Abstract

The effects of acidosis and mineralocorticoids on cellular H+/HCO3- transport mechanisms were examined in intercalated cells of the outer stripe of outer medullary collecting duct (OMCDo) from rabbit. Intracellular pH (pHi) of intercalated cells was monitored by fluorescence ratio imaging using 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). pHi recovered from an acid load at 2.8 +/- 0.5 x 10(-3) pHU/s in the absence of ambient Na+. This pHi recovery rate was similar in chronic acidosis induced by NH4Cl loading, but it was enhanced (+111%) by treatment with deoxycorticosterone acetate (DOCA). In a DOCA-treated group, luminal 10 microM SCH28080 and 0.1 mM omeprazole, H(+)-K(+)-ATPase inhibitors, did not change the pHi recovery rate, while luminal 0.5 mM N-ethylmaleimide blocked the rate by 68%. DOCA, but not acidosis, increased (approximately 40%) initial pHi response to bath HCO3- or Cl- reduction in Na(+)-free condition. After an acid load in the absence of Na+ and HCO3-, pHi response to basolateral Na+ addition was stimulated (+66%) by acidosis, but not by DOCA. Our results suggest that (a) mineralocorticoids stimulate H+/HCO3- transport mechanisms involved in transepithelial H+ secretion, i.e., a luminal NEM-sensitive H+ pump and basolateral Na(+)-independent Cl(-)-HCO3- exchange; and (b) acidosis enhances the activity of basolateral Na(+)-H+ exchange that may be responsible for pHi regulation.

Authors

M Kuwahara, S Sasaki, F Marumo

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement