Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Z-type alpha 1-antitrypsin is less competent than M1-type alpha 1-antitrypsin as an inhibitor of neutrophil elastase.
F Ogushi, … , S D Straus, R G Crystal
F Ogushi, … , S D Straus, R G Crystal
Published November 1, 1987
Citation Information: J Clin Invest. 1987;80(5):1366-1374. https://doi.org/10.1172/JCI113214.
View: Text | PDF
Research Article Article has an altmetric score of 15

Z-type alpha 1-antitrypsin is less competent than M1-type alpha 1-antitrypsin as an inhibitor of neutrophil elastase.

  • Text
  • PDF
Abstract

Alpha 1-antitrypsin (alpha 1AT) deficiency resulting from homozygous inheritance of the Z-type alpha 1AT gene is associated with serum alpha 1AT levels of less than 50 mg/dl and the development of emphysema in the third to fourth decades. Despite the overwhelming evidence that the emphysema of PiZZ individuals develops because of a "deficiency" of alpha 1AT and hence an insufficient antineutrophil elastase defense of the lung, epidemiologic evidence has shown that levels of alpha 1AT of only 80 mg/dl protect the lung from an increased risk of emphysema. With this background, we hypothesized that homozygous inheritance of the Z-type may confer an added risk beyond a simple deficiency of alpha 1AT by virtue of an inability of the Z-type alpha 1AT molecule to inhibit neutrophil elastase as effectively as the common M1-type molecule. To evaluate this hypothesis, the functional status of alpha 1AT from PiZZ individuals (n = 10) was compared with that of alpha 1AT from PiM1M1 individuals (n = 7) for its ability to inhibit neutrophil elastase (percent inhibition) as well as its association rate constant for neutrophil elastase (K association). Plasma alpha 1AT concentration, measured by radial immunodiffusion, was 34 +/- 1 mg/dl in PiZZ patients vs. 237 +/- 14 mg/dl for PiM1M1 plasma, a sevenfold difference. When titrated against neutrophil elastase, the present inhibition of PiZZ plasma was significantly less than Pi M1M1 plasma (ZZ 78 +/- 1% vs. M1M1 95 +/- 1%, P less than 0.001) as was purified Z type alpha 1AT (ZZ, 63 +/- 2% vs. M1M1 86 +/- 2%, P less than 0.001). Sodium dodecyl sulfate (SDS) gel comparisons of the complexes formed with M1-type alpha 1AT and Z-type alpha 1AT with elastase demonstrated the Z alpha 1AT-elastase complexes were less stable than the M1 alpha 1AT-elastase complexes, thus releasing some of the enzyme to continue to function as a protease. Consistent with these observations, the K association of purified Z-type alpha 1AT for neutrophil elastase was lower than that of M1-type alpha 1AT (ZZ 4.5 +/- 0.3 X 10(6) M-1s-1 vs. M1M1 9.7 +/- 0.4 X 10(6) M-1s-1, P less than 0.001), suggesting that for the population of alpha 1AT molecules, the active Z-type molecules take more than twice as long as the active M1-type alpha 1AT to inhibit neutrophil elastase. Consequently, not only is there less alpha1AT in PiZZ individuals, but the population of Z-type alpha1AT molecules is less competent as an inhibitor of neutrophil elastase than M1-type alpha1AT molecules. This combination of defects suggests that PiZZ individuals have far less functional antielastase protection than suggested by the reduced concentrations of alpha1AT alone, further explaining their profound risk for development of emphysema.

Authors

F Ogushi, G A Fells, R C Hubbard, S D Straus, R G Crystal

×

Full Text PDF

Download PDF (2.15 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 policy sources
Referenced in 3 patents
Referenced in 2 clinical guideline sources
60 readers on Mendeley
See more details