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A B S T R A C T The purpose of the present study was to
quantitate the influence of countercurrent exchange on
passive absorption of highly diffusible substances from
the small intestine of the rabbit. The absorption of
carbon monoxide, which is tightly bound to hemoglobin
and therefore cannot exchange, was compared to the
absorption of four unbound gases (H2, He, CH4, and
'Xe), which should exchange freely. The degree to
which the observed absorption of the unbound gases
falls below that predicted from CO absorption should
provide a quantitative measure of countercurrent ex-
change.

CO uptake at high luminal Pco is flow-limited and,
assuming that villus and central hemoglobin concen-
trations are equal, the flow that equilibrates with CO
(Fco) was calculated to equal 7.24 ml/min/100 g. The
observed absorption rate of the unbound gases was
from two to four times greater than would have been
predicted had their entire uptake been accounted for
by equilibration with Fco. This is the opposite of what
would occur if countercurrent exchange retarded ab-
sorption of the unbound gases.

The unbound gases have both flow- and diffusion-
limited components, and Fco should account for only
the fraction of absorption that is flow limited. A simple
model of perfusion and diffusion made it possible to cal-
culate the fraction of the total uptake of unbound gases
that was flow limited. This fraction of the total ob-
served absorption rate was still about 1.8 times greater
than predicted by CO absorption. A possible explana-
tion for this discrepancy is that plasma skimming re-
duces the hemoglobin of villus blood to about 60% of
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that of central blood. Thus, Fco is actually about 1.7
times greater than initially calculated, and with this cor-
rection, there is close agreement between the predicted
and observed rates of absorption of each of the unbound
gases. We conclude that countercurrent exchange does
not influence passive absorption under the conditions of
this study.

INTRODUCTION
The blood vessels supplying the villi of the small bowel
form a hairpin curve, so that the arterial and venous
vessels run in close proximity for a relatively long dis-
tance. This arrangement has stimulated the idea that
substances with high permeabilities for the vessel wall
diffuse between these vessels, resulting in countercur-
rent exchange (1-4).

An effect of such an exchange would be to slow the
rate of delivery via the blood of highly diffusible ma-
terials to the villus tip, since these substances would dif-
fuse between the arterial and venous limbs of the ex-
changer, short-circuiting the villus. A second effect
would be to slow absorption of diffusible substances from
the lumen, since these substances would diffuse from the
veins draining the villus into the arterioles supplying
the villus. The concentration of the material in the
venous blood leaving the villus would therefore be re-
duced and their absorption rate would be diminished.

In the present study, we attempted to quantitate the
importance of this exchange process in the small bowel
of rabbits by comparing the absorption rate of carbon
monoxide with that of four other gases: hydrogen, he-
lium, methane, and `xenon. Since absorbed CO be-
comes tightly bound to hemoglobin, it should not dif-
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fuse between the limbs of the exchanger. The other
four gases, which are unbound and have appreciable
solubility in both lipid and water (5), should exchange
freely. Therefore, the degree to which the observed
absorption of the unbound gases falls below that pre-
dicted by CO absorption should provide a quantitative
estimate of countercurrent exchange. As will be dem-
onstrated, no such discrepancy existed between the ob-
served and predicted absorption rates, suggesting that
countercurrent exchange does not influence absorption in
the rabbit small intestine.

METHODS
The rates of absorption of the five gases (CO, CIL, H2,
He, and 1MXe) were measured from closed loops of rabbit
jejunum. Adult New Zealand rabbits were fasted for 24 h
and were anesthetized with intravenous Valium (diazepam,
10 mg, Roche Laboratories, Division of Hoffmann-La
Roche Inc., Nutley, N. J.) and pentothal (15 mg/k).
During each experiment, the rabbit's temperature was main-
tained at 37-390C with an electric heating pad controlled
by a thermostat connected to a rectal temperature probe.
Through a midline abdominal incision, a 10-cm segment of
midjejunum was delivered and tied off at both ends with
umbilical tape. The blood supply to the segment was care-
fully preserved. Small-bore cannulas connected to three-
way stopcocks were inserted into the lumen through a
stab wound at both ends of the gut segment and secured
with two layers of sutures to prevent leaks. The segment
was carefully washed clean of all contents by perfusing
it several times with warm saline and then was emptied
by careful stripping. Initial studies showed that this pro-
cedure reduced production of H2 and CHG, in the gut seg-
ment to negligible levels (< 1 X 10' ml/20 min).

Absorption period and test gases. Studies to determine
the relation between Poo and CO absorption rate were
carried out with two test gas mixtures which had an initial
Pco of 760 and 570 mmHg. In studies comparing the
absorption of CO with that of the unbound gases, a mix-
ture was employed which contained 90% CO, with the
remainder consisting of equal parts of H2, He, CH4, and
tracer quantities of 1AXe. Most studies were carried out
for 20 min. A few studies were carried out for 40-60
min to verify the accuracy of the measured absorption
rates for the more slowly absorbed gases during the
shorter test period. The uptake rates for the longer periods
were virtually identical with those obtained in the 20-min
runs.

At the beginning of each timed absorption period, 5 ml
of the mixture of test gases was instilled into the segment.
This volume of gas filled but did not overly distend the
segment. The stopcocks were closed, the gut segment was
placed back into the peritoneal cavity, and the abdominal
wound was closed with towel clips.

At the end of the absorption period, the loop was
brought out through the abdominal incision, all gas re-
maining in the lumen was carefully stripped into a 10-ml
syringe, and the volume of gas was measured to the
nearest 0.1 ml. Studies indicated that 96±2.5% of the gas
could be removed from a loop in this fashion. This gas
was quantitatively transferred to a 100-ml syringe and,
to insure complete washout of residual gas in the loop,
about 95 ml of air was perfused through one cannula and
then collected in the 100-ml syringe. Initial studies in

which the loop was first washed in this manner and then
washed out with another 100 ml of gas indicated that less
than 1% of the test gases remained after the initial wash-
out. Lastly, a sample of blood for hemoglobin determina-
tion was obtained by cardiac puncture.

The fractional absorption rate (percent per minute) for
each gas was calculated from the volume of the gas ab-
sorbed, divided by the logarithmic mean volume of the
gas present in the lumen and the time interval of the
study. The gas volume of the loop was calculated as the
logarithmic mean of the initial volume (assumed to equal
the 5 ml instilled) and the final measured volume.

Determination of relative diffusion rates of the gases
through tissues. The relative rates of diffusion of the
unbound gases through small intestinal tissue of the rabbit
were determined by a method previously described (5). An
8-10-cm segment of rabbit jejunum was washed out with
saline and one end was then ligated. A polyethylene tube
was inserted into the lumen through the opposite end and
secured in place with suture. The segment was rapidly dis-
sected from the rabbit, 5 ml of a test gas mixture was in-
stilled into the segment, and the polyethylene tube was
sealed. The gut was placed in a sealed 250-ml flask con-
taining 100 ml of Krebs-Ringer bicarbonate previously
gassed with 95% 0-5% CO2. The flask was maintained at
370C and the fluid in the flask was vigorously stirred with
a mechanical shaker. At 20 min, 50 ml of gas was with-
drawn from the flask through the gas chromatograph gas-
sampling valve into a syringe. This 50 ml of gas was dis-
placed by Krebs-Ringer bicarbonate. 4 ml of gas was
removed from the syringe for AXe determination and the
gas in the syringe was then reinjected into the flask, dis-
placing Krebs-Ringer bicarbonate. The gas remaining in
the gas-sampling valve was injected into the chromato-
graph. A second analysis of gas concentrations was made
at 40 min.

Analytical techniques. "NXenon concentration was deter-
mined by injecting 2 ml of gas (ambient temperature [26°-
27°C] and pressure, dry) into an evacuated, stoppered glass
test tube. The test tube was counted in a scintillation coun-
ter 1 to at least ±2% accuracy.

The concentration of each of the other four gases was
determined with a gas chromatograph2 equipped with a 2-
ml gas-sampling valve, a thermal conductivity detector
(for H2, He, and CO), and a hydrogen flame detector (for
CHO) in series. Adequate separation of these gases was
achieved with a 9'X i" column packed with molecular
sieve at an oven temperature of 1050C. Argon was used as
the carrier gas at a flow rate of 30 ml/min.

Blood hemoglobin concentrations were determined by the
cyanmethemoglobin method of Drabkin (6).

RESULTS
Relation of CO absorption to Luminal Poo. The ab-

sorption of CO at a mean luminal Pco of 640 mmHg
(initial Pco 760) and 455 mmHg (initial Pco 570) were
virtually identical, averaging 1.53±0.10 and 1.48±i 0.12
(SEM) ml/min/100 g respectively, in eight studies. All
simultaneous studies of the absorption of CO and the
unbound gases were carried out at a mean luminal Pco

"Packard Auto-Gamma Spectrometer, Series 410A, Pack-
ard Instrument Co., Inc., Downers Grove, Ill.

2Beckman GC-6, Beckman Instruments, Inc., Fullerton,
Calif.
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of greater than 500 mmHg. To demonstrate that CO
absorption would increase with increasing Pco in a dif-
fusion-limited case, similar studies were carried out in
the stomach, an organ that shows marked diffusion limi-
tation during absorption (5). As expected, CO ab-
sorption increased from 0.31±0.03 to 0.52±0.04 (SEM)
ml/min/100 g, when the mean Pco was increased from
430 mmHg to 672 mmHg.

Measurement of the absorption rates and diffusion
rates of the test gases. The observed absorption rates
of the five test gases are shown in Table I. The ab-
sorption of CO (Qco)8 is expressed as milliliters per
minute per 100 grams of intestine, and for the unbound
gases, absorption is given as the fractional absorption
rate (C), and expressed as per cent per minute per 100
grams of intestine. To determine if the presence of CO
influenced the absorption rate of the other four gases,
two studies were performed substituting room air for
CO. The results of these studies did not differ signifi-
cantly from the results obtained in the presence of 90%
Co.

Table I also indicates the measured diffusion rates
of the gases in rabbit intestinal tissue expressed as the
ratio of the diffusion rate of each gas relative to CH4
(k./kcH) .

Calculation of blood flow from the absorption rate of
CO. 1 g of hemoglobin binds 1.36 ml of CO (STP)
(7). Assuming that the hemoglobin of the equilibrating
blood flow becomes saturated with CO and that the
hemoglobin of the villus blood equals central hemoglobin,
the blood flow that absorbed CO (Fco) is calculated as
follows:

Fco Qco
1.36 X [Hgb]

= 7.2440.12 (SEM) ml/min/100 g. (1)

The amount of the unbound gases that would be ab-
sorbed if these gases equilibrated with Fco and if there
were no countercurrent exchange is given by:

Q, = Fcoa.P,, (2)

where Qi is the expected absorption rate of gas x, Fco
is calculated from Eq. 1, ax is the solubility coefficient
of the gas in blood (5), and P. is the partial pressure
of the gas in the lumen.

Expression of this relation in terms of fractional ab-
sorption rate (C.) of a gas rather than absolute ab-
sorption rate (Q.) requires the following manipulation.
The total amount (A.) of a gas in the lumen equals
VPx/PE - 47 where V is the total volume (STP) of gas
in the loop and PB is barometric pressure. Therefore the

'Abbreviations used in this paper: C, fractional absorp-
tion rate; Fco, the flow that equilibrates with CO; Q, ab-
sorption.

TABLE I
Absorption Rate and Relative Diffusion Rate of Gases

Diffusion rate in
Fractional absorption tissue relative to

Gas rate (C) CH4(Kx/KCH4)

%/min/100 g

He 5.48±0.65 (18) 1.14±0.04 (8)
H2 8.37±4i1.02 1.52±-0.03

133Xe 45.25±2.18 1.81±0.47
CH4 11.9040.75

Absorption rate (Q)
(ml/min/lOOg)

CO 1.52±0.08

Data expressed as ± 1 SEM; ( ), number of observations.

predicted fractional absorption for gas x can be calcu-
lated ' from:

- Qx _ (PB - 47)axFco.
X-__ V

(3)

The expected fractional absorption rate of each of
the unbound gases (arbitrarily set at 1.0) is compared
with their observed fractional absorption rates in Fig.
1A. It is apparent that the gases were absorbed much
more rapidly than predicted. This result is the opposite
of what would be expected with countercurrent ex-
change.

Calculation of blood flow from the absorption rate
of the unbound gases. In Fig. 2, the fractional absorp-
tion rate of each gas relative to CHU (Cx/CCH4) is
plotted against the blood solubility of each gas (5) rela-
tive to CH4 (aX/ac]4 ). If uptake was entirely blood
flow limited, the uptake rate of each gas should be
proportional to its solubility in blood and all points
should fall on the line of identity. Instead the more
rapidly diffusing, low molecular weight gases (H2 and
He) are absorbed faster than predicted and 'Xe, a
large, slowly diffusing gas, is absorbed more slowly
than predicted. Wehave previously shown that absorp-
tion of gases from the rat small intestine is well described
by a model that assumes that functionally there are two
absorptive flows (5). One flow, in close proximity to
the lumen, perfectly equilibrates with luminal gases. A
second flow maintains a negligible concentration of the
luminal gases and therefore absorbs with diffusion-lim-
ited kinetics. It can be shown that if this model is cor-
rect, the uptake of gas x relative to CH4 should be de-
scribed by the following equation (5)

(FaCCH4 Cx~JH4 1 kXaCH4 - 1 (4)
kcH4 CCH4aX kCHa,,x

where CX/Ccns is the ratio of the fractional absorption

4The values employed for a were 0.0088, 0.0149, 0.120,
and 0.032 for He, H2, "'Xe, and CH4, respectively (5).
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fractional absorption of CH4:

F = CCH4V(1- S)
aCH4 (PB-47)

H1 3Xe tie Cu4 Hl 1X9 e GH4
FIGURE 1 Comparison of the observed absorption rates of
H2, "Xe, He, and CH4 with the absorption rates predicted
from CO absorption. In (A) the total observed absorp-
tion rate is compared with the predicted rate. In (B) the
fraction of the observed uptake calculated to have been
absorbed into an equilibrating flow is compared with the
predicted rate.

rates of the two gases, kx/kon4 is the relative diffusion
rates of the two gases (experimentally determined in
vitro) and F is the equilibrating flow. If this model is
correct, a plot of (CxacH4/Ccix4a.) - 1 vs. (kxaCH4/kCH4ax)
- 1 should give a straight line passing through the
origin. Fig. 3 shows that when plotted in this form, the
observed data very nearly fall on a straight line passing
through the zero intercept, indicating that this model
accurately predicts the absorption of gases from the rab-
bit as well as the rat small bowel. The slope of this plot
is 0.23±0.008 (±1 SD), the intercept is 0.088 and r=
0.99.

It can be shown (5) from Eq. 4 that the slope (S)
of the line in Fig. 3 is described by:

(5)

= fraction of total CH4uptake that is diffusion limited.

An S of zero indicates complete blood flow limitation
and as the slope increases, there is increasing diffusion
limitation until, when S = 1, diffusion limitation becomes
complete. The percentage absorbed by a diffusion-limited
mechanism was 23% for CH4, and 49%, 55%, and 12%
for H2, He, and 'Xe, respectively. The 95% confidence
limit for the slope shown in Fig. 3 was 0.23±0.016 and
thus the 95% confidence limit for the percentage of CHE
absorbed by a diffusion-limited mechanism is 21.4%-
24.6%. The percentage of the total uptake absorbed
into the equilibrating flow equaled 51%, 45%, 77%, and
88% for H2, He, CH4, and 'Xe, respectively, with 95%
confidence limits of about ±2% above and below these
values. The value of the equilibrating blood flow (F)
can be determined from the value of the slope and the

(6)

The equilibrating flow calculated from Eq. 6 averaged
13.2 ml/min/100 g, about 1.8 times greater than Foo.
Fig. 1B compares the uptake rate of the unbound gases
calculated to have been absorbed into this equilibrating
flow (F) with the uptake rate predicted from Fco (Eq.
3). As would be expected from the discrepancy between
the flows, the observed rate was about 1.8 times faster
for each of the gases than would be predicted from Fco.

DISCUSSION
The technique employed in this paper to quantitate the
influence of countercurrent exchange is based on the
following rationale: Coburn demonstrated that the rate
of CO absorption from the ileum of rabbits (8) rises
linearly with increasing luminal Pco until Pco reaches a
level of about 400 mmHg. Above this level absorption
remains constant despite further increments in Pco.
This finding was confirmed in the present study. Thus,
absorption of this gas at high luminal Pco is entirely
accounted for by a flow that becomes saturated with CO.
Uptake by a partially saturated blood flow must be neg-
ligible, since the absorption of COby such a flow would
rise when the luminal Pco was increased.

If the hemoglobin concentrations of villus and central
blood are identical, the flow that equilibrates with
CO(Fco) can be calculated from Eq. 1 and equaled
7.24±0.12 (SEM) ml/min/100 g. Employing roughly
comparable methodology, Coburn measured a flow of 8
ml/min/100 g for the rabbit ileum (8).

133x4

2 3

a(x /aCH4
4

FIGURE 2 Relation of the absorption rates of Ha, He, CH4,
and 1Xe to their solubilities in blood. The observed ab-
sorption rate of each gas relative to CH4 (CX/CCH4) is
plotted against the ratio of the solubility of the gas in blood
to that of CH4 (ax/acE4). If the absorption rate is deter-
mined solely by the solubility of the gas in blood, all points
should fall on the line of identity.
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result in an underestimation of Fco. As previously dis-
cussed, this possibility seems to be ruled out by the
constant absorption rate of CO at luminal Pco values
above 400 mmHg. Fco would also be underestimated if
plasma skimming was greater than assumed. It seems
unlikely, however, that the villus hematocrit could be
appreciably less than 60% of the central hematocrit with-
out resulting in ischemia of the villi and in an extra-
ordinarily high hematocrit in the nonvillus flow.

The flow measurement based on CO absorption would
also be underestimated if CO was able to exchange.
However, the tight binding of CO to hemoglobin ap-
pears to rule out this possibility. The rate of exchange
of a gas will be directly proportional to the partial pres-
sure differences for the gas between the two limbs of the
exchanger. The small amount of unbound, dissolved CO
would diffuse between the limbs of the exchanger with
kinetics roughly comparable to the diffusion of the un-
bound gases. The Pco in the efferent blood would then
fall to a very low level but the blood would remain
nearly saturated with CO. Thus, further exchange would
take place at a very slow rate relative to the amount of
CO present in the blood draining the villous. In con-
trast, the concentration of the unbound gases in blood
is directly proportional to their partial pressures. Hence,
relative to the quantity of gas present in venous blood,
the unbound gases would diffuse at a rate several or-
ders of magnitude faster than CO. For example, venous
blood equilibrated with H2 and CO at a partial pressure
of each gas of 2 mmHg would contain about 400 times
as much COas H2 (assuming a Po2 of 30 mmHg and a
normal hemoglobin concentration). Since the diffusivities
of COand H2 are roughly similar, the rate of fall of the
venous H2 concentration by diffusion to the arteriole
would be roughly 400 times faster than the fall in the
bound CO. Thus, countercurrent exchange of COshould
be negligible relative to the exchange of the unbound
gases.

A model consisting of a flow-limited and a diffusion-
limited component has been used to represent the mecha-
nism of absorption of unbound gases in the present study.
This model employs no correction for countercurrent
exchange subsequent to the uptake of gases by the two
absorptive streams. The concept of a discrete flow that
equilibrates with the lumen is supported by the CO
data, which indicate that a flow equilibrates with the lu-
men at high luminal Pco, while the remainder of the
perfusion is sufficiently distant from the lumen that it
has negligible uptake of CO. The major support for
the accuracy of the model, however, is that the ob-
served absorption rates of the gases from the small
bowel of both the rat and the rabbit are almost per-
fectly predicted by the model.

Countercurrent shunting should be largely diffusion
limited. Therefore the most diffusible gas would be

shunted the most rapidly, and hence have the greatest
retardation of absorption. In most cases, such an ef-
fect results in absorption data that do not accurately fit
the model. In addition, with the model it was observed
that the flow calculated to equilibrate with unbound gases
was similar to the equilibrating flow for CO. The most
likely interpretation of these findings is that the model
employed to describe the absorption of the unbound
gases is correct and there is no appreciable counter-
current exchange. Similarly, the same flow rate appears
to equilibrate with CO and the unbound gases because
there is such an absorptive flow, whose gas content is
not subsequently influenced by countercurrent exchange.

However, the possibility cannot be excluded that un-
bound gases diffuse to a greater blood flow than indi-
cated by the model, and subsequent exchange fortui-
tously reduces the observed gas absorption to values that
exactly fit the model. The similarity between the equili-
brating flow for COand that calculated for the unbound
gases would likewise have to be dismissed as a fortuitous
occurrence.

While the present study does not provide incontro-
vertible evidence against the existence of countercur-
rent exchange, it suggests that exchange did not have a
major influence on the absorption of the unbound gases
under the conditions of this study. The possibility cer-
tainly remains that in animals with different villus archi-
tecture or at very slow linear rates of blood flow, a
countercurrent mechanism might well be important.

The results of this investigation are at variance with
a variety of carefully conducted studies (1-4) inter-
preted as demonstrating the existence of countercurrent
exchange. The explanation of these disparate findings
is not entirely apparent, although different techniques
and experimental animals were employed.

It should also be noted that a theoretical case can be
made for the existence of exchange. From knowledge
of diffusion distances and diffusion rates, and with
favorable assumptions concerning transit time in the
limbs of the exchanger and villus-lumen equilibration,
it can be argued that appreciable exchange should oc-
cur (11). However, data on the above assumptions
seem insufficient to allow for reliable theoretical calcu-
lations concerning the existence of countercurrent ex-
change. For example, if the entire villus equilibrates
with the lumen, venous blood draining the villus will be
equilibrated with the lumen and there will be no coun-
tercurrent exchange. Thus it seems necessary to base
the major arguments for or against the existence of
exchange upon experimental observations, which at
present both support and refute the importance of this
mechanism. Additional studies will be required to
resolve these differences.

Haglund has proposed that ischemic necrosis of the
villi observed in low perfusion states is a result of a
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slow linear rate of villus blood flow with efficient ex-
change of 02, rather than a manifestation of low vol-
ume flow per se (12). Because of the high affinity of
hemoglobin for oxygen (analogous to the situation with
CO), the rate of countercurrent exchange of the un-
bound gases should be many times faster than the rate
for oxygen. Thus, if this explanation for the necrosis
is correct and there is a significant shunt for oxygen,
one would expect to find almost complete shunting of
the unbound gases, which should be readily detected
by the technique described in this paper.
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