Sources and Quantity of 3,5,3'-Triiodothyronine in Several Tissues of the Rat

J. VAN DOORN, D. VAN DER HEIDE, and F. ROELFSEMA, Department of Endocrinology and Metabolic Diseases, University Hospital, 2333 AA Leiden, the Netherlands

ABSTRACT The local conversion of thyroxine (T_4) , which is an important source of intracellular 3,5,3'triiodothyronine (T_3) in several rat tissues, has been subject of recent investigations. In the present study the regulation of this phenomenon in vivo was investigated in various peripheral tissues of the rat.

Intact euthyroid and radiothyroidectomized (Tx) rats received a continuous intravenous infusion of [125I]T4 and [¹³¹I]T₃ until isotope equilibrium was attained. In addition to the labeled iodothyronines, Tx rats received a continuous intravenous infusion of 0.2 or 1.0 μ g carrier $T_4/100$ g body wt per d, to create hypothyroid or slightly hypothyroid conditions, respectively. After the animals were bled and perfused the contribution of T₃ derived from local conversion of T_4 to T_3 [Lc $T_3(T_4)$] to the total T₃ in homogenates from several tissues and subcellular fractions from the liver, kidney, and anterior pituitary gland could be calculated. In all experiments T_3 in muscle was derived exclusively from the plasma. In the cerebral cortex and cerebellum, however, most of the intracellular T₃ was derived from the intracellular conversion of T_4 to T_3 . It is demonstrated that for hypothyroid rats an increased relative contribution of Lc $T_3(T_4)$ reduced the loss of total T_3 in the brain. This phenomenon was also encountered for the anterior pituitary gland, although in this tissue the proportion of the total tissue T_3 , contributed by locally produced T_3 was considerably lower than the values found for the cerebral cortex and cerebellum in all experiments.

The present findings, regarding the source and quantity of pituitary nuclear T_3 strongly suggest that both plasma T_3 and T_4 (through its local conversion into T_3) play a role in the regulation of thyrotropin secretion. The contribution of Lc $T_3(T_4)$ to the total pituitary nuclear T_3 was of minor importance in euthyroid rats (~20%), compared with that found for both groups in T₄-supplemented athyreotic rats (~40%).

The total T_3 concentration in the liver decreased from euthyroid to hypothyroid rats and was associated with a decrease in the tissue/plasma T_3 concentration gradient. A minor proportion of hepatic T_3 was contributed by Lc $T_3(T_4)$, which in fact decreased significantly from the euthyroid to the hypothyroid state. In contrast to other subcellular fractions from the liver, no Lc $T_3(T_4)$ could be demonstrated in the nuclear fraction. It is suggested that the liver plays an important role with respect to regulation of the circulating T_3 concentration.

In the kidney, a very small proportion of the total T_3 was derived from locally produced T_3 in all experiments (4-7%). As found in the liver, all nuclear T_3 appeared to be derived from the plasma. In contrast to the liver, subcellular T_3 pools in the kidney seemed to be exchangeable.

INTRODUCTION

Under normal conditions thyroxine $(T_4)^1$ is the main secretory product of the thyroid gland. More than twothirds of 3,5,3'-triiodothyronine (T_3) in man and in rat is produced by 5'-monodeiodination of T_4 in peripheral tissues (1, 2). The quantitative contribution of different tissues to the total production of T_3 from T_4 is unknown, but T_4 to T_3 conversion can be measured in liver, kidney, pituitary gland, and central nervous system tissues in vitro (3). T_3 , probably the main metabolically active substance, becomes effective by binding to a specific nuclear receptor. Specific nuclear T_3

Received for publication 23 August 1982 and in revised form 11 July 1983.

¹ Abbreviations used in this paper: α -GPD, α -glycerophosphate dehydrogenase; Lc T₃(T₄), local conversion of T₄ to T₃; MCR, metabolic clearance rate; PTU, propylthiouracil; T₃, 3,5,3'-triiodothyronine; T₄, thyroxine; TSH, thyrotropin; Tx, radiothyroidectomized, radiothyroidectomy.

binding sites have been identified in numerous tissues (4, 5). It seems likely that, at the intracellular level, the biological effects of T_4 can be attributed solely to the T_3 derived from it.

For years it has been widely accepted that the T_3 derived from T_4 was rapidly and totally exchangeable, within the volume of distribution, with the T₃ secreted by the thyroid into the bloodstream. Usually a positive correlation can be found between the concentration of tissue T_3 (but not of tissue T_4) and the endpoint chosen for measurement of hormonal activity. On the other hand, in a variety of studies that compare hormonal activity with only the circulating T_3 and T_4 levels, the biological effect appears to correlate with T_4 rather than with T_3 . These apparent contradictions, previously reviewed by others (3, 6), cannot be explained if the T_3 derived from T_4 and the circulating (plasma) T₃ pool are totally and rapidly exchangeable. Indeed, various studies on both hypothyroid and euthyroid rats have demonstrated the reverse (7-13). It has been found that local conversion of T_4 to T_3 in the anterior pituitary gland is important for the negative feedback for thyrotropin (TSH) secretion (8, 10, 14, 15). A single injection of tracer T_4 and T_3 demonstrated that in the cerebral cortex and cerebellum, as in the pituitary gland, a substantial proportion of the nuclear T_3 appears to be derived from intracellular T_4 monodeiodination rather than T_3 in the plasma (12, 13). However, in vivo data on the source and quantity of T_3 in various peripheral tissues of rats equilibrated with labeled hormones are still scarce and incomplete. Because the conversion of local T_4 to T_3 [Lc $T_3(T_4)$] contributes to the level of intracellular T₃ in various target tissues, it is of interest to evaluate this conversion at different levels of circulating T_4 and T_3 .

Therefore, in this study both source and quantity of T_3 were determined in several tissue preparations from rats equilibrated simultaneously with [¹²⁵I]T₄ and [¹³¹I]T₃ under hypothyroid, slightly hypothyroid, and euthyroid conditions.

METHODS

Animals and diet. Adult male Wistar rats bred in our laboratory and weighing ~300 g were used in all experiments. Two groups of six animals each were rendered hypothyroid by ¹³¹I thyroid ablation (a single intraperitoneal injection of 0.75 mCi Na¹³¹I) 2 mo before the experiments began. Hypothyroidism was defined as the lack of detectable plasma T₄ (<47 ng/100 ml) and plasma T₃ (<2 ng/100 ml) concentrations. Plasma TSH concentrations were between 12 and 14 µg/ml. Radiothyroidectomized (Tx) and intact, euthyroid rats were maintained on commercial pellet food (Hope Farms, Linschoten, The Netherlands) ad lib. 1 wk before and during the continuous infusion, the food consisted of a modified AIN 76TM diet (16) in the form of dry food mixed with distilled water (60% dry weight, 40% water). To prevent reutilization of tracer I⁻ by eventual thyroid remnants in Tx rats and by the thyroid of intact rats, KI was added to the food the week before infusion. During the infusion period KI was administered exclusively via the infusion $(100 \ \mu g/100 \ g$ body wt per d). During the continuous infusion the feeding period extended from 20.00–08.00 h (dark phase), while drinking water was available continuously.

Experimental protocol. 2 mo after Tx and 1 wk before the continuous infusion was started, one group of Tx animals received 0.2 μ g T₄/100 g body wt per d (experiment A) and another group 1.0 μ g T₄/100 g body wt per d (experiment B) in small aliquots of saline containing 1% (vol/vol) hypothyroid rat serum administered as subcutaneous injections. Subsequently, T₄ (0.2 μ g or 1.0 μ g/100 g body wt per d, experiment A or B, respectively) and KI were administered via the continuous intravenous infusion. 5 d after the start of the infusion, $[^{125}I]T_4$ (experiment A: 3.5 $\mu {\rm Ci}/100$ g body wt per d; experiment B: 4 μ Ci/100 g body wt per d) was added to the infusion fluid without interruption for the next 10–12 d. Starting either 4 or 5 d after the start of the $[^{125}I]T_4$ infusion, the rats received $[^{131}I]T_3$ (experiment A, 3 μ Ci/100 g body wt per d; experiment B, 2 μ Ci/100 g body wt per d) simultaneously for the remaining period (6 or 7 d).

In a third experiment (C), infusions were administered to intact euthyroid rats according to the above protocol ($[^{125}I]T_4$, 5 μ Ci/100 g body wt per d; $[^{131}I]T_3$, 3.3 μ Ci/100 g body wt per d) but without carrier T₄.

Throughout the infusion period 24-h samples of feces and urine were collected. The ¹²⁵I and ¹³¹I contents were counted and expressed as the proportion of the daily infused radioactivity. When the individual urinary and fecal excretion curves reached a plateau and approximately all of the infused dose was recovered in the excreta, the animals were considered to be in isotope equilibrium as far as the major pools of T_3 , T_4 , and their metabolites were concerned (11, 17).

To investigate whether the infused dose of KI prevented significant reutilization of tracer I⁻ by the thyroid (experiment C) or eventual thyroid remnants (experiments A and B) a control experiment was performed. Control intact euthyroid rats received a continuous intravenous infusion of 100 μ g KI/100 g body wt per d for the same period. In addition to stable I⁻, ¹²⁵I⁻ (5 μ Ci/100 g body wt per d) was administered during the last 10 d.

During continuous infusion the behavior of the animals was normal (by observation). The mean increase in body weight for both groups of intact euthyroid rats and the Tx rats infused with $1.0 \ \mu g \ T_4/100 \ g$ body wt per d (experiment B) was $\sim 22 \ g/wk$. Tx rats given $0.2 \ \mu g \ T_4/100 \ g$ body wt per d (experiment A) exhibited slower growth (16 g/wk), probably due to metabolic hypothyroidism.

Continuous intravenous infusion. The continuous intravenous infusion was administered via a cannula inserted in the neck and extended under the skin to the right atrium, according to the method described by Roelfsema et al. (18). The rats were unrestrained and could drink and eat normally. The infusion fluid was administered by means of a roller pump, one for each animal (HR flow inducer, type MRHE 2, Watson Marlow Ltd., London). The rate of flow (10 ml/d) was checked daily with the aid of a calibrated pipette in the infusion system. The animals were housed in metabolic cages (Acme Research Products, Cincinnati, OH) to allow separation of urine and feces. The experiments were performed in a temperature-controlled room $(23^\circ \pm 1^\circ C)$.

formed in a temperature-controlled room $(23^{\circ}\pm1^{\circ}C)$. Iodothyronines. High-specific activity $[^{125}I]T_4$ (~2,500 μ Ci/ μ g sp act) and $[^{131}I]T_3$ (~3,500 μ Ci/ μ g sp act) were prepared 1 d before the start of infusion, according to the method of Weeke and Ørskov (19) with modifications by Kjeld et al. (20). Na¹²⁵I and ¹³¹I preparations from the Radiochemical Center at Amersham (Amersham Corp., Arlington Heights, IL) with 3,5,3'-L-T₃ (Sigma Chemical Co., St. Louis, MO) were used as the respective substrate. As assessed on the last day of the infusion period by thin-layer chromatography, the infused [¹²⁵I]T₄ contained a maximum of 0.7% [¹²⁵I]T₃, while no other labeled iodothyronines were detectable in the [¹³¹I]T₃. T₃ contamination of stable T₄ was 0.8%, as estimated by the method described by Zimmerman et al. (21). All infusion solutions were prepared in a sterile 0.9% NaCl solution containing 0.2 μ g/ml carbenicillin (Pyopen) and 0.3 U/ml heparin. The stock infusion solutions were every 2 d and protected from light to minimize artifactual deiodinations of the iodothyronines.

Preparation of tissue homogenates and subcellular fractions. At the end of the infusion period the rats were lightly anaesthetized with ether. Blood samples from the tail were collected in heparinized tubes. The plasma was separated and propylthiouracil (PTU) was added to a final concentration of 2×10^{-3} M. The plasma samples were stored at -20° C. To reduce plasma contamination of the tissues the rats were perfused with 40–50 ml phosphate-buffered saline (containing 3 U heparin/ml and 10^{-4} M PTU) via the cannula; outflow was obtained by puncturing the inferior vena cava. Tissues were then immediately excised and kept on ice. Aliquots of liver, kidney, pooled whole anterior pituitary glands, (in groups of two) and pieces of thigh muscle, cerebral cortex, and cerebellum were finely minced and carefully homogenized in 5–10 vol of saline containing 10^{-4} M PTU. Suspensions, corresponding to 0.50 g liver, 0.12 g kidney, 0.01 g anterior pituitary, 0.44 g thigh muscle, 0.12 g cerebral cortex, and 0.17 g cerebellum, were stored at -20° C until analysis.

Subcellular fractions from the liver, kidney, and anterior pituitary gland were obtained by differential centrifugation, according to the separation scheme shown in Fig. 1. Pooled whole anterior pituitary glands (in groups of two or three) and aliquots of liver (5 g) and kidney (1.5 g) were minced

FIGURE 1 Separation scheme for subcellular fractions from liver, kidney (nuclei, mitochondria, microsomes, cytoplasm), and anterior pituitary (nuclei, cytoplasm). Subcellular fractions were obtained by differential centrifugation. The various steps are indicated. P, pellet (sediment); S, supernatant.

and homogenized in 4 vol of ice-cold 0.32 M sucrose, 10^{-3} M MgCl₂ and 10^{-4} M PTU by 12 passes through a teflonglass homogenizer rotating at 1,200 rpm. The homogenates were diluted with distilled water and 0.25 M sucrose to obtain a 10% wt/vol suspension, in which the final concentrations were sucrose, 0.25 M; MgCl₂, 10^{-3} M; and PTU, 10^{-4} M. The 10% homogenate was centrifuged at 700 g for 10 min. The pellet was resuspended in 0.32 M sucrose, 10^{-3} M MgCl₂, 10^{-4} M PTU, and 0.25% wt/vol Triton X-100 and spun for 10 min at 700 g. The nuclei in the sediment were separated by centrifugation through 2.3 M sucrose, 10^{-3} M MgCl₂, and 10^{-4} M PTU, according to the method used by DeGroot and Strausser (22).

To prepare a mitochondrial fraction (liver and kidney) the supernatant from the first 700 g run was centrifuged (700 g). The supernatant was carefully decanted and spun for 10 min at 8,700 g and 4°C. The fluffy layer was discarded and the mitochondrial pellet was washed four times by resuspension in 0.25 M sucrose and 10^{-4} M PTU, followed by centrifugation for 10 min (7,700 g, 4°C) to reduce microsomal contamination (23). In addition, the first (8,700 g) supernatant was centrifuged at 12,000 g for 10 min at 4°C. The pellet was discarded and the supernatant centrifuged at 138,000 g (4°C) for 1 h to obtain the microsomal fraction. Nuclear, mitochondrial, and microsomal pellets were finally suspended in saline.

When the supernatant from the 138,000-g run was used as the cytoplasmic fraction the high concentration of sucrose in the sample did not allow a good separation of the iodothyronines by thin-layer chromatography. Therefore, cytoplasm was obtained from the remaining tissue homogenates in saline (see above) as follows (Fig. 1): the homogenates were centrifuged for 100 min at 700 \tilde{g} to remove cell debris and nuclei. Subsequently the supernatant was spun at 8,700 g (10 min, 4°C). The 8,700-g supernatant was recentrifuged at 138,000 g for 1 h. The final supernatant was taken as the cytoplasmic fraction. Measured aliquots of the subcellular preparations (1-2 ml) were stored at -20°C until processing. The purity of the various hepatic and renal subcellular fractions was verified by determination of the distribution patterns of the specific activities of various marker enzymes, as described previously (9).

Identification of radioactivity in the plasma and tissue preparations. Measured aliquots of plasma, tissue homogenates, and subcellular fractions were counted accurately to determine their ¹²⁵I and ¹³¹I contents and then extracted twice in ethanol/ammonia (99:1, vol/vol) containing 10⁻⁴ M PTU. Subsequently the bulked extracts were counted and processed for thin-layer chromatography (9). The locations on the chromatogram of the labeled iodothyronines were determined by staining unlabeled iodocompounds (which had been added to the samples) with diazotized sulfanilic acid. The T₃ band and adjacent areas were cut into strips, 0.5 cm wide, and the ¹²⁵I and ¹³¹I radioactivity was counted. The [¹⁸¹I]T₃ peak on the chromatograms of the extracts of the various tissue preparations coincided with the ¹²⁵I peak, and usually all radioactivity was concentrated within three strips. However, the $[^{125}I]T_3$ peak obtained by thin-layer chromatography of plasma probably also contained another ¹²⁵Icontaining metabolite. This was indicated by the asymmetric patterns of distribution of ¹²⁵I and ¹³¹I radioactivity within the T_3 peak. To avoid this difficulty plasma T_3 was first rapidly semi-purified by column chromatography. A dried ethanol extract of 2 ml of plasma dissolved in 0.05 M phosphate buffer, pH 11.9 and 10⁻⁴ M PTU was applied on a small column (7 \times 0.8 cm) of Sephadex G-25 (fine). Subsequently

the sample was eluted with 0.05 M phosphate buffer, pH 11.9 and 10⁻⁴ M PTU; 0.5-ml fractions were collected. Five peak fractions of [131]T3 were pooled and extracted with ethanol/ammonia for thin-layer chromatography. On the basis of distribution of ^{125}I and ^{131}I within the T₃ peak on the chromatogram no lack of agreement between [125I]T3 and $[^{131}I]T_3$ could then be observed. For all plasma and tissue (subcellular) extracts, the center of the $[^{131}I]T_3$ peak (one strip) on the chromatogram was used for the determination of the ratio between $[125I]T_3$ and $[131I]T_3$. For individual plasma samples from the intact rats of experiment C, the T_4 region on the chromatogram was also identified and the ¹²⁵I radioactivity was counted to estimate the specific activity of plasma $[^{125}I]T_4$. The $[^{131}I]T_3$ recovery (that percentage of the total ¹³¹I radioactivity that represents T_3), together with the [¹²⁵I] T_3 counts of the T_3 strips, were used to calculate the total [¹²⁵I] T_3 initially present in the various plasma and tissue preparations. All $[1^{25}]$ ^{T₃} and $[1^{31}]$ ^{T₃} data are expressed as the percentage of the daily infused $[1^{25}I]$ ^{T₄} and $[1^{31}I]$ ^{T₃}, respectively. An aliquot of the latter was always counted on the same day, using the same geometry as for the samples. The counting error was $\leq 3\%$ and the counting rates were at least five times background, even in the tissue preparations with the lowest radioactivities. Appropriate corrections for crossover of ¹³¹I into the ¹²⁵I spectrophotometer channel were made.

A methodological study was undertaken to assess the impact of spontaneous (i.e., artifactual) conversion of $[^{125}I]T_4$ to $[^{125}I]T_3$ during thin-layer chromatography. Samples of the infused $[^{125}I]T_4$ tracer were subjected to thin-layer chromatography. The silica gel was removed from the chromatogram at the location of $[^{125}I]T_4$, and extracted with ethanol/ammonia (10^{-4} M PTU). Then the extract was evaporated and the purified $[^{125}I]T_4$ (10^6 cpm plus 10^{-4} M PTU) rechromatographed. $[^{125}I]T_3$ could not be detected on the chromatogram. Another series of experiments was carried out, taking purified $[^{125}I]T_4$ (2×10^{-6} cpm, 10^{-4} M PTU) in plasma through the entire procedure, i.e., column chromatography followed by thin-layer chromatography, as described above, with $[^{131}I]T_3$ present to correct for losses during the process. No significant amounts of $[^{125}I]T_3$ could be demonstrated (i.e., $[^{125}I]T_4$ to $[^{125}I]T_3$ conversion was $\leq 0.01\%$).

Other determinations. Plasma TSH content was measured by the specific radioimmunoassay (RIA) developed for the rat by the National Institute of Arthritis, Metabolic, and Digestive Diseases of the National Institutes of Health.

Plasma T_4 and T_3 concentrations were assessed by RIA. After decay of the ¹³¹I initially present in the samples, the T_4 and T_3 levels were determined using ¹³¹I-labeled T_4 and T_3 , respectively.

DNA was measured by the method of Karsten and Wollenberger (24) and protein was determined according to Lowry et al. (25) with bovine serum albumin as standard.

Liver and kidney mitochondrial α -glycerophosphate dehydrogenase (α -GPD) was measured by the method of Lee and Hardy (26). Suitable dilutions of the mitochondrial fractions in 0.25 M sucrose were prepared. Results were expressed as Δ OD₅₀₀/min per mg of protein.

Calculations. For calculation of the molar $[^{125}I]T_3/[^{131}I]T_3$ ratios in the plasma and various tissue preparations, $[^{125}I]T_3$ was multiplied by 2 to correct for loss of ^{125}I from the distal ring of T₄. Using the individual plasma $[^{125}I]T_3/[^{131}I]T_3$ ratio and a given tissue (subcellular) $[^{125}I]T_3/[^{131}I]T_3$ ratio, as determined at isotope equilibrium, the contribution of Lc T₃(T₄) to tissue $[^{125}I]T_3$ could be determined directly, in principle according to the calculation procedure used by Silva and Larsen (8): Let

x = % tissue [¹²⁵I]T₃ from plasma

c131 com 1

$$=\frac{\text{plasma } [^{125}\text{I}]\text{T}_{3} \ (\% \ \text{dose})/\text{plasma } [^{131}\text{I}]\text{T}_{3} \ (\% \ \text{dose})}{\text{tissue } [^{125}\text{I}]\text{T}_{3} \ (\% \ \text{dose})/\text{tissue } [^{131}\text{I}]\text{T}_{3} \ (\% \ \text{dose})} \times 100\%$$

$$= \frac{\text{tissue}\left[1^{13}I\right]I_3\left(\% \text{ dose}\right)}{\text{plasma}\left[1^{13}I\right]T_3\left(\% \text{ dose}\right)} \times \text{plasma}\left[1^{25}I\right]T_3\left(\% \text{ dose}\right)$$

$$\times \frac{1}{\text{tissue } [^{125}\text{I}]\text{T}_3 (\% \text{ dose})} \times 100\%$$

$$y = \%$$
 tissue [¹²⁵I]T₃ from Lc T₃(T₄) = 100 - x

Then the percentage contribution of Lc $T_3(T_4)$ to the total (stable) T_3 level in a given tissue (or subcellular fraction) from a euthyroid intact animal could be calculated using the following formula:

% contribution of Lc
$$T_3(T_4) = \frac{y}{y + (100/Z)x} \times 100\% = L$$
,

where Z is the percentage of the total plasma T_3 (RIA) derived solely from extrathyroidal T_3 production, as determined from the known molar-specific activity of plasma [¹²⁵I] T_4 and the previously determined concentration of circulating [¹²⁵I] T_3 . The calculations for the Tx rats given T_4 (experiments A and B) become special cases, where Z = 100.

For the euthyroid rats of experiment C the quantity of T_3 in a given tissue (per gram wet weight) was calculated using the equation:

Tissue T₃ (ng/g) =
$$\frac{\text{tissue } [^{131}I]T_3 (\% \text{ dose/g})}{\text{plasma } [^{131}I]T_3 (\% \text{ dose/g})} \times \text{plasma } T_3 (ng/ml) \times \frac{100}{100 - L}$$

For the rats of experiment A or B the quantities of T_3 in the plasma or various tissues was obtained from the [125 I] T_3 contents:

Tissue T₃ (ng/g) =
$$\frac{\text{tissue } [^{125}I]T_3 (\% \text{ dose}/g)}{100}$$

$$\times$$
 daily T₄ dose (ng) $\times \frac{651}{777}$,

where 651 and 777 represent the molecular weights of T_3 and T_4 , respectively. In all cases the quantity of T_3 in the subcellular fractions was expressed as picograms T_3 /milligram protein or DNA.

The $[^{125}I]T_3$ level in plasma is composed of that generated in the tissues and returning to plasma and the small amount contaminating the infused $[^{125}I]T_4$. The contaminating $[^{125}I]T_3$ and the infused $[^{131}I]T_3$ are distributed over the various tissues and the plasma in a similar fashion, i.e., when expressed as a percentage of the daily quantities of infused contaminating $[^{125}I]T_3$ and $[^{131}I]T_3$, respectively, the concentrations of both in a particular tissue or plasma sample would be the same. Because the percentage of $[^{125}I]T_3$ contaminating each $[^{125}I]T_4$ tracer is known, it is possible to determine the relative contribution from this source to plasma $[^{125}I]T_3$. Contaminating $[^{125}I]T_3$ accounted for 5% or less of the total plasma $[^{125}I]T_3$. Since the maximum molar T_3 contamination of the infused stable T_4 (experiments A and B) is on the same order of magnitude, it is reasonable to expect that the stable contaminating T_3 will not affect the results either.

The infusion rate of $[^{125}I]T_4$ (stable T_4 in experiments A and B) or $[^{131}I]T_3$ and their respective blood levels were used to calculate the metabolic clearance rate (MCR) of T_4 or T_3 (27). If the plasma concentrations are expressed as a percentage of the infused dose (in 1 h/100 g body wt) the computation is:

MCR (
$$[ml/h]/100 \text{ g body wt}$$
) = $\frac{100}{\% \text{ dose } (h/100 \text{ g body wt})/ml}$.

Statistical analysis. For statistical analysis of the differences between mean values, the unpaired Student's t test was used. The significance of the differences between various tissue (subcellular) preparations from animals of the same experiment was determined by the paired t test. Since anterior pituitary glands from several rats were pooled, all statistical comparisons for this tissue (or subcellular fractions) were made with the unpaired t test.

RESULTS

The infusion of each rat was continued until a steady state had been attained, i.e., when the radioactivity in urine and feces became constant and the total excretion of ¹²⁵I and ¹³¹I equalled the daily input for at least 3 d. For intact euthyroid rats (experiment C) isotope equilibrium was reached after 5 d of infusion of $[^{125}I]T_4$ (Fig. 2 *a*) and after 3 d of infusion of $[^{131}I]T_3$ (Fig. 2 b). At this stage 55-60% of the total amount of ¹²⁵I excreted daily, and $\sim 60\%$ of the total amount of ¹³¹I excreted daily was present in the urine. Tx rats supplemented with 0.2 or 1.0 μ g T₄/100 g body wt per d (experiment A or B) excreted maximum and constant amounts of labeled metabolites into the urine and feces after the 7th d of $[^{125}I]T_4$ infusion and after the 4th d of $[^{131}I]T_3$ infusion. Urinary ^{125}I and ^{131}I always accounted for 60-70% of the total radioactivity excreted daily (excretion curves not shown).

At the end of the infusion period, plasma T_3 , T_4 , and TSH concentrations were determined for each rat by RIA. In addition, mitochondrial α -GPD-specific activities were measured for the liver and kidney. According to these parameters (listed in Table I), Tx rats receiving a continuous infusion of 0.2 μ g T₄/100 g body wt per d (experiment A) were clearly hypothyroid at the end of the infusion period. Infusion of Tx rats with 1.0 μ g T₄/100 g body wt per d (experiment B) produced a slightly hypothyroid state when the parameters are compared with those for the intact euthyroid rats of experiment C.

The MCR of T_3 decreased from euthyroid to hypothyroid rats (Table I). The MCR of T_4 for hypothyroid rats was lower than that for slightly hypothyroid or euthyroid animals.

Blockage of the recycling of tracer I^- in intact euthyroid rats. To assess efficiency of the blockage of

FIGURE 2 The radioactivity in the excreta of intact euthyroid rats (experiment C) during the $[^{125}I]T_4$ infusion (a) and the simultaneous infusion of $[^{131}I]T_3$, which was started either 4 or 5 d after the start of the $[^{125}I]T_4$ infusion (b). (O) total radioactivity; (\bullet) urinary radioactivity; (X) fecal radioactivity. Data represent the mean±SD for eight rats, except for day 11 (mean±SD for four rats) and 12 (mean±SD for two rats) during infusion of $[^{125}I]T_4$ (a) and day 7 (mean±SD for four rats) during infusion of $[^{131}I]T_3$ (b).

recycling by excess KI in euthyroid rats, intact control animals were equilibrated with ¹²⁵I⁻ and the same daily dose of KI as used in the other experiments. Equilibrium was reached after 5 d, when $\sim 98\%$ of the daily excreted radioactivity was present in the urine. Plasma T₃, T₄, and TSH levels (mean±SD, n = 4), measured

TABLE I	
---------	--

Concentration of T_3 , T_4 , and TSH in Plasma, the MCR of T_3 and T_4 , and the Specific Activity of Liver and Kidney Mitochondrial
α -GPD in Tx Rats Receiving Supplements of T ₄ ° and Intact Euthyroid Rats, after Simultaneous
$1^{125}\Pi T_4$ and $1^{131}\Pi T_3$ Infusion until Isotope Equilibrium Was Achieved

					P value (unpaired t test)		
		Experiment A (n = 6)	Experiment B (n = 6)	Experiment C (n = 8)	A vs. B	B vs. C	A vs. C
$T_{3} (ng/100 ml)$		10±4	38±10	53±13	< 0.005	<0.05	<0.001
$T_4 \; (\mu g / 100 \; ml)$		1.5 ± 0.8	5.4 ± 1.2	5.1±1.0	<0.001	NS	<0.001
TSH (ng/ml)		7700±1441	470±135	289±121	<0.001	<0.05	<0.001
MCR $(ml/h)/100$ g body wt	$\begin{bmatrix} T_3 \\ T_4 \end{bmatrix}$	16.4±3.6 0.56±0.12	23.1±1.9 0.77±0.16	30.2±5.4 0.86±0.17	<0.005 <0.05	<0.01 NS	<0.001 <0.005
α -GPD (Δ OD ₅₀₀ /min/ mg protein)	liver kidney	0.102±0.032 0.130±0.024	0.198±0.062 0.244±0.026	0.272±0.017 0.311±0.049	<0.01 <0.001	<0.01 <0.02	<0.001 <0.001

Data represent mean±SD. T₃, T₄, and TSH concentrations were determined by RIA.

• Experiment A, 0.2 µg/100 g body wt per d; experiment B, 1.0 µg/100 g body wt per d.

at the end of the infusion period, did not differ significantly from levels found for rats of experiment C (T₃, 50±13 ng/100 ml; T₄, 4.9±1.2 μ g/100 ml; TSH, 270±80 ng/ml). In the ethanol extracts of the plasma samples and several tissue homogenates (cerebral cortex, cerebellum, pituitary gland, thigh muscle, liver, and kidney) taken from the control animals, [¹²⁵I]T₃ and [¹²⁵I]T₄ were not detectable by thin-layer chromatography. For the rats of experiment C, virtually no [¹³¹I]T₄ radioactivity appeared on the chromatograms of the tissue and plasma samples investigated. Therefore, it was concluded that for rats infused with the labeled iodothyronines any recycled tracer I⁻ would add only a negligibly small fraction to the [¹²⁵I]T₃ or [¹³¹I]T₃ concentrations.

¹²⁵I $T_3/^{131}I$ T_3 ratios in plasma and various tissue (subcellular) fractions. As can be seen from the ratios of [¹²⁵I]T₃ (as derived from [¹²⁵I]T₄) to [¹³¹I]T₃ (infused), shown in Table II, the individual values for a given tissue were similar for different animals from the same experiment. Except for the thigh muscle the values for the tissue homogenates were always higher than those determined for plasma, indicating that circulating [¹²⁵I]T₃ and [¹²⁵I]T₃ in tissue are not totally exchangeable.

Data for the subcellular fractions from the liver, kidney, and anterior pituitary gland are shown in Table III. In contrast to the pituitary nuclear fraction, the nuclear $[^{125}I]T_3/[^{131}I]T_3$ ratios for both the liver and the kidney did not differ significantly from the plasma values in all three experiments.

Source of circulating T_3 in intact, euthyroid animals. For each rat used in experiment C, plasma T_3 derived from peripheral 5'-monodeiodination was estimated by using the plasma [¹²⁵I]T₃ concentration (assessed by thin-layer chromatography) and the corresponding specific activity of plasma [¹²⁵I]T₄. The concentration of T_3 (generated peripherally from T₄) in the plasma amounted to 34 ± 8 ng/100 ml (mean±SD). When expressed as a percentage of the total plasma T₃ concentration (measured by RIA, see Table I), $65\pm 9\%$ (mean±SD) of the total circulating T₃ was derived from peripheral conversion of T₄, the remaining being contributed directly by thyroidal secretion of T₃.

Contribution of T_3 generated locally from T_4 to the total tissue (subcellular) T_3 concentration. In experiments A and B, infused T₄ was without a doubt the main source of T₃ in both plasma and tissues. Hence, the percentage contributed by Lc $T_3(T_4)$ to the total tissue (subcellular) T₃ concentration could be computed directly from the ratio of [125I]T₃ to [131I]T₃ found for a given tissue preparation and for the corresponding plasma (Methods). However, for euthyroid rats (experiment C), the proportion of circulating T_3 being secreted directly by the thyroid gland (see above) had to be taken into account using the calculation procedures described in the Methods section. The data for the tissue homogenates are shown in Table IV. The percentage contributed by Lc $T_3(T_4)$ to the total tissue T₃ concentration was substantial but different for brain cortex and cerebellum (P < 0.001) in all experiments.

	[^{12]}	P value (paired t test) Tissue vs. plasma				
Tissue	Exp. A	Ехр. В	Exp. C	Exp. A	Exp. B	Exp. C
Liver	0.477±0.056	0.321 ± 0.021	0.667±0.091	<0.05	<0.005	<0.001
Kidney	0.412 ± 0.017	0.279 ± 0.037	0.323 ± 0.021	<0.05	<0.05	<0.01
Thigh muscle	0.403 ± 0.027	0.235 ± 0.021	0.288 ± 0.020	NS	NS	NS
Pituitary	0.791 ± 0.009	0.346 ± 0.004	0.380 ± 0.005	< 0.025	< 0.05	< 0.05
Cerebral cortex	1.572 ± 0.135	0.677 ± 0.047	1.211 ± 0.286	<0.001	< 0.001	<0.001
Cerebellum	1.021 ± 0.063	0.517 ± 0.029	0.732 ± 0.078	<0.001	< 0.001	< 0.001
Plasma	0.397 ± 0.024	0.245 ± 0.020	0.287 ± 0.026	_	—	_

TABLE II [¹²⁵I]T₃/[¹³¹I]T₃ Ratios for Plasma and Tissue Homogenates from Various Organs of Hypothyroid (Experiment A), Slightly Hypothyroid (Experiment B), and Euthyroid (Experiment C) Rats Equilibrated with [¹²⁵I]T₄ and [¹³¹I]T₃

Intact euthyroid rats (experiment C) and Tx rats received continuous intravenous infusion of $[^{125}I]T_4$, $[^{131}I]T_3$, and KI. In addition, Tx rats received 0.2 (experiment A) or 1.0 (experiment B) μ g T₄/100 g body wt/d. Data represent the mean±SD. In each experiment pituitary glands from two rats were pooled; n = 2. For the other tissues and plasma: n = 5 in experiment A; n = 6 in experiment B; and n = 7 in experiment C.

		[¹⁸⁵] [¹⁸¹]	P value (paired t test) (Subcellular fraction vs. plasma)				
Tissue	Subcellular fraction	Exp. A	Exp. B	Exp. C	Exp. A	Exp. B	Exp. C
Liver	Nuclear	0.411±0.027	0.254 ± 0.023	0.300 ± 0.030	NS	NS	NS
	Mitochondrial	0.424 ± 0.054	0.315 ± 0.021	0.464 ± 0.037	NS	<0.001	<0.001
	Microsomal	0.444 ± 0.023	0.343 ± 0.025	0.535 ± 0.070	< 0.005	<0.001	<0.001
	Cytoplasmic	0.666 ± 0.110	0.370 ± 0.048	0.597 ± 0.083	<0.01	<0.005	<0.001
Kidney	Nuclear	0.414±0.024	0.249 ± 0.023	0.309 ± 0.054	NS	NS	NS
	Mitochondrial	0.432 ± 0.029	0.255 ± 0.026	0.311±0.038	<0.02	NS	< 0.005
	Microsomal	0.412 ± 0.025	0.276 ± 0.034	0.346 ± 0.031	NS	NS	<0.01
	Cytoplasmic	0.414 ± 0.036	0.277 ± 0.031	0.308 ± 0.049	NS	<0.05	NS
Pituitary	Nuclear	0.707±0.124	0.435±0.040	0.375±0.007	< 0.025	< 0.025	<0.05
	Cytoplasmic		0.336 ± 0.007	0.378 ± 0.007		<0.05	<0.05
Plasma		0.397 ± 0.024	0.245 ± 0.020	0.287±0.026			

TABLE III $[^{125}I]T_3/[^{131}I]T_3$ Ratios for Subcellular Fractions from Liver, Kidney, and Pituitary of Hypothyroid (Experiment
A), Slightly Hypothyroid (Experiment B), and Euthyroid (Experiment C) Rats
Equilibrated with $[^{125}I]T_4$ and $[^{131}I]T_3$

Data represent the mean \pm SD. In each experiment pituitary subcellular fractions were prepared from pooled glands of two or three rats; n = 2. For all hepatic and renal subcellular fractions: n = 5 in experiment A, n = 6 in experiment B, and n = 7 in experiment C.

The Lc $T_3(T_4)$ contribution to total hepatic cellular T_3 was greater in the euthyroid then in the hypothyroid state, whereas the reverse was found for the anterior pituitary gland. In the kidney, Lc $T_3(T_4)$ contributed only a minor amount to the total intracellular T_3 .

At the subcellular level, for the pituitary gland the relative contribution of Lc $T_3(T_4)$ to the total nuclear T_3 under hypothyroid and slightly hypothyroid conditions was increased about twofold when compared with the euthyroid state (euthyroid, 19.7±1.1%; mildly hypothyroid, 43.9±7.1%; hypothyroid, 39.9±6.6%). In

the pituitary gland of euthyroid rats the percentage contributed by Lc $T_3(T_4)$ to nuclear and cytoplasmic T_3 (19.9±1.1%) was identical, whereas this was clearly not the case for slightly hypothyroid animals (Lc $T_3[T_4]$ cytoplasmic fraction: 23.3±7.6%). Unfortunately the cytoplasmic fractions of hypothyroid rats were lost.

Virtually no Lc $T_3(T_4)$ was contributed to the nuclear T_3 level in both the liver and kidney (Table III) in all groups of animals. In the liver of hypothyroid rats Lc $T_3(T_4)$ contributed predominantly to the cytoplasmic T_3 pool (mitochondrial fraction, $8.9\pm 2.9\%$;

Contribution of Lc T₃ (T₄) to the Total T₃ in Tissue Homogenates from Several Organs of Hypothyroid (Experiment A), Slightly Hypothyroid (Experiment B), and Euthyroid (Experiment C) Rats

Tissue	Con	tribution of Lc T	P value (unpaired t tests)			
	Exp. A	Exp. B	Exp. C	A vs. B	B vs. C	A vs. C
Liver	15.0±7.3	22.1±5.3	45.9±6.2	<0.05	<0.01	<0.001
Kidney	3.6 ± 3.6	7.7 ± 6.2	7.4±5.1	NS	NS	NS
Thigh muscle	1.5 ± 3.7	0.0 ± 8.3	0.0 ± 4.0	NS	NS	NS
Pituitary gland	49.8±0.8	33.7±3.0	23.5 ± 1.3	< 0.02	<0.05	< 0.005
Cerebral cortex	74.7±1.7	63.5 ± 5.0	67.3±4.1	< 0.005	NS	<0.01
Cerebellum	61.1±1.7	52.5 ± 4.3	50.3 ± 4.6	< 0.005	NS	<0.001

Data represent mean \pm SD. The percentage contributed by Lc T₃ (T₄) to the total T₃ in a given tissue was calculated as outlined in the Methods section.

microsomal fraction, $10.6\pm3.6\%$; cytoplasmic fraction, $39.0\pm10.8\%$). Under slightly hypothyroid or euthyroid conditions, the relative contribution of Lc $T_3(T_4)$ was increased in the hepatic mitochondrial and microsomal fractions, not differing statistically from the values found for the cytoplasm in these rats (22–34%). In the kidney the small percentage contributed by Lc $T_3(T_4)$ was statistically the same for all subcellular fractions in all experiments (all values were between 1 and 11%).

Concentration of T_3 in the plasma and various tissues. Fig. 3 shows the total T_3 content in plasma (determined by the isotopic equilibrium technique) and various tissue homogenates. In addition, the quantity of Lc $T_3(T_4)$ is given.

In both experiments A and B, the plasma T_3 levels measured by RIA (Table I) were in close agreement with those derived from the isotopic equilibrium technique. For animals of experiment A, the mean T_3 content in the tissue was clearly reduced when compared with the values found in experiments B or C, although the differences for the pituitary gland between experiments A and B did not differ significantly (probably due to limited number of observations). Except for the cerebral cortex and cerebellum, tissue T_3 concentrations were lower in slightly hypothyroid rats than in the euthyroid rats. In all experiments, T_3 concentrations were higher in tissue (except in the thigh muscle) than in the plasma (P < 0.001).

Tissue/plasma T_3 gradients are listed in Table V. In contrast to the other organs the tissue/plasma T_3 concentration gradient for the liver increased gradually from hypothyroidism to euthyroidism. The gradient for the kidney decreased only in the hypothyroid rat. For both cerebral cortex and cerebellum the tissue/ plasma T_3 gradient decreased significantly in euthyroid animals when compared with the values found for hypothyroid or slightly hypothyroid animals. Very low tissue/plasma T_3 gradients were encountered for the thigh muscle in all experiments. The amounts of T_3 (expressed as picograms per milligram of protein) in the subcellular fractions from the liver, kidney, and pituitary gland are shown in Fig. 4 *a*, *b*, and *c*, respectively.

In the hepatic subcellular fractions the quantity of T_3 per milligram of protein decreased from euthyroidism to hypothyroidism. This was also the case for

FIGURE 3 Concentrations of T_3 in plasma and tissues (per milliliter plasma and gram wet weight of tissue) from hypothyroid (experiment A), slightly hypothyroid (experiment B), and euthyroid (experiment C) rats, as determined by isotopic equilibrium technique; (**m**) contributed by Lc $T_3(T_4)$. Data represent the mean±SD. Unpaired t tests were used to compute the significance of differences between total T_3 concentrations. P < 0.001; P < 0.01; P < 0.025; P < 0.05.

				P value (unpaired t test)			
	Exp. A	Exp. B	Exp. C	A vs. B	B vs. C	A vs. C	
Liver	5.4±0.5	7.2±1.0	9.1±0.9	<0.01	<0.005	<0.001	
Kidney	8.4±0.8	11.0 ± 1.9	10.6 ± 1.6	0.02	NS	< 0.02	
Thigh muscle	1.3 ± 0.1	1.1 ± 0.2	1.2 ± 0.2	NS	NS	NS	
Pituitary gland	12.7 ± 2.5	8.0 ± 1.3	8.9±1.8	NS	NS	NS	
Cerebral cortex	4.9±0.9	4.3 ± 0.5	3.3±1.0	NS	< 0.05	< 0.02	
Cerebellum	7.1±1.4	7.0 ± 0.9	4.1±0.5	NS	<0.001	<0.001	

TABLE V Tissue/Plasma Gradients of T₃ Concentration in Hypothyroid (Experiment A), Slightly Hypothyroid (Experiment B), and Euthyroid (Experiment C) Rats

Data represent mean \pm SD. Concentrations of T₃ are expressed as nanograms per gram wet weight of tissue or milliliter plasma.

the nuclear fractions from the kidney and anterior pituitary gland. On the other hand, under slightly hypothyroid and euthyroid conditions, the concentration of T_3 in both the mitochondrial and the microsomal fraction of the kidney remained the same. The nuclear T_3 content, expressed per milligram of DNA, for the liver, kidney, and pituitary gland (Table VI) was significantly less in the hypothyroid than in the euthyroid rat. In each experiment, the pituitary nuclear T_3 level was higher than either the liver or the

FIGURE 4 Concentration of T_3 (per milligram of protein) in subcellular fractions from liver (a), kidney (b), and anterior pituitary gland (c). Along the abscissa are the subcellular fractions in order of their isolation: N (nuclear), M (mitochondrial), P (microsomal), C (cytoplasmic). (ID) contributed by Lc $T_3(T_4)$. Data represent the mean±SD. Unpaired t tests were used to compute the significance of differences between total T_3 content. $^{\circ}P < 0.001$; $\ddagger P < 0.01$; \$ P < 0.05.

	Ts			P value (unpaired t test)		
	Exp. A	Exp. B	Exp. C	A vs. B	B vs. C	A vs. C
		pg/mg DNA				
Liver Kidney Pituitary	50±9 23±8 304±47	114 ± 16 45 ± 9 506 ± 17	151 ± 11 59±8 580±10	<0.001 <0.005 <0.05	<0.001 <0.02 <0.05	<0.001 <0.001 <0.02

 TABLE VI

 Nuclear T3 Levels in Liver, Kidney, and Anterior Pituitary Gland of Hypothyroid (Experiment A), Mildly Hypothyroid (Experiment B), and Euthyroid (Experiment C) Rats

Data represent mean±SD.

kidney nuclear T₃ (P < 0.001), whereas hepatic nuclei contained more T₃ than nuclei from the kidney (P < 0.001). Negligibly small amounts of Lc T₃(T₄) were found in the nuclei of both liver and kidney cells. The quantity of Lc T₃ (T₄) in the pituitary nuclear fraction was higher in experiment B (224±51 pg/mg DNA) than in experiment A (119±2 pg/mg DNA) or experiment C (114±20 pg/mg DNA).

DISCUSSION

The prolonged administration of [¹²⁵I]T₄ and [¹³¹I]T₃ by continuous intravenous infusion ensures a closer approximation of isotopic equilibrium than could be achieved by repeated injections or administration via the food. Comparison of radioactivity in excreta with daily input of ¹²⁵I and ¹³¹I provides a convenient method for verifying the establishment of the steady state, although theoretically it is conceivable that small or slowly exchanging iodothyronine compartments will not yet have reached equilibrium. In each experiment, for practical reasons, the period of [125I]T4 infusion was extended from 10 to 11 (two animals) or 12 (two animals) d, while the $[^{131}I]T_3$ infusion lasted 7 instead of 6 d. In spite of these differences in the duration of the infusion of both labeled iodothyronines, the ratios of $[^{125}I]T_4$ to $[^{131}I]T_3$, as determined for the various tissue preparations and the plasma, were strikingly similar for different animals of the same experiment. This lack of variability with time provides additional evidence that the tissues (or subcellular preparations) investigated were in total isotopic equilibrium.

It was possible to determine the $[^{125}I]T_3/[^{131}I]T_3$ ratios for all tissue (subcellular) extracts diractly, after thinlayer chromatography, since the $[^{131}I]T_3$ peak on the chromatogram coincided with the $[^{125}I]T_3$ peak. In con-

trast to our previous findings for severely hypothyroid animals (9), however, this was not the case for any of the plasma extracts from the rats of experiments A and C. The same difficulty with the quantitation of plasma $[^{131}I]T_3$ (after infusion of $[^{131}I]T_4$) was encountered by Obregon et al. (11) after paper chromatography using the Bellabarba system (28). Rapid semi-purification of the extracted plasma T_3 by column chromatography, and subsequent thin-layer chromatography of the ethanol extract of the eluted peak fractions of [¹³¹I]T₃ solved this problem. This observation suggests the presence in the original extract of an ¹²⁵I-containing compound other than $[^{125}I]T_3$, moving ahead of the $[^{131}I]T_3$ peak and partially overlapping it. It might be argued that the plasma $[^{125}I]T_3/[^{131}I]T_3$ ratios were overestimated (and hence the contribution of locally generated T_3 to the total T_3 in a given tissue preparation underestimated) due to artifactual deiodination of $[^{125}I]T_4$. However, this is unlikely for the following reasons: (a)thin-layer chromatography (followed by column chromatography) of purified [125I]T4 added to plasma samples yielded no significant amounts of $[^{125}I]T_3$ (<0.01% $[^{125}I]T_4$ to $[^{125}I]T_3$ conversion; see Methods). The highest ratio of [125I]T4 to [125I]T3 in plasma at isotope equilibrium was found for Tx rats given 1.0 μ g T₄/100 g body wt per d (240:1, Table I). Thus, for these animals an artifactual deiodination of 0.01% or less would lead to an overestimation of the plasma $[^{125}I]T_3$ of only 2.4% or less. In this study the $[^{125}I]T_4/[^{125}I]T_3$ ratios in the various tissues were not investigated systematically. However, inspection of the $[^{125}I]T_4$ region on the chromatograms of the various tissue extracts obtained from some of the euthyroid rats of experiment C, revealed that for all tissues the $[^{125}I]T_4/[^{125}I]T_3$ ratios were lower than those for the corresponding plasma samples. Therefore, it is reasonable to expect that in all experiments artifactual [125I]T4 to [125I]T3 conversion did not contribute significantly to tissue $[125I]T_3$ either. (b) In all experiments the plasma and tissue $[^{125}I]T_3/[^{131}I]T_3$ ratios were reproducible. (c) For Tx rats receiving T_4 replacement (experiments A and B) the concentrations of circulating T_3 , measured by RIA, were in close agreement with those determined by the isotope equilibrium technique.

In all experiments, for both the liver and kidney substantial amounts of [125I]T3 and [131I]T3 were recovered in the microsomal and cytoplasmic fraction. Hence, these subcellular fractions (contrary to the nuclear and mitochondrial fractions) contributed mainly to the $[^{125}I]T_3/[^{131}I]T_3$ ratios in the whole liver or kidney homogenates (Tables II and III). However, in the liver of euthyroid rats (experiment C) none of the subcellular fractions had as high a [125I]T₃/[131I]T₃ ratio as that in the whole homogenate. Since artifactual deiodination during the handling of the samples is not likely, as discussed above, it is possible that the $[^{125}I]T_3/$ [¹³¹I]T₃ ratios in several discarded materials differed from those determined for the subcellular fractions prepared. Thus, if the $[^{125}I]T_3$ and/or $[^{131}I]T_3$ in discarded fractions had contributed significantly to the total radioactivity in the homogenates (by observation: presumably the so-called "fluffy layer," being discarded during purification of the mitochondrial fraction) this would explain the differences observed between whole homogenate and subcellular fractions.

Obregon et al. (29) used RIA to measure the concentrations of T_3 in plasma, liver, kidney, muscle, and brain of normal male rats. Our data from the isotopic equilibrium technique were in close agreement.

The present study provides additional evidence for the existence of so-called "hidden pools" of T_3 (11), i.e., for most tissues under both (slightly) hypothyroid and euthyroid conditions the intracellular T_3 is not totally exchangeable with circulating T₃. Considering the apparent difference in distribution between $[^{125}I]T_3$ from Lc $T_3(T_4)$ and $[^{131}I]T_3$ infused as such, this means that previous estimations of the total production rate of T_3 may be substantially underestimated, as discussed by others (3, 6). In contrast, muscular T_3 appears to be derived exclusively from plasma. Similar observations were reported by Obregon et al. (11) for cardiac and skeletal muscle. Furthermore, in all experiments, no significant thigh muscle/plasma T_3 gradient was found. The physiological implication of these findings might be that skeletal muscle depends directly on the plasma T₃ concentration, as far as the intracellular concentration of T₃ and hence the muscular response to thyroid hormone are concerned.

In the cerebral cortex and cerebellum, however, most of the intracellular T_3 derives from intracellular conversion of T_4 to T_3 . Our conclusions regarding the importance of local monodeiodination of T_4 in these

tissues essentially confirm recent observations by Crantz et al. (12) for euthyroid rats: they found that after a single injection of [125I]T₄, the T₃ generated intracellularly from T₄ accounted for more than half of the specifically bound nuclear T₃ in the cortex and cerebellum. For both tissues the percent contributed by Lc $T_3(T_4)$ to the total T_3 was clearly increased in the hypothyroid state (experiment A), and in athyroid animals after infusion of tracer amounts of T_4 and T_3 (9), when compared with euthyroid animals. This could be explained by an increase in the rate of T_4 to T_3 conversion in the brain of the hypothyroid rat, as demonstrated in vitro by Kaplan and Yaskoski (30), although this did not prevent a decrease in total T₃ content in both cerebral cortex and cerebellum. On the other hand, in contrast to the other tissues investigated, the concentrations of T_3 in both the cerebral cortex and the cerebellum of slightly hypothyroid rats did not differ from those determined for euthyroid rats. It can be concluded that, despite lower plasma T_3 levels, local T₃ production reduced the loss of intracellular T₃ in the cerebral cortex and cerebellum when compared with the other organs. This suggests an important role for thyroid hormone in the brain, although no direct responsive event has as yet been identified in the adult rat brain (3).

For Tx rats receiving a low daily dose of T₄ (experiment A), about one-half of the total tissue T3 content in the anterior pituitary gland was contributed by Lc $T_3(T_4)$, a proportion significantly higher than that found for slightly hypothyroid animals. In homogenates prepared from the pituitaries of intact euthyroid rats, locally produced $T_{\rm 3}$ accounted for only 24% of the total T_3 . Although the total T_3 concentration in the pituitary gland was lower in the hypothyroid than in euthyroid state, the quantity of Lc $T_3(T_4)$ remained surprisingly constant, namely $\sim 1 \text{ ng/g}$ wet wt of tissue in all experiments. Kaplan (31) and Cheron et al. (32) reported that the rate of T_4 5'-monodeiodination in vitro was much higher in anterior pituitaries from hypothyroid rats than in those from euthyroid controls. Therefore it seems likely that, despite the low plasma T₄ concentration in hypothyroid animals, the relatively large amount (gravimetric determination) of Lc T₃(T₄) present in homogenates of the pituitary gland was caused by an enhancement of T₄ to T₃ conversion, which might be due to an increased number of thyrotropic cells (31).

For both hypothyroid and slightly hypothyroid rats the percentage contribued by Lc $T_3(T_4)$ to the total pituitary nuclear T_3 was about twice the value found for euthyroid animals. As can be seen from Fig. 4 c and deduced from Table VI the quantity of Lc $T_3(T_4)$ was identical in hypothyroid and euthyroid rats. Changes in the quantity of nuclear T_3 were merely

due to changes in plasma-derived T_3 in these animals. The gravimetric amount of pituitary nuclear Lc $T_3(T_4)$ was even somewhat higher in slightly hypothyroid rats than in euthyroid animals. However, despite the fact that plasma T_4 levels were the same in both groups of animals, the total nuclear T₃ content in these rats remained below the euthyroid value and hence the plasma TSH concentrations were somewhat elevated. The mean value found for pituitary nuclear T_3 (per milligram DNA) in the euthyroid rat agrees closely with that reported previously by others who used RIA (33). The present findings, regarding the source and quantity of pituitary nuclear T₃ strongly suggest that both plasma T_3 and T_4 (through its local conversion into T_3) play a role in the regulation of TSH secretion. The contribution of Lc $T_3(T_4)$ to the total pituitary nuclear T₃ was of minor importance in euthyroid rats, when compared with both groups of T₄-supplemented athyreotic rats. In contrast to the euthyroid state, under slightly hypothyroid conditions the pituitary nuclear and cytoplasmic T_3 pools were not completely exchangeable. It is possible that locally produced T_3 is preferentially transported to the nucleus in these rats. For both euthyroid and slightly hypothyroid rats the pituitary T₃ content (per milligram of protein) was significantly higher in the nucleus than in the cytoplasm, suggesting the presence of high capacity nuclear T₃ binding sites.

Previous estimations by Silva et al. (10) indicated that in the euthyroid rat plasma T₃ and intracellular T₄ 5'-monodeiodination yield roughly equal quantities of pituitary nuclear T3. Their study has relied on bolus injections of $[^{125}I]T_4$ and $[^{131}I]T_3$. Application of this technique requires several approximations and simplifying assumptions regarding, for example, the fractional disappearance rate of T₃ from both the nucleus and cytoplasm or plasma at the time of measurement. This may well have led to errors in the estimation of the proportion of the total nuclear T_3 contributed by Lc $T_3(T_4)$. The same might have occurred with respect to their estimation of Lc $T_3(T_4)$ in the nuclear fraction from both the liver and kidney. However, despite the differences in techniques, the total quantities of T_3 in the liver and kidney nuclei, as reported in the present study for euthyroid rats (Table VI), do not differ substantially from the data of Silva et al.: liver nuclei, 180 pg/mg DNA; kidney nuclei, 70 pg/mg DNA (10). Furthermore, our calculation for the hepatic nuclear fraction (euthyroid animals) agrees reasonably well with that of Lim et al. (34), 104 pg/mg DNA. These data, including our values (for liver nuclei) are different from RIA data reported by Surks and Oppenheimer (35), 330 pg/mg DNA. This apparent difference remains to be resolved.

The conversion of T_4 to T_3 appears to be an important function of the liver and kidney and perhaps other peripheral tissues. The T_3 produced within these tissues reenters the circulation and becomes available to all organs, accounting for about two-thirds of the plasma T_3 in the normal rat. Liver or kidney disease greatly modifies the metabolism of the thyroid hormones (36). Jennings et al. (37) showed that during perfusion of isolated liver with 10 μ g T₄, the extraction of T₄ by the liver was associated with a significant increase in T_3 concentration in both the perfusate and the liver. The perfusate T₃ concentration increased in a linear fashion for 60-90 min before reaching a plateau; the liver T_3 concentration increased most dramatically in the first 30 min of perfusion, followed by a more gradual but linear increase thereafter. On the other hand, no net increase in the production of T_3 could be measured by van der Heide (38) during perfusion of isolated liver from euthyroid rats with plasma obtained from euthyroid rats after addition of 12 μ g T₄. Furthermore, recent observations by van der Heide et al. (unpublished results) indicate that during prolonged perfusion of isolated rat liver with T₄ in the presence of high concentrations of T_3 , the venous T_3 concentration decreases, reaching a plateau value after ~ 2 h. In our experiments the total T_3 concentration in the liver decreased from euthyroidism to hypothyroidism, in association with a decrease in the tissue/plasma T_3 concentration gradient. The contribution of Lc $T_3(T_4)$ to the total T_3 in the liver also decreased significantly from the euthyroid to the hypothyroid state. The aforementioned reports, together with the in vivo data of the present study, suggest that the liver has an important function in the regulation of the circulating T₃ concentration. During development of hypothyroidism it is possible that the liver may serve to moderate the effect of decreased thyroidal iodothyronine production. According to this concept in both groups of athyreotic T₄-replaced rats (with plasma T_3 levels below the euthyroid value) there would be a net increase in the release of locally produced T_3 by the liver into the plasma, resulting in a lower liver/ plasma T₃ concentration gradient, and a relatively small contribution of Lc $T_3(T_4)$ to the total hepatic T_3 at dynamic equilibrium. However, at normal circulating T_3 levels, less locally produced T_3 would enter the plasma T₃ pool, hence resulting in higher hepatic intracellular T₃ concentrations and an increased percentage contributed by Lc $T_3(T_4)$ under steady-state conditions; disposal of T_3 might then become of greater importance. On the other hand, hypothyroidism has been shown to lead to a diminished T₄ 5'-deiodinase activity of rat liver in vitro (3). This may provide an additional explanation for the observed decreased percent contribution of Lc $T_3(T_4)$ in the liver (both ho-

mogenate and microsomal fraction) of hypothyroid and slightly hypothyroid animals. Probably in vivo variations in hepatic T_4 5'-deiodinase activity, together with shifts of the balance between the disposal rate of hepatic intracellular T_3 and the release of T_3 by the liver into the vascular compartment, play an important part in the regulation of plasma T₃ levels. If the proposed regulatory function of the liver is correct, it would be likely that the underlying mechanisms respond directly to plasma T_3 concentrations. Indeed, the concentration of T_3 in the nucleus was a linear function of the plasma T₃ concentration and, in contrast to the other subcellular fractions investigated, in all experiments virtually all nuclear T3 was derived from the plasma. A possible explanation for this lack of complete exchange of T₃ between nuclear and other subcellular compartments could be that T_3 from the plasma is transported directly to the nucleus via a binding protein located in the cell membrane (39, 40). In all experiments, for the liver the highest concentrations of T_3 were found in the nuclear and microsomal fractions. This reflects, probably, the presence of nuclear T_3 -binding proteins (4, 5) and suggests the importance of the microsomal fraction as a site of T_3 and T_4 metabolism in vivo (41).

In the kidney, only a very small proportion of the total T_3 was contributed by Lc $T_3(T_4)$ in all experiments. Several investigations have demonstrated T_4 5'-monodeiodination activity in the kidney (3). Therefore, the observed small contribution of Lc $T_3(T_4)$ in the steady state could mean that the locally produced T_3 is rapidly exchanged with the plasma pool. As found for the liver, all nuclear T_3 appeared to be derived from the plasma. However, in contrast to the liver, the percentages contributed by Lc $T_3(T_4)$ in the subcellular fractions were not statistically different. Furthermore, the distribution pattern of the concentrations of T_3 in the renal subcellular fractions was also different from that observed for the liver. The physiological meaning of these tissue differences remains to be established.

ACKNOWLEDGMENTS

We wish to thank Mrs. C. C. van Doorn-Hessels for the preparation of the manuscript.

This investigation was supported, in part, by the Foundation for Medical Research (FUNGO).

REFERENCES

- Pittman, C. S., J. B. Chambers, and V. H. Read. 1971. The extrathyroidal conversion rate of thyroxine to triiodothyronine in normal man. J. Clin. Invest. 50:1187-1196.
- Schwartz, H. L., M. I. Surks, and J. H. Oppenheimer. 1971. Quantitation of extrathyroidal conversion of Lthyroxine to 3,5,3'-triiodo-L-thronine in the rat. J. Clin. Invest. 50:1124-1130.

- Larsen, P. R., J. E. Silva, and M. M. Kaplan. 1981. Relationships between circulating and intracellular thyroid hormones: physiological and clinical implications. *Endocrine Reviews*. 2:87-102.
- 4. Oppenheimer, J. H., H. L. Schwartz, M. I. Surks, D. Koerner, and W. H. Dillman. 1976. Nuclear receptors and the initiation of thyroid hormone action. *Recent Prog. Horm. Res.* 32:529-565.
- Baxter, J. D., N. L. Eberhardt, J. W. Apriletti, L. K. Johnson, R. D. Ivarie, B. S. Schachter, H. S. A. Morris, P. H. Seeburg, H. M. Goodman, K. R. Latham, S. R. Polansky, and J. A. Martial. 1979. Thyroid hormone receptors and responses. *Recent Prog. Horm. Res.* 35:97-153.
- Morreale de Escobar, G., M. J. Obregon, and F. Escobar del Rey. 1981. Relative in vivo activities of iodothyronines. In Low T₃ Syndrome. R. D. Hesh, editor. Academic Press, Inc., New York. 105-114.
- Silva, J. E., and P. R. Larsen. 1977. Pituitary nuclear 3,5,3'-triiodothyronine and thyrotropin secretion: an explanation for the effect of thyroxine. Science (Wash. DC). 198:617-620.
- Silva, J. E., and P. R. Larsen. 1978. Contributions of plasma triiodothyronine and local thyroxine monodeiodination to triiodothyronine to nuclear triiodothyronine receptor saturation in pituitary, liver, and kidney of hypothyroid rats. J. Clin. Invest. 61:1247-1259.
- 9. Van Doorn, J., F. Roelfsema, and D. van der Heide. 1982. Contribution from local conversion of thyroxine to 3,5,3'-triiodothyroxine to intracellular 3,5,3'-triiodothyronine in several organs in hypothyroid rats at isotope equilibrium. Acta Endocrinol. 101:386-396.
- Silva, J. E., T. E. Dick, and P. R. Larsen. 1978. The contribution of local tissue thyroxine monodeiodination to the nuclear 3,5,3'-triiodothyronine in pituitary, liver, and kidney of euthyroid rats. *Endocrinology*. 103:1196-1207.
- Obregon, M. J., F. Roelfsema, G. Morreale de Escobar, F. Escobar del Rey, and A. Querido. 1979. Exchange of triidothyronine derived from thyroxine with circulating triiodothyronine as studied in the rat. *Clin. Endocrinol.* 10:305-315.
- Crantz, F. R., J. E. Silva, and P. R. Larsen. 1982. An analysis of the sources and quantity of 3,5,3'-triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum. *Endocrinology*. 110:367-375.
- Crantz, F. R., and P. R. Larsen. 1980. Rapid thyroxine to 3,5,3'-triiodothyronine conversion and nuclear 3,5,3'triiodothyronine binding in rat cerebral cortex and cerebellum. J. Clin. Invest. 65:935-938.
- 14. Larsen, P. R., T. E. Dick, B. P. Markovitz, M. M. Kaplan, and T. G. Gard. 1979. Inhibition of intrapituitary thyroxine to 3,5,8'-triiodothyronine conversion prevents the acute suppression of thyrotropin release by thyroxine in hypothyroid rats. J. Clin. Invest. 64:117-128.
- Obregon, M. J., A. Pascual, J. Mallol, G. Morreale de Escobar, and F. Escobar del Rey. 1980. Evidence against a major role of L-thyroxine at the pituitary level: studies in rats treated with iopanoic acid (Telepaque). Endocrinology. 106:1827-1836.
- Ad hoc committee on standards for nutritional studies. 1977. Report of the American Institute of Nutrition. J. Nutr. 7:1340-1348.
- 17. Esobar del Rey, F., and G. Morreale de Escobar. 1961. The effect of propylthiouracil, methylthiouracil, and

thiouracil on the peripheral metabolism of L-thyroxine in thyroidectomized, L-thyroxine-maintained rats. *Endocrinology*. 69:456-465.

- Roelfsema, F., D. van der Heide, and D. Smeenk. 1980. Circadian rhythms of urinary electrolyte excretion in freely moving rats. *Life Sci.* 27:2303-2309.
- Weeke, J., and K. Ørskov. 1973. Synthesis of ¹²⁵I monolabeled 3,5,3'-triiodothyronine and thyroxine of maximum specific activity for radioimmunoassay. Scand. J. Clin. Invest. 32:357-366.
- Kjeld, J. M., S. K. Kuku, L. Diamant, T. R. Fraser, G. F. Joplin, and K. Mashiter. 1975. Production and storage of ¹²⁵I-thyroxine and ¹²⁵I-triiodothyronine of high specific activity. *Clin. Chim. Acta*. 61:381-389.
- Zimmerman, C. J., M. Izumi, and P. R. Larsen. 1978. Isolation of labeled triiodothyronine from serum using affinity chromatography: application to the estimation of the peripheral T₄ to T₃ conversion in rats. *Metab. Clin. Exp.* 27:303-313.
- DeGroot, L. J., and J. L. Strausser. 1974. Binding of T₃ in rat liver nuclei. *Endocrinology*. 95:74-83.
- Beattie, D. S. 1968. Enzyme localisation in the inner and outer membrane of rat liver mitochondria. *Biochem. Biophys. Res. Commun.* 31:901-907.
- 24. Karsten, U., and A. Wollenberger. 1977. Improvements in the ethidium bromide method for direct fluorometric estimation of DNA and RNA in cell and tissue homogenates. *Anal. Biochem.* 77:464-470.
- Lowry, O. H., N. J. Rosebrough, A. L. Farr, and J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.
- Lee, Y. P., and H. A. Hardy. 1965. Influence of thyroid hormones on L-α-glycerophosphate dehydrogenases and other dehydrogenases in various organs of the rat. J. Biol. Chem. 240:1427-1436.
- Senga, O., C. S. Pittman, R. H. Lindsay, J. B. Chambers, Jr., and J. B. Hill, Jr. 1982. Comparison of peripheral thyroid hormone metabolism in normal rats and in rats receiving prolonged glucagon infusion. *Endocrinology*. 110:2011-2017.
- Bellabarba, D., R. Peterson, and K. Sterling. 1968. An improved method for the chromatography of iodothyronines. J. Clin. Endocrinol. Metab. 28:305-307.
- Obregon, M. J., G. Morreale de Escobar, and F. Escobar del Rey. 1978. Concentrations of triiodo-L-thyronine in the plasma and tissues of normal rats, as determined by radioimmunoassay: comparison with the results obtained by an isotope equilibrium technique. *Endocrinology*. 103:2145-2153.

- Kaplan, M. M., and A. Yaskoski. 1980. Phenolic and tyrosyl ring deiodination of iodothyronines in rat brain homogenates. J. Clin. Invest. 66:551-562.
- Kaplan, M. M. 1980. Thyroxine 5'-monodeiodination in rat anterior pituitary homogenates. *Endocrinology*. 106:567-576.
- Cheron, R. G., M. M. Kaplan, and P. R. Larsen. 1979. Physiological and pharmacological influences on thyroxine to 3,5,3'-triiodothyronine conversion and nuclear 3,5,3'-triiodothyronine binding in rat anterior pituitary. J. Clin. Invest. 64:1402-1414.
- Larsen, P. R., S. Z. Bavli, M. Castonguay, and R. Jove. 1980. Direct radioimmunoassay of nuclear 3,5,3'-triiodothyronine in rat anterior pituitary. J. Clin. Invest. 65:675-681.
- 34. Lim, V. S., C. Passo, Y. Murata, E. Ferrari, S. Refetoff, and H. Nakamura. 1982. Liver but not pituitary hypothyroidism in a uremic rat model Ann. Endocrinol. 130:75a. (Abstr.)
- 35. Surks, M. I., and J. H. Oppenheimer. 1977. Concentration of L-thyroxine and L-triiodothyronine specifically bound to nuclear receptors in rat liver and kidney. J. Clin. Invest. 60:555-562.
- Gregerman, R. I., and P. J. Davis. 1978. Intrinsic physiologic variables and nonthyroid illness. *In* The Thyroid.
 S. C. Werner, and S. H. Ingbar, editors. Harper & Row Publishers, Inc., New York. Fourth ed. 223-246.
- Jennings, A. S., D. C. Ferguson, and R. D. Utiger. 1979. Regulation of the conversion of thyroxine to triiodothyronine in perfused rat liver. J. Clin. Invest. 64:1614– 1623.
- 38. van der Heide, D. 1980. Metabolism of T_4 , T_3 , and reverse T_3 in perfused livers of normal, hypothyroid, and hyperthyroid rats. Sixth International Congress of Endocrinology, Melbourne. 263*a*. (Abstr.)
- Krenning, E. P., R. Docter, H. F. Bernard, T. J. Visser, and G. Hennemann. 1978. Active transport of triidothyronine (T₃) in liver. FEBS Fed. Eur. Biochem. Soc. Lett. 91:113-116.
- Eckel, J., G. S. Rao, M. L. Rao, and H. Breuer. 1979. Uptake of L-triiodothyronine by isolated liver cells. *Biochem. J.* 182:473-491.
- Visser, T. J., I. van der Does-Tobé, R. Docter, and G. Hennemann. 1976. Subcellular localization of a rat liver enzyme converting thyroxine into triidothyronine and possible involvement of essential thiol groups. *Biochem.* J. 157:479-482.