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Perspectives

Transforming Growth Factor-,B in Disease: The Dark Side of Tissue Repair
Wayne A. Border* and Erkki Ruoslahtit
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Introduction
Inflammatory, immune, and tissue repair responses protect us
against a hostile and dangerous environment. However, these
responses sometimes fail, mistarget, or overshoot and harm
what they were meant to protect. For example, prostaglandins
are important proinflammatory mediators that can also cause
unwanted, painful reactions. As a result, we spend a part of our
lives taking aspirin and other inhibitors of prostaglandin syn-
thesis. The theme we would like to develop in this review is
that, while a growing body of evidence implicates transforming
growth factor- (TGF-f3)' as a cytokine vital to tissue repair, it
also is one whose excessive action may be responsible for the
tissue damage caused by scarring in many serious diseases. We
propose that the pathological consequences of the action of
TGF-f be termed the "dark side" of tissue repair. Inhibitors of
TGF-f may be important future drugs in controlling this con-
dition.

TGF-f3: basic biology
TGF-3, a multifunctional cytokine, plays an important role in
embryonal development and in regulating repair and regenera-
tion following tissue injury ( 1-3). It consists of a family of three
isoforms, TGF-f 1, 2, and 3, that are structurally and function-
ally closely related to one another. The TGF-fs are members of
a superfamily of cytokines that includes other regulators of
differentiation and tissue repair such as activin, Mullerian in-
hibitory substance, and bone morphogenetic proteins (4). In
their active form, all of these substances are dimers of a 1 2-kD
polypeptide that arises from a larger precursor through proteo-
lytic processing.

Multiple events involving TGF-f take place in tissue repair
after injury. Platelets contain high concentrations of TGF-fl
and upon degranulation at a site of injury release TGF-f into
the surrounding tissue (5). TGF-f then initiates a complex se-
quence of events that promotes healing including: chemoat-
traction of monocytes and leukocytes (6-8); induction of an-
giogenesis (9); and control of the production of cytokines and
other inflammatory mediators (10-12).
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Two additional features of the TGF-fl response in injury
may be the most important for the topic of this review: autoin-
duction of TGF-O production (13) and induction by TGF-f3 of
increased deposition of extracellular matrix (9, 14, 15). TGF-O
stimulates the synthesis of individual matrix components in-
cluding fibronectin, in particular one of its variant forms, as
well as tenascin, collagens, and proteoglycans (9, 16-20). It
simultaneously blocks matrix degradation by decreasing the
synthesis of proteases and increasing the levels of protease in-
hibitors (21, 22). TGF-O increases the expression of integrins
and changes their relative proportions on the surface of cells in
a manner that could facilitate adhesion to matrix (23). All these
events can be beneficial in tissue repair. However, the dark side
to the TGF-f effects is that the TGF-3-induced deposition of
extracellular matrix at a site of tissue injury can lead to scarring
and fibrosis. Furthermore, the ability of TGF-f to induce its
own production may be the key to development of the scarring
and fibrosis into chronic, progressive conditions that will in
time obliterate the tissue structure.

TGF-f3 in kidney disease

Studies in a model of acute mesangial proliferative glomerulo-
nephritis induced by injecting rats with antithymocyte serum
show that production of TGF-,3 underlies the accumulation of
glomerular extracellular matrix in this disease. The injured glo-
meruli express more TGF-f mRNA, synthesize more TGF-fl
protein, and produce many-fold more fibronectin and proteo-
glycans than do normal glomeruli (24). Simultaneous with in-
creased matrix production is a striking decrease in plasmino-
gen activator activity and a parallel increase in production and
deposition of plasminogen activator inhibitor- 1 in the nephri-
tic glomeruli (Tomooka, S., W. A. Border, B. C. Marshall, and
N. A. Noble, manuscript submitted for publication). The plas-
minogen/plasmin system is thought to play an important role
in the normal degradation and turnover of matrix (25, 26).
Thus both increased production and decreased removal are
equally likely to contribute to the accumulation of pathological
matrix in the disease. Fig. 1 illustrates the induction of TGF-f31
mRNAin the glomeruli of the nephritic kidney.

Injection of an antiserum capable of neutralizing the activ-
ity of TGF-l3 into the nephritic rats suppresses the production
of matrix components by the glomeruli and prevents the
buildup of mesangial matrix (27). Two of the proteoglycans
induced by TGF-fl in the glomerulonephritis model, decorin
and biglycan, are inhibitors of TGF-f (28); their elevated ex-
pression under the influence of TGF-f may be not only a re-
flection of increased extracellular matrix production, but also a
response to limit further activity of TGF-,B. We have taken
advantage of the ability of decorin to suppress TGF-f activity
and have found that injections of decorin can also suppress the
glomerulonephritic disease in the rats (Border, W. A., N. A.
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Figure 1. In situ hybridization of rat glomeruli with a TGF-$1 antisense probe. Bright- and dark-field micrographs of a normal glomerulus (A and
B) and a nephritic glomerulus (C and D). TGF-fll probe provided by Dr. H. L. Moses, Vanderbilt University.
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Noble, T. Yamamoto, Y. Yamaguchi, M. D. Pierschbacher, J.
Harper, and E. Ruoslahti, manuscript submitted for publica-
tion). The antibody and decorin results establish a causal rela-
tionship between accumulation of pathological matrix in mes-
angial proliferative glomerulonephritis and elevated produc-
tion of TGF-fl. Elevated expression of TGF-# has also been
reported in crescentic glomerulonephritis induced by injecting
antibody against antigens of the glomerular basement mem-
brane (29). TGF-,3 elaborated as a consequence of the antibody
injury in the glomerulus correlates with the previously demon-
strated increase in the expression of collagen mRNAand pro-
tein in the interstitium of the kidney and the development of
severe renal fibrosis (30).

Quite recently, we have found that TGF-f may also be im-
portant in diabetic nephropathy (Yamamoto, T., T. Naka-
mura, N. A. Noble, E. Ruoslahti, and W. A. Border, manu-
script submitted for publication). Elevated levels of TGF-#
mRNAwere observed in glomeruli of rats made diabetic by the
administration of streptozotocin, a chemical that produces in-
sulin deficiency. The rats develop kidney disease that resembles
human diabetic nephropathy (31, 32). The levels of TGF-f
mRNAincreased with time after onset of diabetes and were
highest in diabetic rats that did not receive insulin. Immunohis-
tochemical staining showed that there was also an increased
expression of TGF-,3 protein in the diabetic kidneys. More-
over, elevated levels of fibronectin, tenascin, and proteogly-
cans, which are among the extracellular matrix components
typically produced under the influence of TGF-f3, provided a
strong indication of increased TGF-3 activity in these kidneys.
The relevance of these findings to human diabetes was con-
firmed by the demonstration of much elevated amounts of
TGF-f protein in the glomeruli of patients with diabetic ne-
phropathy. Glomeruli from normal kidneys or from other non-
progressive kidney disorders were negative for TGF-f3. Thus,
TGF-f may play an important role in the development of le-
sions in diabetic nephropathy, which is one of the most impor-
tant diabetic complications that occurs despite insulin treat-
ment.

Renal interstitial fibrosis occurs in all patients with progres-
sive glomerular disease and is an excellent predictor of kidney
failure (33). The link between glomerular injury and interstitial
fibrosis may be TGF-fl, which, when released from the glomer-
ulus, induces its own production and matrix formation in the
renal interstitium. This pattern of fibrosis is prominent in the
severe renal fibrosis that occurs in transplant patients treated
with cyclosporin (34); the possible role of TGF-f3 in this condi-
tion merits further study. Because of its intricate architecture
and filtration function, the kidney maybe particularly suscepti-
ble to the consequences of matrix accumulation and, therefore,
may be a prime organ to be affected by elevated TGF-0. How-
ever, an increasing body of evidence implicates TGF-f in analo-
gous pathologies of other organs.

TGF-f3 in fibrotic diseases of other organs
The role of excessive TGF-,B activity in disease was first demon-
strated at a causal level in the mesangial injury rat glomerulone-
phritis model discussed above. More recent studies have estab-
lished a similar causal connection between experimental tissue
scarring and TGF-,B expression in the skin (35) and the central
nervous system (Logan, A., A. M. Gonzalez, S. A. Frautschy,
M. B. Sporn, M. Berry, and A. Baird, manuscript submitted for
publication). Moreover, there is strong correlative evidence to
suggest that TGF-fl overproduction is a problem in lung fibro-

sis, liver cirrhosis, cardiac fibrosis after infarction, scarring and
fibrosis in disorders of the eye and skin, and in the formation of
postoperative intraabdominal adhesions. Arterial restenosis
after angioplasty, hypertensive vasculopathy, and myelofibro-
sis are other conditions in which TGF-# may be important.

Broekelman et al. (36) found strongly elevated TGF-# ex-
pression in human lungs with idiopathic fibrosis. The increased
TGF-3 production was localized to the same sites where the
abnormal extracellular matrix accumulation occurred in the
alveolar walls. Bleomycin-induced pulmonary fibrosis is also
associated with increased TGF-3 gene expression (37). A simi-
lar increase of TGF-f expression has been observed in human
patients with liver cirrhosis (38), in mice with hepatic fibrosis
(39), and in the rat heart after infarction (40). In humans, prolif-
erative vitreoretinopathy of the eye is also associated with ele-
vated TGF-3 levels (41) as are various fibrotic skin diseases
including systemic sclerosis (42, 43) and eosinophilia-myalgia
syndrome (44). Recently, intraperitoneal administration of
TGF-3 to rats was shown to markedly increase the formation of
postoperative adhesions (45).

The role of TGF-f in scarring is particularly interesting. It is
well known that fetal skin heals without scarring and that only
after birth does the healing of a wound generate a scar. Whitby
and Ferguson (46) have recently found a correlation between
the lack of scarring in fetal skin and the greatly reduced or
absence of a TGF-3 response to wounding of the skin in ro-
dents. The fetal skin wounds displayed detectable TGF-/3 only
in the blood platelets that had aggregated at the wound site,
whereas no TGF-# could be detected in the tissue surrounding
the wound. In marked contrast, the tissue surrounding a
wound in neonatal and older skin was TGF-j3 positive.

In - 30-40% of all angioplasty procedures performed for
atherosclerotic obstructions of the coronary arteries, the artery
will show evidence of restenosis after several weeks and half of
these patients will redevelop symptoms (47, 48). The tissue that
causes the restenosis consists of ingrowing smooth muscle cells
and their extracellular matrix (49). Majesky et al. (50), studying
a balloon catheterization model in which an arterial wall is
denuded of endothelial cells in a process that resembles the
procedure performed on human patients, found a strong eleva-
tion of TGF-, in the treated vessel. Since TGF-f3 is strongly
chemotactic for many types of cells including smooth muscle
cells, and since TGF-j stimulates matrix production, this result
strongly suggests TGF-j3 involvement in the restenosis process.
There is rapid expression of TGF-f3, but not other cytokines, in
the aortas of rats after the onset of salt-induced hypertension
(51). TGF-3 is a potent inducer of endothelin (52). This rela-
tionship of TGF-,B and endothelin may be important (53) in a
number of vascular pathologies, including hypertensive
changes. Moreover, increased platelet TGF-f3 content has been
associated with myelofibrosis, leading to the hypothesis that
increased release of TGF-3 from megakaryoblasts may under-
lie the progressive fibrosis in this disease (54). Finally, increased
expression of TGF-,B in injured tissue is thought to predispose
the cells in the injured site to oncogenesis through a tumor
promoter activity of TGF-fl (55, 56).

TGF-3 as an immunosuppressant
TGF-t3 is a potent immunosuppressing agent in vivo. Both cel-
lular and humoral immune responses are affected (2). These
immunosuppressive activities are likely to underlie the benefi-
cial effects of systemic administration of TGF-fl in experimen-
tal arthritis and autoimmune disease models (57, 58). (How-
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Platelets and leukocytes
release TGF-p in damaged tissue. TGF-P induces the surviving cells to produce

extracellular matrix (ECM) and additional TGF- f.
Other cytokines stimulate cell proliferation.
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3a. SHUTDOWN(Normal)

Unknown mechanisms shut down the
TGF-3 and extracellular matrix production
when repair is complete.

3b. VICIOUS CIRCLE (Disease)

A failure to shut down TGF-P production is caused by
continuous injury or a defect in TGF-f regulation resulting
in accelerated production of TGF-f3 and extracellular matrix.

Figure 2. A schematic representation of the role TGF-# is believed to play in the repair of tissue injury and in the conversion of the repair process
into a chronic fibrotic disease.

ever, when given intraarticularly, TGF-fi produces a strong in-
flammatory reaction [59]). Another interesting effect of TGF-fl
is its ability to switch B cells from IgG to IgA production (60).
In the most common form of human glomerulonephritis, IgA
nephropathy (61), patients show a reversal of the normal bal-
ance of IgG versus IgA secretion by plasma cells (62). A recent
study reported the presence ofanti-mesangial cell autoantibod-
ies in the serum of patients with IgA nephropathy (63). This
finding is intriguing because the experimental model ofglomer-
ulonephritis discussed above in which elevated TGF-3 expres-
sion has been demonstrated is induced by injection of antibod-
ies reactive with the mesangial cells. The possibility that TGF-j3
is somehow involved in human IgA nephropathy is worthy of
additional study.

An important situation involving the immunosuppressive
activity of TGF-,i may be AIDS. Kekow et al. (64, 65) have
found elevated expression of TGF-f, in lymphocytes isolated
from the blood of AIDS patients. These authors suggest that the
excess TGF-,B may contribute to the systemic immunosuppres-
sion. Such a mechanism could explain the puzzling fact that
the immunosuppression in AIDS is general and yet relatively
few lymphocytes are infected by HIV. Interestingly, AIDS pa-
tients are also susceptible to a kidney disorder termed HIV-as-
sociated nephropathy in which glomerulosclerosis develops
(66). In mice made transgenic for HIV there was noted a pro-
gressive buildup of glomerular extracellular matrix (67). TGF-

p could provide the missing link between the infection, sys-
temic immunosuppression, and the glomerulosclerosis.

Why is TGF-f3 often harmful?
TGF-4 promotes wound healing. In a more primitive setting
than today's world, quick wound healing responses, character-
ized by exuberant matrix formation and deposition, may have
been all important and the possibility of deleterious side effects
from such responses a tolerable price to pay. The importance of
mounting a quick and effective TGF-13 response upon injury
may account for the unusual feature of TGF-, regulation that
TGF-f can induce its own production by target cells (13, 68,
69). This feature may be responsible for the potential harm of
TGF-f3. Thus, positive feedback may be a mechanism whereby
a TGF-,3 elevation can become chronic, creating a vicious cir-
cle (Fig. 2).

Prospects for TGF-f3-suppressing treatments
The complex regulation of TGF-j3 production and activity
offers a number of targets for TGF-(# suppression. TGF-f3 is
produced as an inactive precursor protein that is converted to
the mature, active form by protease cleavage (1-3). In a test
tube, TGF-# is commonly activated by acid treatment. Plas-
min has been suggested as a protease that activates TGF-,B phys-
iologically (70), but more than one protease may be needed for
effective activation (71). The activation peptide cleaved from
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the TGF-f precursor and certain other proteins, including tis-
sue proteoglycans, can inhibit TGF-f3 activity, presumably by
competing with the receptors for the binding of TGF-j (28,
72-74). Soluble forms of the receptors (75-77) may also inhibit
TGF-f activity by the same mechanism, but this has not yet
been proven.

Members of the steroid receptor superfamily can regulate
the TGF-3 gene at the level of the gene expression (78). Curi-
ously, a protein-restricted diet can completely suppress TGF-f
gene expression in rat glomerulonephritis induced by injuring
the mesangial cells (79). The molecular mechanism of this di-
etary effect is unknown, but it appears to offer one explanation
for the alleged beneficial effect of low protein diet on the pro-
gression of various kidney diseases.

TGF-3 activity has been successfully suppressed in vivo in
the kidney (27), in the skin (35), and in central nervous system
injury (Logan, A., A. M. Gonzalez, S. A. Frautschy, M. B.
Sporn, M. Berry, and A. Baird, manuscript submitted for pub-
lication), by administering anti-TGF-f antibodies capable of
preventing the binding of TGF-fl to its receptors. In each case,
blocking the action of TGF-3 dramatically decreased the exces-
sive deposition of extracellular matrix, but did not interfere
with normal healing of the tissue. For example the dermal
wounds treated with anti-TGF-f contained substantially less
collagen, did not manifest a scar, but did possess the same
tensile strength as the control wounds. Such studies are now
being extended to the other conditions with suspected TGF-f
involvement, and the use of TGF-fl inhibitors more suitable for
therapeutic use than antibodies is being explored. Such com-
pounds are likely to become important therapeutics in the
treatment of the diseases caused by the dark side of TGF-3.
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