Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110933

HLA identical leukemia cells and T cell growth factor activate cytotoxic T cell recognition of minor locus histocompatibility antigens in vitro.

P M Sondel, J A Hank, T Wendel, B Flynn, and M J Bozdech

Find articles by Sondel, P. in: JCI | PubMed | Google Scholar

Find articles by Hank, J. in: JCI | PubMed | Google Scholar

Find articles by Wendel, T. in: JCI | PubMed | Google Scholar

Find articles by Flynn, B. in: JCI | PubMed | Google Scholar

Find articles by Bozdech, M. in: JCI | PubMed | Google Scholar

Published June 1, 1983 - More info

Published in Volume 71, Issue 6 on June 1, 1983
J Clin Invest. 1983;71(6):1779–1786. https://doi.org/10.1172/JCI110933.
© 1983 The American Society for Clinical Investigation
Published June 1, 1983 - Version history
View PDF
Abstract

Lymphocytes from a healthy HLA-identical bone marrow transplant donor were tested for their ability to destroy her brother's acute myelogenous leukemia blasts in vitro. Primary mixed lymphocyte culture (MLC) and cell-mediated lysis (CML) responses between the patient's remission (pretransplant) and donor's lymphocytes were negative. Stimulation of donor lymphocytes for 7 d in vitro with irradiated leukemia cells, leukemia cells plus allogeneic irradiated lymphocytes, or a pool of irradiated lymphocytes from 10 donors, did not activate any cytotoxic cells able to destroy the HLA identical leukemic blasts. Further culturing for 7 additional d in T cell growth factor (TCGF) generated lymphocytes that induced effective cytotoxicity against the leukemic blasts, but not against autologous lymphocytes. Effective killing against the leukemia was observed only in cultures initially stimulated with the irradiated leukemia cells. These cytotoxic cells were maintained in TCGF and mediated persistent killing against the leukemic target cells. They were also able to destroy lymphocytes from the patient's mother and father, but not from an unrelated cell donor. This suggested specific recognition of non-HLA antigens inherited by the patient, that were foreign to the HLA identical bone marrow donor. These lymphocytes were cloned by a limiting dilution technique and one clone maintained cytotoxicity to the AML blasts and the father's lymphocytes, but not lymphocytes from the mother or an HLA-identical donor. This cytotoxicity was inhibited by a monoclonal anti-HLA antibody. Thus, in vitro sensitization of this sibling's lymphocytes with AML blasts followed by TCGF expansion, and cloning, enabled the detection of HLA-restricted cytotoxic cells that recognize minor locus histocompatibility antigens. This immune recognition may be relevant to the "graft vs. leukemia" effect that has been observed in leukemic animals and patients following histocompatible hematopoietic transplants.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1779
page 1779
icon of scanned page 1780
page 1780
icon of scanned page 1781
page 1781
icon of scanned page 1782
page 1782
icon of scanned page 1783
page 1783
icon of scanned page 1784
page 1784
icon of scanned page 1785
page 1785
icon of scanned page 1786
page 1786
Version history
  • Version 1 (June 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts