Abstract

A family is reported in which each of two sisters has a son with no detectable hypoxanthine phosphoribosyltransferase (HPRT) (EC 2. 4. 2. 8) in his erythrocytes, a finding considered pathognomonic of Lesch-Nyhan disease. However, neither has the stigmata of the disease. One boy is neurologically normal, and the other is moderately retarded. There was only a slight increase in urinary uric acid, but the amounts of hypoxanthine and xanthine, and their ratios, were similar to those found in Lesch-Nyhan disease, strongly indicating that excesses of these last two oxypurines are not responsible for the symptomatology in that disease. In contrast to the nondetectable HPRT activity in the red blood cells, leukocyte lysates from the two boys have 10-15% of normal activity, possibly reflecting continuing synthesis of an unstable enzyme. This hypothesis is supported by the demonstration that at 4°C HPRT activity was rapidly lost in the propositus while the activity increased in control subjects. The mother's cells were intermediate between the two. The intact and disrupted leukocytes of the hemizygote, in the absence of added phosphoribosyl converted as much hypoxanthine to inosinate as the normal cell, and appropriate tests indicated that under these circumstances enzyme concentration is not rate limiting whereas the concentration of the cosubstrate, phosphoribosyl pyrophosphate, is. The capacity for normal function in the intact mutant cell is more representative of in vivo conditions than the lysate, which may explain the important modification of clinical symptomatology, the relatively mild hyperuricosuria, and the presence of mosaicism in the circulating blood cells of the heterozygotes. A similar explanation may apply to other genetic diseases in which incomplete but severe enzyme deficiencies are found in clinically normal individuals.

Authors

Joseph Dancis, Lily C. Yip, Rody P. Cox, Sergio Piomelli, M. Earl Balis

×

Other pages: