was absorbed
with a cytoplasmic preparation from a naturally occurring catalase-de-
ficient mutant provide by Dr. Steven Johnson (Centers for Disease
Control). Serum was diluted in PBS( 1:10) and exposed to 50 g of this
protein for 1 h at 37°C, and for 16 h at 4°C, as previously described
(23). Immune (but not preimmune) serum reacted with a single pro-
tein band migrating at an identical speed as purified gonococcal cata-
lase on an SDS-PAGEgel.

For immunoblotting experiments gonococcal cytoplasmic proteins
were subjected to electrophoresis on a 5% SDS-PAGEgel. Proteins

1. Abbreviation used in this paper:G-6PDH, glucose 6-phosphate dehy-
drogenase.

were transferred to nitrocellulose (PUDF; Millipore Corporation, Bed-
ford, MA) using the Western blotting technique of Burnette (24). After
transfer, nitrocellulose was incubated in 5%dried milk in PBS for 1 h
and washed with PBS for 15 min. Nitrocellulose was then incubated
with a 1: 1200 dilution of rabbit serum in PBSat room temperature for

1 h. Nitrocellulose was washed for 30 min with PBSand incubated with
horseradish peroxidase-conjugated goat anti-rabbit IgG (BRL Life
Technologies, Inc., Gaithersburg, MD) diluted 1:3000 in PBS. Nitro-
cellulose was washed for 30 min and antibody reactions were detected
after 1 min using the enhanced chemiluminescence technique (Amer-
sham International, Arlington Heights, IL; reference 25). The nitrocel-
lulose was covered, exposed to hyperfilm-TMP (Amersham Interna-
tional) for 1-3 min, and developed in a Kodak D19 Developer. Using
this procedure immune (but not preimmune) rabbit serum identified a
protein that migrated at exactly the same speed as gonococcal catalase
activity recognized on SDS-PAGEgel (see Fig. 4). The immune rabbit
serum did not react with cytoplasmic proteins of similar size from the
catalase deficient gonococcal isolate or several Escherichia coli strains.

Bacterial exposure to H202 and neutrophils. H202 stress of gono-
cocci was undertaken by exposing log-phase bacteria to 0.3-1.0 mM
H202 at 10-min intervals for 1 h at 37°C with shaking ( 140 cycles/
min) in GCbroth. In some experiments exposure of bacteria to H202
was compared with alternative forms of stress. Heat shock was
achieved by incubating log-phase gonococci at 42°C for 1 h ( 17). To
examine the effects of intracellular superoxide, gonococci were treated
with 1.0 mMparaquat for 1 h at 37°C (26). For experiments with
neutrophils, 1.5-2.5 x 10 ' gonococci and neutrophils ( 1:1 particle/cell
ratio) were incubated for 120 min at 37°C with shaking ( 140 cycles/
min) in a 5% CO2 atmosphere. The neutrophils were then lysed by
sonication (20 s, setting 60). This magnitude of sonication did not
reduce gonococcal viability. Gonococci were centrifuged (800 g) and
washed three times with cold PBS to eliminate contaminating neutro-
phils. The number of surviving gonococci was determined based on
growth on GCBagar after 48 h of incubation at 37°C. This assay mea-
sures total gonococcal killing and does not separate intracellular and
extracellular killing by neutrophils. In some experiments new protein
synthesis was inhibited by treating gonococci with chloramphenicol
(100 ,g/ml) for 1 h at 37°C.

Results

Effects of H202 on gonococcal catalase. Gonococci were ex-
posed to increasing concentrations of exogenous H202 to exam-
ine the effects of such stress on catalase activity. An increase in
gonococcal catalase activity was observed when organisms
were exposed to as little as 0.3 mMH202 for 40 min. Maximal
effects on catalase were observed when 1.0 mMH202 was em-
ployed. Treatment of 109 log-phase gonococci with six pulses
of 1 mMH202 over 60 min caused a threefold increase in
catalase activity (Fig. 1). This concentration of H202 caused
limited reduction in viability (see Fig. 7).

To determine whether other forms of stress could affect
catalase activity, gonococci were also exposed to sublethal con-
centrations of the superoxide-generating compound paraquat
(26) and heat shock (17, 27). Heat shock did not increase
catalase activity; paraquat reduced catalase activity (Fig. 1).

Gonococcal catalase was also characterized by native gel
electrophoresis (Fig. 2). Gonococci were subjected to subcellu-
lar fractionation to examine compartmentalization of catalase
(Fig. 2). The increase in catalase observed after exposure of the
organisms to H202 was restricted primarily to the bacterial cy-
toplasm (Fig. 2, Table I). 0.9% of the total catalase activity was
found in the cytoplasmic membrane preparation. To examine
contamination of the cytoplasmic membrane preparation
G-6PDH activity (a bacterial cytoplasmic enzyme) was mea-
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Figure 1. Response of gonococci to H202. 109 log-phase gonococci
were exposed six times to 1.0 mMH202 at 10-min intervals and effect
on catalase activity (U/mg protein) was examined. Gonococci were
exposed to 1.0 mMparaquat (PQ) to generate 02- (26) and to heat
shock (HS, 420C) for h (17). Results are the mean and SEMof
three to eight separate experiments, each in duplicate. *Differences
(P < 0.001 ) between control and treated bacteria.

sured (21 ). G-6PDHactivity was detected only in the cytoplas-
mic compartment (Table I). Using either native gel (Fig. 2) or

SDS-PAGE(data not shown), a single broad band of catalase
activity was observed before and after H202 stress and in the
cytoplasmic and membrane fractions.

Mechanism(s) of increase in catalase activity. An increase
in gonococcal catalase activity after exposure to H202 could be
due to the formation of new protein or to an increase in the
activity of preformed enzyme. To examine these possibilities
H202-treated gonococci were exposed to a sublethal concentra-
tion of chloramphenicol, to block the new protein formation
(28). In the presence of chloramphenicol, catalase activity was

not increased during exposure to H202 (Fig. 3). To determine

Table I. Distribution of Catalase
and Glucose-6 Phosphate Dehydrogenase

Catalase

-H202 +H202 G-6PDH

U/mg protein U/mg protein

CP 1,160.6±70.4 2,941.7±313.0* 827.5
CMP 10.2±01.9 23.8±3.4* 0
OMP 0 0 0

Results for catalase activity are the mean and SEMof four separate
experiments, each in duplicate. Results with G-6PDHare the mean
of two experiments in duplicate. 98 and 96.7% of catalase and
G-6PDH activity were recovered from whole cell extracts, respec-
tively. CP, cytoplasm proteins; CMP, cytoplasm membrane proteins;
OMP, outer membrane proteins. * Significant differences (P < 0.0 1)
between control gonococci and organisms treated with 1 mMH202.

whether availability of iron affected gonococcal catalase ex-

pression, the iron chelator desferrioxamine was included dur-
ing exposure of the organism to H202; desferrioxamine did not
significantly inhibit the response of gonococci under these con-

ditions (Fig. 3).
Inhibition by chloramphenicol of catalase activity expected

in response to H202 strongly suggested that H202 stress resulted
in new protein formation. To confirm this idea we took advan-
tage of a polyclonal rabbit antibody raised to purified gonococ-
cal catalase. Using this antibody, we demonstrated a two- to
threefold increase in gonococcal catalase protein detectable by
immunoblotting after exposure of gonococci to 1.0 mMH202
(Fig. 4).

Effects of human neutrophils on gonococcal catalase. The
attack of gonococci by neutrophils is an event considerably
more complicated than their exposure to H202 (for reviews see

references 8 and 9). Weexamined the effects of neutrophils on

1 2 3 4 5 6

Figure 2. Examination of catalase activity by native electrophoresis
gel. Gonococcal preparations were fractionated to generate cytoplas-
mic (lanes 1 and 2), cytoplasmic membrane (lanes 3 and 4), and
outer membrane proteins (lanes S and 6). Lanes 1 and 2 were loaded
with 2.0 lsg protein. Lanes 3-6 were loaded with 10Oug protein. Some
preparations of gonococci were exposed to 1.0 mMH202 (lanes 2, 4,
and 6) as described in Fig. 1. Results are typical of 10 different ex-
periments.
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Figure 3. The effect of antioxidants and protein inhibition on gono-
coccal catalase response to 1.0 mMH202. Gonococci were exposed
to 1.0 mMH202 in the presence of 0.2 mMdesferrioxamine (DF) to
chelate iron or 100 ,ug/ml chloramphenicol (CA) to prevent new
protein formation. Results represent the mean and SEMof three to
eight separate experiments, each in duplicate. *Differences (P
< 0.001 ) between control bacteria and those treated with antioxidants.
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Figure 4. Immunoblotting of gono-
coccal cytoplasmic proteins before
and after exposureto H202. 2.0 x 109
gonococci were exposed to 1.0 mM
H202 as described in Fig. 1. The mi-
gration of partially purified gonococ-
cal catalase (5 ug) on an SDS-PAGE
gel and stained for activity is shown
in the first lane. Gonococcal cytoplas-
mic proteins (100 Mg) were run under
identical conditions, transferred to ni-
trocellulose, and reacted with a rabbit
polyclonal antibody raised against
gonococcal catalase (see Methods).
Gonococci exposed to H202 (lane 2)
were compared with control bacteria
(lane 3). Results are typical of two
separate experiments. Exposure of
gonococci to H202 caused a two- to
threefold increase in the immunore-
active protein.

gonococcal expression of catalase. As shown in Fig. 5, neutro-
phil catalase can be distinguished from gonococcal catalase by
native gel electrophoresis because of the difference in the size of
these enzymes. Wedemonstrated that neutrophil and gonococ-
cal catalase could be separated by brief sonication of the prepa-
ration and extensive washing (Fig. 5). This procedure was rou-
tinely used as a control to assure measurement of gonococcal
(and not neutrophil) catalase activity.

Exposure of gonococci to neutrophils in the presence of
PMA(to stimulate maximal secretion of H202; reference 29)
led to a twofold increase in gonococcal catalase activity (Fig.
6). Experiments were conducted to determine the mechanisms

1 2 3 4 Figure 5. Native elec-
trophoresis gel stained
for catalase activity.
Lane 1 (5 jg protein)
contains gonococcal cy-
toplasmic proteins.
Lane 2 (5 gg protein)
contains 108 gonococci
exposed to an equal
number of neutrophils
stimulated with PMA
(100 ng/ml). These
samples were subjected
to sonication (20 s, set-
ting 60; Sonic Dismem-
brator Model 300;
Fischer) centrifugation
(2000 rpm, 20 min),
and were washed three
times with PBS to re-
move neutrophil pro-
teins before generating
gonococcal cytoplasmic
proteins. Lanes 3 and

4 (1O jg protein) contain lIO neutrophils, and 100 ng/ml PMAwas
added to the cells in lane 4. These preparations were used as a control
for experiments to determine the effect of neutrophils on gonococcal
catalase activity. The results are typical of eight separate experiments.
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Figure 6. The effects of antioxidants and protein inhibition on re-
sponse of gonococcal catalase to neutrophils. 108 gonococci were in-
cubated with an equal number of neutrophils for 1 h. The effects of
desferrioxamine (DF; 0.2 mM), catalase (CAT; 10 Ag/ml), and su-
peroxide dismutase (SOD; 10 Mg! ml) were examined. Results repre-
sent the mean and SEMof three to eight separate experiments, each
in duplicate. *Significance differences (P < 0.01 ) between treated
and control organisms.

for increased catalase activity, which might include stimulation
by reactive oxygen species (9) and/or one or more microbici-
dal proteins ( 10). To dissect these possibilities gonococci were
exposed to stimulated neutrophils in the presence of exogenous
catalase and SOD, or the iron chelator desferrioxamine (Fig.
6). Only exogenous catalase prevented an increase in gonococ-
cal catalase activity.

PMAwas used in these experiments because it has been
reported that only some variants of gonococci stimulate the
release of reactive oxygen species by neutrophils (4, for review
see reference 8). In particular, such stimulation has been re-
lated to expression of one or more heat modifiable Opa(PII)
outer membrane proteins (4, 5, 8). To further examine the
effects of neutrophils on gonococci, we used gonococcal strain
FA1090 expressing Opa proteins a and b, and a variant express-
ing no Opa proteins; these proteins were identified through the
use of monoclonal antibodies as previously described (30). Or-
ganisms forming pili were used since pili are required to pro-
duce disease in vivo (31 ). Gonococci expressing Opa proteins
were killed significantly better than variant bacteria failing to
express Opa proteins (Table II). The effect of exposure of gono-
cocci to neutrophils with different Opa phenotypes is shown in
Table II. Opaa and b organisms exposed to neutrophils demon-
strated a 1.4- and 2-fold increase in catalase activity, respec-
tively. Neutrophil exposure did not lead to stimulation of cata-
lase in Opa-gonococci.

Experiments were conducted to determine whether an in-
crease in gonococcal catalase activity could provide resistance
to H202. As shown in Fig. 7, gonococci exposed to 1.0 mM
H202 demonstrated significant resistance at higher concentra-
tions of H202. Experiments were conducted to determine
whether exposure of gonococci to H202 also lead to increased
resistance to neutrophils. Piliated Opa a gonococci were used,
since they demonstrated the greatest sensitivity to neutrophils
(Table II). As shown in Fig. 8, Opaa gonococci pretreated with
H202 were significantly more resistant to neutrophils than con-
trol bacteria.

Neutrophil Oxidant Stress Increases Gonococcal Catalase and Survival 1003



Table II. Effect of Exposure to Neutrophils on Gonococcal Catalase

Gonococcal phenotype Catalase Survival

U/mg protein %

Opa- 796.0± 13.5
+PMNs 847.6±49.9 90.3%±8.5
Opa a 845.1±20.8
+PMNs 1145.2±32.6* 54.7%±8.0*
Opa b 793.7±22.2
+PMNs 1628.8±31.5* 76.7%±7.2

Results demonstrate the effects of interaction of neutrophils (PMNs)
with gonococci of different Opa phenotype (4, 5, 26) as well as bacte-
rial survival after 60 min of phagocyte killing. Results are the mean
and SEMof four separate experiments, each in duplication. * Sig-
nificant differences (P < 0.0 1) between control gonococci and those
exposed to PMNs.

Discussion

Formation of reactive oxygen intermediates by phagocytic cells
is one of several mechanisms that lead to the death of many
microbes (8, 12, 32). The importance of these reactive oxygen
intermediates depends heavily on the microenvironmental
conditions (9) and bacterial antioxidant defenses ( 12). Earlier
studies with Staphylococcus aureus (33) and other organisms
(for review see reference 12) have demonstrated that bacteria
with high levels of catalase activity are more resistant to phago-
cytes than organisms with less catalase. However, in these stud-
ies the catalase activity of surviving organisms was not investi-
gated.

At least some gonococcal strains stimulate formation of
reactive oxygen intermediate by neutrophils (4, for review see

Figure 7. Effect of stress
on gonococcal resis-

100 tance to H202. 2.0
x 109 gonococci pre-
treated with 1.0 mM
H202 as described for
Fig. I (.) were chal-
lenged with higher con-

10-1 centrations of H202for
60 min. Control organ-

7\ isms are shown with
_> open circles. Results

represent the mean and
co -2 V,\SD of four separate ex-

. 10 \ periments, each in du-
jX1\ "plicate. Control organ-

isms were significantly
Cm (P < 0.05) more sus-

\ I ceptible to H202 than
10-3 ~ 85 stressed bacteria at all

H202 concentrations
> 1.0 mM. Survival of
stressed and control
gonococci exposed to
1.0 mMH202 was not

1 significantly different
5 10 than for untreated or-
H202( mM) ganisms (0 mMH202)-

l00 Figure 8. Effect of H202
stress on gonococcal re-
sistance to neutrophils.

0) Results demonstrate the
s is effects of exposure of

.260 gonococci to 1.0 mm
H202. Piliated gono-

c cocci expressing Opa a
o 40 - were exposed to H202

exactly as described in
20 \gK Fig. 1. Killing of control
20 bacteria (o) were com-

pared with gonococci
I i 1 exposed to H202 (e).

0 30 60 90 120 Results are the mean
Time (minutes) and SEMof three sepa-

rate experiments, each
in duplicate. Opa a gonococci exposed to H202 were significantly
more resistant to neutrophils (P < 0.05) than control bacteria at each
time point examined.

reference 8). Gonococci make no SOD( 13-15), and it has
been proposed that catalase, which is expressed in high concen-
tration in gonococci relative to some other human pathogens
( 16), helps to offset this deficiency ( 14). Weexamined catalase
activity with the belief that this enzyme might play a role in
protection of gonococci from neutrophils. Since gonococci do
not appear to be killed effectively by neutrophils in vivo, the
dynamic response of catalase activity was of particular interest.

Gonococcal catalase was primarily localized to the cyto-
plasm. A small concentration of the enzyme was found in the
cytoplasmic membrane. This could represent contamination
during the fractionation procedure, but the cytoplasmic en-
zyme G-6PDH was not found in gonococcal cytoplasmic
membranes prepared under identical conditions. In E. coli,
different isoenzymes of catalase are found in the cytoplasm and
periplasmic space (34). Weobserved only a single form of
gonococcal catalase in the cellular fractions prepared.

Exposure of gonococci to H202 led to a threefold increase in
enzyme activity, which remained primarily localized to the cy-
toplasmic compartment. This increase in catalase is consistent
with that observed in other bacteria exposed to H202 (34, 35).
Neither paraquat nor heat shock caused an increase in gonococ-
cal catalase expression. Greenberg and Demple (36) have dem-
onstrated that paraquat causes formation of E. coli proteins
distinct from other forms of stress. Paraquat actually inhibited
gonococcal catalase activity, consistent with the idea that the
superoxide generated could inactivate catalase (37).

Gonococci exposed to human neutrophils stimulated with
PMAalso demonstrated an increase in catalase activity. Simi-
lar results were obtained using Opa variants differing in their
interaction with neutrophils. The increase in catalase activity
observed in gonococci attacked by neutrophils represents a
complex balance between the ability of these bacteria to stimu-
late neutrophil formation of H202 and their survival and for-
mation of adaptive stress proteins. It is believed that some Opa
proteins facilitate binding and ingestion ofgonococci by neutro-
phils (4, 38), and our results support this hypothesis. It should
be noted that neutrophil killing of gonococci observed repre-
sents the composite of intracellular and extracellular killing.
Catalase activity was greater in Opa b than Opa a gonococci
exposed to neutrophils, presumably reflecting the poor survival
of the latter gonococcal phenotype. Catalase did not increase in
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Opa- gonococci, likely because of limited stimulation of neutro-
phil oxidative metabolism. Neutrophil killing of Opa variants a
and b was the opposite of that reported by Rest and coworkers
(4, 38). However, piliated organisms were not used in the latter
studies. Additional experiments demonstrated that exogenous
catalase, but not other antioxidants, blocked the increase in
gonococcal catalase produced by neutrophils. In addition, the
increase in catalase activity observed could be ascribed to new
protein formation.

Gonococci exposed to H202 demonstrated significant resis-
tance to neutrophil killing and higher concentrations of H202.
Such resistance seems most likely due to increased formation
of catalase. This relationship could be confirmed through use
of a catalase-deficient isogenic mutant. However, the gene for
gonococcal catalase has not been cloned. A wild-type gonococ-
cal strain deficient in catalase was identified at the Center for
Disease Control. This isolate is more sensitivt to H202 and
neutrophils than other gonococcal strains we have examined
(unpublished data and personal communication, Steven John-
son, Centers for Disease Control), and does not develop char-
acteristic changes we have described for gonococcal strain
FA1090 after exposure to H202.

Webelieve the results of the work presented have two im-
portant implications. First, they emphasize the dynamic nature
of catalase in gonococci and perhaps other bacteria as well.
Brief exposure of these bacteria to H202 or neutrophils permits
an increase in catalase activity. Experiments designed to exam-
ine the relationship of catalase to phagocyte microbicidal ef-
fects should take into consideration this stress response.

Second, this physiological response lends itself to discus-
sion of the overall interaction of gonococci with neutrophilic
phagocytes. This and other studies must explain the mecha-
nism(s) by which gonococci survive in vivo (for review see
references 8 and 39). Studies with antibodies obtained from
hosts with gonococcal urethritis and pelvic inflammatory dis-
ease suggest gonococci make unique proteins resulting from
both aerobic and anaerobic conditions in vivo (40). Gono-
cocci most likely function in both aerobic and anaerobic envi-
ronments (39, 41). Webelieve that the early interactions be-
tween neutrophils and gonococci at the mucosal surface are
likely to involve oxidant stress, whereas subsequent interac-
tions may be anaerobic, at least in part due to gonococcal com-
petition for molecular oxygen (7, 41 ). The anaerobic killing of
gonococci has been emphasized because of sensitivity of the
organism to cells harvested from patients with chronic granulo-
matous disease (reference 38; which cannot make H202) and
to normal neutrophils under anaerobic conditions (42). How-
ever, the general sensitivity of gonococci to oxidants ( 16, 43,
44) and the increased sensitivity of a catalase-deficient wild-
type gonococcal isolate to neutrophils (unpublished data) re-
quires reconsideration of the relative importance of 02-depen-
dent and 02-independent neutrophil killing. The natural his-
tory of gonococcal disease requires that we explain survival of
the organism under both aerobic and anaerobic conditions. By
providing increased resistance to H202, catalase could allow
gonococci to survive at least one aspect of the neutrophil at-
tack.
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