The Journal of Clinical Investigation

REACTIVITY OF RENAL AND SYSTEMIC CIRCULATIONS TO VASOCONSTRICTOR AGENTS IN NORMOTENSIVE AND HYPERTENSIVE SUBJECTS

Ervin A. Gombos, ..., David S. Baldwin, Herbert Chasis

J Clin Invest. 1962;41(2):203-217. https://doi.org/10.1172/JCI104472.

Research Article

Find the latest version:

https://jci.me/104472/pdf

REACTIVITY OF RENAL AND SYSTEMIC CIRCULATIONS TO VASOCONSTRICTOR AGENTS IN NORMOTENSIVE AND HYPERTENSIVE SUBJECTS *

By ERVIN A. GOMBOS,[†] WILLIAM H. HULET,[‡] PIERRE BOPP,[§] WILLIAM GOLDRING, DAVID S. BALDWIN and HERBERT CHASIS

(From the Department of Medicine, New York University School of Medicine and the Third and Fourth (NYU) Medical Divisions, Bellevue Hospital, New York, N. Y.)

(Submitted for publication June 13, 1961; accepted August 31, 1961)

It has been suggested that vascular hyper-reactivity is in part responsible for the vasoconstriction in human essential hypertension. This thesis has been examined by comparing the response to vasoconstrictor agents in hypertensive patients with that of normotensive subjects.

Kylin (1), Brems (2), Gordon and Levitt (3), Fatherree and Hines (4), Judson and co-workers (5, 6), and Barany and James (7) failed to demonstrate increased sensitivity to epinephrine or norepinephrine as measured by systemic blood pressure response in hypertensive patients. Goldenberg and associates (8) found no increased response to norepinephrine in hypertensive patients at high dosage but the response was somewhat increased at lower dosage. However, increased response of systemic blood pressure to epinephrine and norepinephrine in hypertension was reported by Clough (9), Jensen (10), and Doyle and Black (11).

In evaluating sensitivity of local vascular beds of the extremities to epinephrine by calorimetric or plethysmographic methods, Pickering and Kissin (12) and Prinzmetal and Wilson (13) found no increased response in hypertensive patients. Contrariwise, Mendlowitz and Naftchi (14), Barany and James (7), and Doyle, Fraser and Marshall (15) reported increased reactivity in hypertension; Duff (16) reported no increased sensitivity to epinephrine in "benign hypertension" but increased reactivity in "progressive or malignant hypertension." Greisman (17) found that the capillary bed of the nailfold of patients with essential hypertension was hyperreactive to infused *l*-norepinephrine. In normotensive subjects several investigators (18–20) have shown that epinephrine and *l*-norepinephrine produce reduction in renal plasma flow without affecting glomerular filtration rate. However, sensitivity of the renal vascular bed to epinephrine and *l*-norepinephrine has not been studied in subjects with essential hypertension.

The relationship of sodium intake to blood pressure levels in hypertensive patients has suggested the possibility that vascular resistance and reactivity may be affected by sodium content of the body or, specifically, the vessel wall. Raab and colleagues (21) observed a weakened or abolished pressor effect of infused epinephrine and l-norepinephrine in hypertensive patients on a rice Aleksandrow and co-workers (22), indiet. duced salt depletion in hypertensive subjects by administration of chlorothiazide, and also observed reduction of the pressor effect of infused *l*-norepinephrine. Dahl (23), on the other hand, failed to demonstrate a uniform decrease in pressor response to *l*-norepinephrine after sodium depletion accomplished by dietary restriction in hypertensive patients. None of these studies dealing with the effect of sodium depletion on vascular reactivity includes observations on renal hemodynamics.

This paper deals with observations on the vasoconstrictor effect of infused epinephrine and *l*-norepinephrine on the renal and systemic circulations in normotensive and hypertensive subjects during normal sodium intake as well as after a period of dietary sodium restriction. The data demonstrate that renal and systemic arteriolar vasoconstrictor reactivity is equal in normotensive and hypertensive subjects as shown by an equal relative in-

^{*} This study was supported in part by funds from the Joseph Laffan Morse Foundation and the Abraham S. Birsh Fellowship Fund, and United States Public Health Service Grant H-3272, National Heart Institute, Bethesda, Md.

[†]Research Fellow, New York Heart Association.

[‡]Research Fellow, American Heart Association.

[§] Abraham S. Birsh Fellow.

TABLE I

Subject† Age	<i>l</i> -Norepineph- rine	Urine volume	GFR	RPF	FF	RR	$\mathbf{P_m}$	Pulse
yrs	μg/min/ 1.73 m ²	ml/min	ml/min	ml/min	%	dynes- sec-cm ⁻⁵	mm Hg	rate/mi
	1		Normote	ensive subjec	ets	500-0110 -		
M.S.	Control	3.70	122	602	20.3	5,070	77	94
39	4.9	2.73	131	591	22.1	6,100	91	80
	13.2	4.78	122	490	25.1	8,830	107	79
	21.4	7.61	117	410	28.6	12,000	120	75
	42.4	9.58	127	373	34.0	14,500	131	77
0.V.	Control	0.92	118	621	19.1	4,810	88	74
35	2.6	0.85	105	507	20.8	6,170	92	76
	6.6	0.96	121	512	23.7	6,500	97	68
	12.3	0.85	118	430	27.5	8,350	104	66
	20.0	1.08	130	407	32.0	10,200	116	63
M.So.	Control	1.95	118	604	19.5	5,560	79	92
45	3.0	2.04	120	571	21.0	6,810	90	96
	4.6	2.37	127	505	25.1	8,870	102	90
	7.5	2.34	126	483	26.0	9,880	108	88
	13.9	1.42	104	409	25.9	12,400	114	78
A.B.	Control	5.57	118	709	16.6	4,520	86	110
19	4.6	9.16	121	646	18.7	5,420	93	100
	7.6	10.2	122	582	20.9	6,810	104	72
	13.9	4.43	105	449	23.4	8,940	105	72
	22.8	3.95	95.4	348	27.4	12,500	113	66
M.H.	Control	1.44	157	616	25.6	5,180	83	80
32	8.5	8.18	152	530	28.7	9,000	119	72
	13.8	5.09	157	505	31.1	9,900	124	60
	23.0 30.5	3.80 4.07	154 147	445	34.6	12,500	137	56
	50.5	4.07	147	435	33.8	14,600	155	47
V.C.	Control	0.54	133	773	16.8	3,910	79	80
29	6.6	0.57	132	610	21.7	5,810	91	74
	12.1	0.76	129	530	24.3	7,850	105	70
	19.1	1.99	118	460	25.7	8,660		75
	22.6	5.43	121	435	27.8	11,000	120	68
	30.1	9.15	131	447	29.3	13,500	148	70
G.S.	Control	0.96	147	888	16.6	4,120	93	78
33	13.6	1.52	141	641	22.0	7,430	119	66
	21.8 31.5	4.54	143	521	27.5	10,200	131	56
	36.5	5.54 5.51	119 113	403	29.5	14,350	142	52
	00.0	5.51	113	355	31.9	16,900	147	50
D.J.	Control	1.45	134	739	18.1	4,220	81	64
23	8.0 14.9	4.53	•139 130	636	22.2	5,650 8,060	92	62
	24.0	6.99 8.33	130 128	506 464	25.7 27.6	8,000 10,200	103 119	61
	34.5	8.33 7.69	128	404 426	30.3	10,300 11,200	119	60 59
	40.5	7.48	136	425	32.0	12,000	126	58
н.н.	Control		150	641	23.5	5,530	91	81
31	8.8	7.45	141	511	23.5	8,400	108	67
	16.5	7.54	136	410	33.2	13,900	140	51
M.J.	Control	0.58	134	719	18.6	6,800	107	01
40	4.9	0.66	134	623	22.4	8,610	107	84 82
	11.2	0.97	135	596	22.6	9,840	125	79

Effect of l-norepinephrine on renal and systemic hemodynamics in normotensive and hypertensive subjects on regular salt intake *

 * Clearance values are corrected to 1.73 m² body surface area. See Methods section for abbreviations. † All subjects are females.

Subject† Age	<i>l</i> -Norepineph- rine	Urine volume	GFR	RPF	FF	RR	$\mathbf{P}_{\mathbf{m}}$	Pulse
yrs	μg/min/ 1.73 m²	ml/min	ml/min	ml/min	%	dynes- sec-cm ⁻⁵	mm Hg	rate/min
S.R.	Control	5.11	132	858	15.4	3,790	84	83
30	6.6	5.05	139	735	18.9	5,020	94	77
	10.9	6.20	126	554	22.7	7,450	104	73
	17.9	4.92	116	431	26.9	9,800	107	64
	23.8	4.92	114	400	28.5	11,300	113	61
	28.6	6.28	118	431	27.4	11,200	120	60
D.L.	Control	3.70	121	619	19.7	4,540	74	85
29	6.9	3.62	120	521	23.0	6,470	87	74
	14.6	7.65	120	431	27.9	8,850	97	68
	20.9	5.21	101	332	30.4	11,900	100	60
	24.4	2.79	122	362	33.7	11,800	107	60
	41.8	5.36	116	345	33.6	13,200	114	60
H.V.	Control	2.29	145	809	18.0	4,980	102	83
42	4.8	3.10	150	687	21.9	7,880	133	60
	9.6	8.60	159	625	25.4	9,750	149	58
			Hyperte	nsive patien	its			
T.B.	Control	1.37	132	474	27.8	12,700	147	80
55	3.1	6.66	122	427	28.5	14,620	159	72
	9.2	9.26	122	413	29.5	16,870	169	72
L.C.	Control	1.24	94.5	583	16.2	7,600	111	96
31	1.4	1.38	97.5	563	17.3	8,400	118	96
	3.0	1.25	94.6	521	18.2	9,500	123	88
	7.4	1.12	92.7	486	20.8	11,800	130	66
I.F.	Control	0.96	87.9	463	19.0	10,000	114	84
49	3.6	1.67	100	456	22.0	12,300	135	85
	5.9	2.84	111	459	24.3	13,200	146	80
	11.1	5.92	115	395	25.4	13,400	166	74
	18.1	11.5	114	356	32.2	20,700	175	88
E.H.	Control	4.93	129	567	22.8	7,650	109	80
42	1.6	8.60	138	555	24.8	8,130	113	78
74	2.5	7.96	128	493	24.8	9,340	115	64
	4.8	7.52	120	457	27.8	11,300	128	57
	4.8 8.4	4.88	132	457	29.0	12,100	136	52
C.H.	Control	0.93	121	508	23.8	9,260	105	84
43	3.0	0.93	123	464	26.6	11,300	116	83
	4.9	0.92	117	413	28.5	13,900	126	80
	9.1	0.94	121	408	29.8	14,000	126	77
	14.7	1.05	132	383	34.4	16,700	140	77
R.M.	Control	1.71	92.0	399	23.1	11,900	118	68
63	5.3	2.94	103	400	25.7	14,600	133	66
	12.2	4.43	95.6	326	29.4	20,300	161	72
	19.8	3.89	77.4	244	31.6	30,900	182	86
M.L.	Control	1.11	115	531	21.7	8,500	113	89
26	3.4	1.21	117	538	21.7	8,550	115	83
	8.7	2.45	117	461	25.3	11,200	128	70
	12.1	6.18	119	423	28.1	12,800	135	67
	20.1	6.90	115	395	29.1	14,400	140	65

TABLE I—(Continued)

crease in both renal resistance and systemic blood pressure in response to the administration of epinephrine and *l*-norepinephrine. Sodium restriction failed to decrease reactivity of the renal or systemic circulations to these constrictor agents.

METHODS

Observations were made in 16 normotensive subjects without evidence of cardiovascular renal disease and in 16 patients with essential hypertension selected from the wards of the New York University Services of Bellevue Hospital. Hypertensive patients were selected in the

TABLE II

Subject† Age	Epinephrine	Urine volume	GFR	RPF	FF	RR	$\mathbf{P_m}$	Pulse
yr s	μg/min/ 1.73 m ²	ml/min	ml/min	ml/min	%	dynes- sec-cm ⁻⁵	mm Hg	rate/mi
	1		Normote	ensive subjec	ets	300 0110		
A.B.	Control	4.32	104	655	15.9	4,880	83	103
19	4.7	3.75	105	523	20.0	5,780	79	124
	7.6	4.92	120	560	21.5	5,480	80	130
	14.0	2.62	124	494	25.2	6,660	85	137
	22.8	4.50	137	498	27.6	6,590	85	145
M.So.	Control	2.57	128	531	24.1	8,000	102	107
45	3.0	3.75	133	484	27.4	8,540	98	108
10	4.6	6.55	139	501	27.8	8,160	97	108
	7.6	7.77	139	422	32.8	9,690	97	120
		5.00				9,090		
	13.9	5.99	129	446	28.9	9,060	96	120
	22.7	5.92	134	412	32.6	9,810	96	126
M.S.	Control	1.85	119	708	16.6	5,540	92	81
39	4.4	1.72	134	501	26.9	8,680	101	105
	7.2	1.74	129	517	25.0	8,230	99	104
	13.1	2.03	129	505	25.5	7,960	94	111
	21.4	4.52	128	517	24.7	8,040	94	121
B.B.	Control	1.35	96.8	499	19.4	6,810	89	92
54	2.7	1.03	91.0	421	21.6	7,780	86	96
	4.1	1.07	100	426	23.5	7,590	85	95
	6.7	0.97	94.7	386	24.5	8,260	84	97
	12.4	0.96	101	378	26.7	8,770	87	113
M.W.	Control	3.58	152	688	22.1	6,560	102	96
30	3.9	2.82	143	605	23.6	6,680	95	128
	6.4	3.05	140	444	31.6	7,870	82	129
	11.7	4.53	162	$\hat{497}$	32.5	6,660	78	144
	19.2	3.60	135	408	33.1	7,100	69	154
			Hyperte	nsive patien	ts			
C.H.	Control	1.27	114	478	23.9	9,380	107	92
43	3.0	1.58	125	478	26.4	8,110	94	96
	4.9	2.50	124	431	28.8	9,420	98	102
	9.0	1.79	117	391	29.8	11,000	103	104
	14.6	1.61	126	348	36.2	12,900	107	115
R.M.	Control	1.42	122	589	20.6	6,450	100	78
63	4.1	1.66	108	418	25.8	9,170	101	87
	12.2	0.99	92.0	336	27.4	10,600	109	123
	19.9	0.68	93.3	294	31.8	14,900	114	126
L.G.	Control	0.65	83.0	420	19.8	10,300	111	84
54	3.5	0.76	98.0	377	26.0	11,100	101	82
~ .	5.7	0.55	88.3	308	28.6	13,100	104	84 84
	10.6	0.55	73.4	280	23.0	15,800	104	103
	17.2	0.55	83.7	274	30.6	18,000	122	112
L.C.	Control	1.24	110	568	19. 4	7,770	107	74
42	6.2	1.24	110	420	26.2	9,400	97	90
72	11.4	1.22	100	420 372	26.2	9,400 12,300	111	105
N.F.	Control	3.58	132	614	21.5	6,710	104	82
38	1.9	5.70	142	601	23.6	6,780	104	93
00	3.9	5.58	139	518	25.0	8,210	103	109
	0.7	0.00		010	40.0	0,410	101	109
	5.6	3.60	138	536	25.8	8,740	117	122

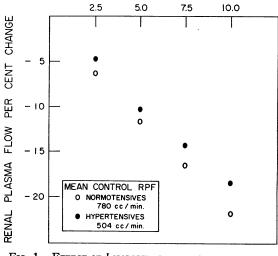
Effect of epinephrine on renal and systemic hemodynamics in normotensive and hypertensive subjects on regular salt intake *

* Clearance values are corrected to $1.73\ m^2$ body surface area. See Methods section for abbreviations. † Subjects J.B. and J.M. are males.

Subject† Age	Epinephrine	Urine volume	GFR	RPF	FF	RR	Pm	Pulse
yrs	μg/min/ 1.73 m ²	ml/min	ml/min	ml/min	%	dynes- sec-cm ^{-s}	mm Hg	rate/min
M.R.	Control	14.4	135	683	19.7	6,430	110	84
26	5.5	10.7	133	555	24.0	7,430	104	92
	11.5	6.28	131	490	26.7	8,060	100	104
	16.4	4.71	126	467	27.0	8,260	98	111
	21.9	6.87	137	427	32.1	9,150	99	116
	27.4	8.32	134	411	32.7	9,500	99	120
J.B.	Control	1.02	97.3	582	16.7	7,010	103	80
49	4.2	1.63	100	525	18.8	7,770	103	96
	10.5	2.23	114	444	25.7	8,500	96	108
	14.7	3.13	81.1	287	28.3	10,400	78	126
J.M.	Control	0.58	112	467	24.2	8,840	104	84
37	4.4	0.58	121	457	26.5	8,170	95	95
	10.9	0.93	120	388	31.0	9,489	94	107
	15.2	1.64	121	366	33.1	10,200	95	114
	21.8	1.45	124	348	35.6	10,500	93	124
L.L.	Control	7.39	115	580	19.9	7,770	113	84
39	4.5	5.62	106	455	23.3	9,150	105	88
	11.4	5.84	111	476	23.3	8,650	104	104
	15.9	1.70	96.9	393	24.6	10,300	102	110
P.T.	Control	0.89	143	623	23.0	6,970	109	84
42	3.8	1.22	143	568	25.2	7,180	103	99
	9.8	5.12	149	538	27.7	7,480	102	115
	13.5	13.0	142	487	29.1	8,380	103	122

TABLE II—(Continued)

early stages of their disease, as judged by the absence of proteinuria and by minimal retinal and cardiac abnormalities.


The effect of *l*-norepinephrine on systemic blood pressure and renal hemodynamics was examined in 13 normotensive and 7 hypertensive subjects, and of epinephrine in 5 normotensive and 10 hypertensive subjects on a regular diet with normal salt content (10 to 15 g sodium chloride per day). The effect of *l*-norepinephrine during restricted dietary intake of salt (250 mg sodium chloride per day) was examined in 3 of the normotensive and 3 of the hypertensive subjects and of epinephrine in 4 of the normotensive and 5 of the hypertensive subjects. Adherence to the regimen was verified by measurement of 24-hour urinary sodium excretion rates.

Fluids were withheld for 12 hours preceding the test, which was performed in the morning with the patient in the fasting state. Urine was collected from an indwelling catheter and the bladder was emptied by means of air and without washout. Surgical sterility was maintained throughout the test, and an antibiotic was administered for 5 days following the test.

After the injection of suitable priming doses of inulin and *p*-aminohippurate, a sustaining infusion of these substances dissolved in normal saline was administered at a rate of 2 ml per minute. Urine was collected during one to three periods totalling 30 to 45 minutes for the determination of glomerular filtration rate (GFR) and renal plasma flow (RPF). Thereafter an infusion of *l*-norepinephrine or epinephrine in concentrations of 1.5 μ g per ml in 5 per cent dextrose in distilled water was administered at successively increasing rates, starting at approximately 2.5 µg per minute. In most of the normotensive subjects the dosage of *l*-norepinephrine or epinephrine was increased to approximately 30 µg per minute. but in hypertensive subjects adverse manifestations such as substernal pressure, throbbing headache, palpitation or cardiac arrhythmia precluded administration of doses much in excess of 10 μg per minute. A separate urine collection was made to correspond with each dosage of vasoconstrictor. At appropriate time intervals blood samples were drawn from an antecubital vein, centrifuged immediately, and the plasma stored in stoppered tubes. Systemic blood pressures were recorded every 3 to 5 minutes throughout the study by the auscultatory method and averaged for each period. The mean blood pressure (Pm) was calculated as one-third of pulse pressure plus the diastolic pressure. Renal resistance (RR) was calculated according to the method of Gomez (24). Inulin was determined by a modification of Harrison's method, and *p*-aminohippurate by the method of Smith (25). Urinary sodium concentrations were measured with a flame photometer using lithium as an internal standard.

The observed values for GFR, RPF, P_m and RR in each subject were plotted against dosage of vasoconstrictor and the values for doses of 2.5, 5.0, 7.5, and 10 μ g per minute were then derived for each parameter by interpolation. Mean values for both actual and percentage change were calculated from the interpolated values for the observations made during normal salt intake. Mean values were not calculated for the stud-

ControlResponseControlResponseControlResponseControlResponseSubjectsNo.Actual Δf Δ ControlResponseControlResponseControlResponseSubjectsNo.Actual Δf Δ Actual Δ Δ Actual Δ Δ Actual Δ Δ Actual Δ Δ Marmmmmmmmmminminminminmin Δ Δ Δ Momotensive1386108+22+25.6708551-157-21.84,8308,110+3,280+68.513313300.00.1010.242+0051+28.2Hypettensive1386108+22+25.6708551-157-21.84,8308,110+3,280+68.513313300.00.1010.242+0051+28.2Hypettensive1386108+22+25.6708551-157-21.84,8308,110+3,280+86.50.1210.2110.242+0051+28.2Hypettensive59480-95.6-18.19,66014,400+4,740+50.3110117+7+3.480.0210.0210.0210.02110.051+28.4Normotensive59480-18.19,66014,400+4,740+50.3110117+7+3.480.0210.026+0.051			Mean	Mean pressure	ITE		Renal plasma flow	olasma f	low		Renal r	Renal resistance		Glom	Glomerular filtration rate	ltratio	n rate	щ	ltration	Filtration fraction	
Actual Δ Actual Δ Actual Δ Δ Actual Δ Δ Δ Actual Δ		Contro	1	Respc	onse	Contro		Respoi	nse	Control		Response		Control		tespon		Control		Response	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No.	•	Actua	al Δ†	٩		Actua	4	Þ		Actual	٩	٩		Actual	⊲	⊲		Actual	Þ	⊲
108 $+22$ $+25.6$ 708 551 -157 -21.8 $4,830$ $8,110$ $+3,280$ $+68.5$ 133 133 0 0.0 0.191 0.242 $+0.051$ 145 $+29$ $+24.7$ 504 409 -95 -18.1 $9,660$ $14,400$ $+4,740$ $+50.3$ 110 117 $+7$ $+3.48$ 0.221 0.0231 $+0.052$ 145 $+24.7$ 504 409 -95 -18.1 $9,660$ $14,400$ $+50.3$ 110 117 $+7$ $+3.48$ 0.221 0.273 $+0.052$ 88 -6 -5.75 616 467 -149 -23.8 6.360 $7,820$ $+1,460$ $+23.7$ 120 128 $+8$ $+6.60$ 0.196 0.262 $+0.066$ 88 -6 -5.75 616 412 -157 -26.0 $7,770$ $10,300$ $+2,530$ $+33.9$ 116 114 -2 -2.92 0.209 0.2765 $+0.066$		mm Hg	mm Hg		%	ml / min	ml / min	ml / min	%	dynes- sec-cm-5	dynes- sec-cm-5	dynes- sec-cm-5		ml / min	ml / min	ml / min	8				%
Epinephrine Epinephrine 88 -6 -5.75 616 467 -149 -23.8 6,360 7,820 +1,460 +23.7 120 128 +8 +6,60 0.196 0.262 +0.066 105 -2 -1.54 569 412 -157 -26.0 7,770 10,300 +2,530 +33.9 116 114 -2 -2.92 0.209 0.276 +0.067	13 7	86 116	108 145			708 504	551 409	-157 - 95		4.830 9,660	nepurine 8,110 14,400	+3,280 +4,740	+68.5 +50.3	133 110	133 117		0.0 +3.48	0.191 0.221	0.242 0.273	+0.051	+28.2 +24.7
	5 10	94 107	88 105		- 5.75 - 1.54		467 412	-149 -157		Epine 6,360 7,770	phrine 7,820 10,300	+1,460 +2,530	+23.7 +33.9	120 116	128 114		+6.60 -2.92	0.196 0.209	0.262 0.276		+35.1 +32.7

L - NOREPINEPHRINE μgm / min / 1.73 m²

FIG. 1. EFFECT OF *l*-NOREPINEPHRINE ON RENAL PLASMA FLOW. Each open circle represents the mean value for 13 normotensive subjects and each closed circle the mean for 7 hypertensive subjects.

ies performed during restricted dietary intake of salt because of the small number of subjects.

The observed values for all doses administered are presented in Tables I, II, IV and V. However, for the purpose of comparing the responses in hypertensive and normotensive subjects we have utilized the values inter-

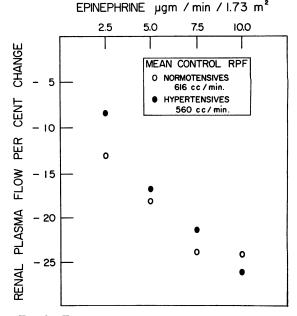


FIG. 2. EFFECT OF EPINEPHRINE ON RENAL PLASMA FLOW. Each open circle represents the mean value for 5 normotensive subjects and each closed circle the mean for 10 hypertensive subjects.

polated at 10 μ g per minute (Figures 1-5 and Tables III, VI and VII) and will refer to these in our results, inasmuch as this is the largest dose at which data are available for comparison in all subjects.

RESULTS

Regular diet with normal salt content (Tables I, II, and III; Figures 1-5). l-Norepinephrine induced a mean decrease in RPF of 157 ml per minute (-21.8 per cent) in 13 normotensive subjects and of 95 ml per minute (-18.1 per cent) in 7 hypertensive subjects. Epinephrine induced a

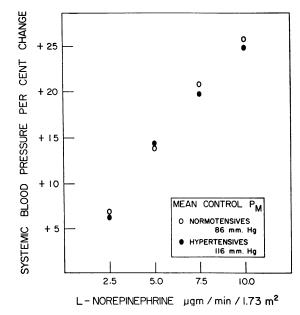


FIG. 3. EFFECT OF l-NOREPINEPHRINE ON SYSTEMIC BLOOD PRESSURE. Each open circle represents the mean value for 13 normotensive subjects and each closed circle the mean for 7 hypertensive subjects.

mean decrease in RPF of 149 ml per minute (-23.8 per cent) in 5 normotensive subjects and of 157 ml per minute (-26.0 per cent) in 10 hypertensive subjects.

l-Norepinephrine caused comparable increases in P_m in the two groups, a mean of 22 mm Hg (+ 25.6 per cent) in normotensives and 29 mm Hg (+ 24.7 per cent) in hypertensives. Epinephrine caused no significant changes in P_m in either normotensives or hypertensives, a mean of -6 mm Hg (- 5.7 per cent) in the former and -2 mm Hg (- 1.54 per cent) in the latter.

l-Norepinephrine did not change GFR in either group. Since percentage decrease in RPF was

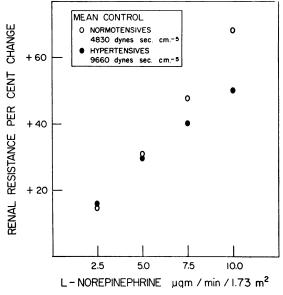


FIG. 4. EFFECT OF l-NOREPINEHRINE ON RENAL RE-SISTANCE. Each open circle represents the mean value for 13 normotensive subjects and each closed circle the mean for 7 hypertensive subjects.

comparable in normotensive and hypertensive subjects, percentage increases in filtration fraction (FF) were also equal, in the former from a mean control value of 0.191 to 0.244 (+ 29.2 per cent) and in the latter from 0.221 to 0.273 (+ 33.1 per cent). Similarly, epinephrine failed to affect GFR, and FF was increased to the same extent in normotensive and hypertensive subjects, from 0.196 to 0.262 (+ 35.1 per cent) in the former and from 0.209 to 0.276 (+ 32.7 per cent) in the latter.

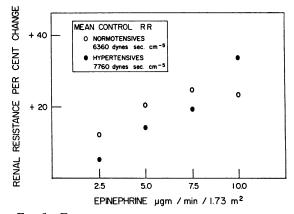


FIG. 5. EFFECT OF EPINEPHRINE ON RENAL RESISTANCE. Each open circle represents the mean value for 5 normotensive subjects and each closed circle the mean for 10 hypertensive subjects.

Subject† Age	<i>l</i> -Norepineph- rine	Urine volume	GFR	RPF	FF	RR	$\mathbf{P}_{\mathbf{m}}$	Pulse
yrs	μg/min/ 1.73 m ²	ml/min	ml/min	ml/min	%	dynes- sec-cm ⁻⁵	mm Hg	rate/min
			Normote	nsive subjec	ets			
A.B.	Control	1.51	108	755	14.4	4,130	84	111
19	4.7	1.23	96.3	514	18.7	7,530	102	73
	7.6	1.78	105	481	21.9	8,340	105	67
	14.0	1.10	84.1	302	28.0	14,000	110	62
	22.8	1.39	86.2	258	33.4	17,700	118	61
M.So.	Control	2.56	118	694	17.1	4,990	89	100
45	4.6	2.13	114	535	21.3	7,620	103	95
	7.6	1.98	104	416	25.0	10,700	112	92
	13.9	1.27	89	324	27.3	14,900	120	81
	22.5	0.85	78	236	32.9	21,700	127	73
M.S.	Control	2.84	83.6	602	20.1	4,810	75	90
39	2.9	0.89	111	527	21.0	6,090	82	76
	3.4	2.63	112	465	24.2	7,480	88	77
	7.2	3.61	124	464	26.8	8,180	95	76
	13.1	5.88	113	315	35.8	13,600	106	74
	21.4	6.25	101	314	32.2	14,500	112	77
0.V.	Control	1.15	122	788	15.6	3,560	79	84
35	4.1	0.73	101	597	16.9	4,760	80	74
	6.7	0.98	107	588	18.2	5,170	85	76
	12.4	0.61	116	563	20.6	5,700	89	75
	20.0	0.52	116	537	21.6	6,500	96	67
			Hyperte	nsive patier	ts			
E.H.	Control	0.39	96.0	382	25.1	10,300	100	66
42	1.2	0.40	89.4	390	22.9	11,100	109	56
	3.7	0.39	88.5	350	25.8	15,000	130	58
	11.1	0.48	96.6	299	32.4	19,900	146	56
L.C.	Control	1.42	66.2	420	15.8	10,000	106	84
31	7.4	2.44	85.8	439	19.5	12,100	131	76
	13.8	2.07	75.7	376	20.2	14,300	133	63
	22.3	1.48	93.0	339	27.5	16,400	137	57
M.L.	Control	0.37	97.0	459	21.2	8,250	98	69
26	5.4	0.60	107	386	27.7	12,300	120	64
	12.5	2.39	105	318	32.0	15,800	127	63
	20.4	1.97	99.0	284	34.9	19,500	139	57

 TABLE IV

 Effect of l-norepinephrine on renal and systemic hemodynamics in normotensive and hypertensive subjects on reduced salt intake *

* Clearance values are corrected to 1.73 m^2 body surface area. See Methods section for abbreviations. † All subjects are females.

l-Norepinephrine induced a mean increase in RR of 3,280 dynes-sec-cm⁻⁵ (+ 68.5 per cent) in normotensive and of 4,740 dynes-sec-cm⁻⁵ (+ 50.3 per cent) in hypertensive subjects. Similarly, epinephrine induced equal response in normotensive and hypertensive subjects, 1,460 dynes-sec-cm⁻⁵ (+ 23.7 per cent) in the former and 2,530 dynes-sec-cm⁻⁵ (+ 33.9 per cent) in the latter.

Regular diet with reduced salt content (Tables IV-VII). In four normotensive subjects salt restriction for periods of 17 to 45 days did not affect control values for P_m , RPF or RR in a sig-

nificant or consistent manner. However, in some hypertensive subjects salt restriction for periods of 8 to 18 days did affect systemic and renal hemodynamics: systemic pressure decreased in three of eight, RPF decreased in six of eight, and RR increased in four of the eight hypertensive subjects.

Dietary salt restriction did not alter the response of P_m to *l*-norepinephrine in the normotensive group: P_m increased 27 per cent on salt restriction as compared with 21 per cent on regular salt intake in Patient A.B.; 29 as compared

Subject† Age	Epinephrine	Urine volume	GFR	RPF	FF	RR	Pm	Pulse
yrs	μg/min/ 1.73 m ²	ml/min	ml/min	ml/min	%	dynes- sec-cm ^{-s}	mm Hg	rate/min
	1.75 m-		Normote	ensive subje	cts	sec-cm •		
A.B. 19	Control 4.7 7.6 14.0 22.8	4.23 2.65 4.75 8.77 8.05	111 112 114 108 101	749 607 590 498 488	15.0 18.5 19.4 21.6 20.8	4,270 4,760 4,610 5,540 5,660	83 76 72 73 73	100 131 136 141 140
M.So. 45	Control 3.2 4.6 7.6 13.9 22.6	0.56 0.51 0.49 0.43 0.89 2.01	108 102 108 110 112 117	553 488 424 408 382 360	19.5 20.9 25.5 27.0 29.3 32.5	6,120 6,560 7,940 8,810 8,650 9,670	87 83 83 84 84 88	96 101 114 118 121 126
M.S. 39	Control 3.0 4.4 7.2 13.1 21.4	0.70 1.77 5.47 3.25 3.02 1.90	118 123 128 130 135 110	500 546 506 463 447 330	23.6 22.6 25.3 28.1 30.2 33 3	6,240 5,700 5,900 7,320 7,180 10,000	81 81 78 80 83 85	104 105 104 103 108 114
B.B. 54	Control 2.7 4.1 6.7 12.4 20.2	0.95 1.00 1.18 1.00 0.82 1.30	78.4 81.0 80.9 79.9 82.0 95.0	524 550 445 476 445 493	15.0 14.7 18.2 16.8 18.4 19.3	6,670 6,100 7,750 7,340 7,220 6,710	85 82 84 86 79 81	88 91 96 103 108 117
				ensive patier				
E.H. 42	Control 2.4 6.1 11.1 18.2	5.52 6.38 7.77 7.82 8.80	77.2 85.2 91.4 87.1 96.0	396 431 408 378 382	19.5 19.8 22.4 23.0 25.1	10,600 10,100 9,000 9,610 9,970	106 109 94 93 97	75 74 88 94 105
M.L. 26	Control 3.5 6.8 12.5 20.4	0.36 0.38 0.49 0.33 0.69	109 115 140 120 129	431 415 457 313 299	25.2 27.6 30.5 38.3 43.3	8,550 8,660 8,050 14,600 14,700	97 94 97 118 114	73 93 101 135 133
M.R. 26	Control 4.6 15.0 16.1 23.0 27.6	8.70 7.52 4.82 3.14 1.72 1.60	146 138 129 124 135 133	695 623 460 382 376 344	21.2 22.2 28.1 32.3 35.9 38.7	4,670 4,930 6,770 8,720 8,850 10,300	85 80 81 86 86 91	91 100 109 115 118 124
N.F. 39	Control 3.9 9.8 13.7 19.5	4.30 4.03 3.72 2.63 1.30	109 123 101 102 71.8	579 561 389 380 255	18.9 21.9 26.0 26.8 28.2	6,210 6,960 10,600 11,300 15,800	101 99 104 108 102	92 100 113 120 125
J.M. 37	Control 4.4 10.9 15.2	0.53 0.73 0.77 0.61	102 112 87.9 83.3	411 434 320 288	24.8 25.8 27.4 28.9	10,000 9,600 13,200 14,400	104 105 106 104	88 99 114 124
L.L. 39	Control 4.5 11.4 15.9	3.16 5.19 2.44 1.16	95.9 104 91.2 95.5	659 606 498 525	14.5 17.2 18.3 18.2	6,450 6,660 7,300 7,100	107 102 93 95	98 104 120 125
P.T. 42	Control 3.8 9.6 13.5	0.40 6.38 8.54 7.14	108 121 107 106	496 507 416 417	22.7 23.8 25.7 25.4	9,000 8,480 9,800 9,460	112 108 103 100	82 100 109 121

TABLE V
Effect of epinephrine on renal and systemic hemodynamics in normotensive and hypertensive subjects on reduced salt intake *

* Clearance values are corrected to 1.73 m² body surface area. See Methods section for abbreviations. † J.M. is the only male subject.

TABLE VI Effect of reduced salt intake on the response to l-norepinephrine in normotensive and hypertensive subjects *

		Mean pressure	re	Y	kenai piasma now	MOL		Kenal resistance	بو	Clon	Glomerular nitration rate	חוו ומרכ
	Control	Resp	Response	Control	Response	onse	Control	Rep	Reponse	Control	Res	Response
Subjects		٩	٩		Þ	Φ		Φ	٩		4	4
	mm Hg	am Hg	%	ml/min	ml / min	%	dynes-	dynes-	%	ml/min	ml/min	%
					Norn	s Normotensive subjects	jects	sec-cm				
A.B.												
Ward S.R. [19]†	88 84	$^{+18}_{+23}$	+21.0 +27.0	709 755	-174 -335	24.6 44.4	4,500 4,130	+3,100 +6,730	+ 69.0 + 154.0	118 108	$^{-2}_{-10}$	- 1.69 - 9.25
M.So.												
Ward S.R. [17]	79 89	+30 +26	+38.0 +29.0	604 694		ן ן איני ני	5,560 4,990	+5,190 +7,210	+ 48.2 +145.0	118 118	$^{-20}_{-20}$	-17.0
M.Sp.								•				
Ward S.R. [21]	77 75	+25 +25	+32.0 +33.0	602 602	-70 - 207	11.6 34.4	$5,070 \\ 4,810$	+2,530 +5,790	+ 50.0 +120.0	122 87.6	$^{+35}_{+35}$	+2.46 +41.8
					Hype	Hypertensive patients	ients					
Е.Н.						4						
Ward S.R. [18]	109 100	+30 +46	+27.5 +46.0	567 382	-113 -77	-19.9 -20.1	7,650 10,300	$^{+4,850}_{+8,800}$	+ 38.8 + 85.4	129 96.0	+ 5 - 0.5	+ 3.88 - 0.52
Ľ.C.		×										
Ward S.R. [14]	111 106	+24 +26	+21.6 +24.5	583 420	- 184 - 10	-31.6 - 2.4	7,600 10,000	+5,500 +3,000	+ 72.3 + 30.0	94.5 66.2	-1.5 + 15.3	-1.58 + 23.1
M.L.								•				
Ward S.R. [11]	113 98	+17 + 26	+15.0 +26.6	531 459	-85 -117	-16.0 -25.5	8,500 8,250	+3,250 +6,450	+ 38.2 + 78.2	115 97.0	++	$^{+}_{+}$ 2.60 $^{+}_{-}$ 9.28

212

		Mean pressure	ssure	4				Kenal resistance	nce	010	CIOILIEI UIAI IIILIAUOII IACO	IOI TALC
	Control		Response	Control		Response	Control	4	Response	Control		Response
Subjects		Actual Δ	4		Actual A	4		Actual A	٩		Actual A	Φ
	mm Hg	mm Hg	%	nd/min	ml/min Not	in % Normotensive subjects	dynes- sec-cm ⁻⁵ bjects	dynes- sec-cm ⁻⁵	%	ml/min	ml/min	%
A.B. Ward S.R. [25]†	83 83	-11 - 11	0 -13.2	655 749	-120 -197		$^{4,880}_{4,270}$	+ 950 + 630	+ 19.9 + 14.7	10 4 111	$^{+18}_{+1}$	$^{+17.3}_{+0.9}$
M.So. Ward S.R. [26]	102 87	 02	- 4.90 - 2.30	531 553	101 155	-19.0 -28.0	8,000 6,120	+1,370 +2,630	+ 17.2 + 43.0	128 108	++ 3	+ 5.47 + 2.78
M.Sp. Ward S.R. [26]	92 81	+ 0	+ 3.26	708 500		-28.0 - 9.41	5,540 6,240	+2,560 +1,010	+ 46.3 + 16.2	119 118	+10 + 14	+ 8.40 +11.8
B.B. Ward S.R. [45]	89 85	 3.5	- 5.63 - 3.53	499 524	-117 - 69	-23.5 	6,810 6,670	$^{+1,940}_{+630}$	+ 28.5 + 11.1	96.8 78.4	+ 1.2 + 2.6	+ 1.24 + 3.32
(Hy	Hypertensive patients	ients					
M.K. Ward S.R.[16]	110 84	-10 - 3	- 9.10 - 3.57	683 695	175 154	-25.6 -22.2	6,430 4,670	+1,420 +1,580	+ 20.8 + 33.8	135 146	$-\frac{4.0}{-12.0}$	- 2.96 - 8.22
N.F. Ward S.R. [11]‡	104 101	$^{+27}_{+3}$	+26.0 + 2.97	614 579		40.7 34.4	6,710 6,210	+6,790 +4,390	+101.0 + 70.7	132 109		-10.6 - 7.33
J.M. Ward S.R. [8]‡	104 104	+ - 11 2	-11.8 + 1.92	467 411	- 72 - 76		8,840 10,000	$^{+}_{+2,700}$	+ 4.07 + 27.0	112 102	+ 8.0 -10.0	+ 7.14 - 9.80
L.L. Ward S.R. [8]‡	113 107	- 9 +11	- 8.85 +10.3	580 659	-110 - 143	-19.0 -21.7	7,770 6,450	++ 800	+ 12.6 + 12.4	115 95.9	- 5.0 - 1.9	- 4.34 - 1.98
P.T. Ward S.R. [9]‡	109 112	- 1 9	- 6.43 - 8.03	623 496	1 1 80 80		6,970 9,000	$^{+}_{+}$	+ 7.61 + 8.88	143 108	+5.0 - 1.0	+ 3.49 - 0.925

TABLE VII Effect of reduced salt intake on the response to epinephrine in normotensive and hypertensive subjects * REACTIVITY OF VASOCONSTRICTOR AGENTS IN HYPERTENSION

213

with 38 per cent in M.So.; and 33 as compared with 32 per cent in M.Sp. Salt restriction, however, increased P_m responses to *l*-norepinephrine in two of three hypertensive patients, 46 per cent as compared with 27.5 per cent in Patient E.H., 26.6 as compared with 15.0 per cent in M.L., and 24.5 as compared with 21.6 per cent in L.C. Salt restriction did not affect the response in P_m to epinephrine in either normotensive or hypertensive subjects.

Salt restriction exaggerated the response of RPF to *l*-norepinephrine in normotensive subjects: RPF decreased 44.4 per cent as compared with 24.6 per cent on regular salt intake in Patient A.B.; 44.3 as compared with 24.5 per cent in M.So.; and 34.4 as compared with 11.6 per cent in M.Sp. Salt restriction had no consistent effect on response of RPF to *l*-norepinephrine in hypertensive subjects. The response of RPF to epinephrine was not affected by sodium restriction in either normotensive or hypertensive subjects.

Salt restriction exaggerated the effect of *l*-norepinephrine on RR in normotensive subjects. RR increased 154 per cent on sodium restriction as compared with 69 per cent on regular salt intake in Patient A.B., 145 as compared with 48.2 per cent in M.So., and 120 as compared with 50 per cent in M.Sp. In two of the three hypertensive patients, salt restriction increased the effect of *l*-norepinephrine on RR; this increased response in RR resulted from greater increase in P_m rather than from decrease in RPF. Salt restriction had no consistent effect on the response of RR to epinephrine in either normotensive or hypertensive subjects.

DISCUSSION

Our data demonstrate that the renal vasoconstrictor response to *l*-norepinephrine and epinephrine, measured as per cent change in renal resistance, is the same in normotensive and hypertensive subjects. Comparison of arteriolar reactivity in normotensive and hypertensive subjects necessitates interpreting changes produced in the resistance of arterioles that differ in initial circumference and initial degree of vasoconstriction, and that differ structurally as regards smooth muscle mass and sclerosis.

A given decrease in vessel circumference will result in a greater decrease in cross-sectional area (or increase in resistance) in a smaller (hypertensive) vessel than in a larger (normotensive) one. This disproportionate effect on renal resistance of given amounts of arteriolar muscle shortening may best be taken into account by comparing percentage rather than absolute changes in renal resistance. The proportional increases in renal resistance observed in the two groups in response to *l*-norepinephrine and epinephrine indicate that the actual circumference of the renal arterioles decreased to a greater extent in normotensive subjects, despite the fact that the absolute increase in renal resistance was greater in hypertensive patients.

The percentile method of comparison also takes into account the fact that the initial degree of preexisting vasoconstriction affects arteriolar reactivity; i.e., a less constricted vessel would be expected to respond by greater shortening than the more constricted vessel. Although Folkow and Öberg (26) reported that percentage increase in flow resistance in the hind limb of a cat is less in constricted vessels than in normal or dilated ones in response to norepinephrine or angiotensin, we doubt that data obtained in anesthetized cats, in which variations in initial vascular tone were induced by bilateral carotid artery occlusion or vagal stimulation, can be used to interpret relative reactivity in normotensive and hypertensive man.

The muscle mass of the renal vasculature might also affect comparison of reactivity to vasoconstrictor agents. It would seem reasonable to expect that a vessel with hypertrophied muscle fibers would respond with greater constriction even though reactivity of individual muscle fibers was not greater than normal. The failure of hypertensive patients to respond to a greater extent than do normotensive subjects, despite the presence of muscular hypertrophy in the former, supports the interpretation that reactivity to *l*-norepinephrine and epinephrine is not increased in hypertension.

The increased initial renal resistance in hypertensive subjects may be attributed to functional arteriolar constriction, anatomical narrowing, or both. Sclerotic changes in the vessel wall might decrease contractility and in this way interfere with the action of a vasoconstrictor agent. However, our studies are not significantly affected by such changes in the vessel wall, since patients were selected early in the course of hypertensive disease (as judged by history, clinical data, and the presence of only minimal reductions in RPF), indicating that functional vasoconstriction was predominantly responsible for the increased renal resistance.

A maximal limit to vasoconstriction in hypertensive patients might limit reactivity and in this way affect the comparison with normotensive subjects. The similarity of the curves for percentage change in renal resistance (Figures 4 and 5) throughout the dosage range of vasoconstrictors administered demonstrates that comparison of reactivity in normotensive and hypertensive subjects is not affected by such a ceiling.

Renal arteriolar reactivity to vasoconstrictor stimuli would be more profitably studied by employing an agent whose action is limited to the renal vascular bed. *l*-Norepinephrine increased systemic resistance and pressure in addition to its direct effect on the renal circulation and these systemic changes of themselves may induce renal vasoconstriction. However, unless the effect on the renal circulation of comparable changes in systemic pressure differs in normotensive and hypertensive subjects, the possible influence of systemic pressure on renal resistance should not limit the comparison of renal arteriolar reactivity in the two groups. Epinephrine did not affect mean systemic pressure, and here the changes in renal resistance may be interpreted unequivocally as reflecting the direct effect of the vasoconstrictor agent on the renal vessels.

Assuming that cardiac output is affected similarly in the hypertensive and normotensive subjects by both epinephrine and l-norepinephrine, as has been reported by Goldenberg and associates (8), our observations indicate that the reactivity of the systemic vessels to epinephrine and l-norepinephrine is the same in normotensive and hypertensive subjects, since relative changes in systemic pressure were equal in both groups. The observation that reactivity of the systemic arterioles is comparable in normotensive and hypertensive subjects does not support the thesis

that essential hypertension is related to increased vascular sensitivity to circulating norepinephrine.

Confirming the observations of others (27–29), sodium restriction for periods ranging from 1 to 4 weeks produced a decrease in both systemic pressure and renal plasma flow in hypertensive patients; these did not decrease in the normotensive subjects. Sodium restriction causes reduction in extracellular fluid and plasma volumes (28, 30-32), and in cardiac output (31, 32). These hemodynamic effects could account for the decreases in systemic pressure and renal plasma flow observed in the hypertensive patients. Decrease of renal plasma flow in hypertensive patients indicates that greater renal vasoconstriction occurred in the hypertensive than in the normotensive subjects, and may be explained by a difference in renal response to systemic changes induced by sodium restriction or may indicate that greater reductions in extracellular fluid volume and cardiac output occurred in hypertensive subjects. Our observation that sodium restriction produced greater weight loss in hypertensive than in normotensive subjects supports the latter possibility.

Restriction of sodium intake failed to decrease renal arteriolar reactivity to l-norepinephrine or epinephrine in both normotensive and hypertensive subjects. In fact, the response to l-norepinephrine was enhanced in both groups, the effect being relatively greater in normotensive than in hypertensive subjects. This enhanced renal vasoconstrictor response is unexplained, but may reflect differences in smooth muscle contractility associated with changes in sodium content or increased sensitivity to vasoconstrictor influences resulting from reduced circulating blood volume. Tobian and Fox (33) have reported that there is a gain of sodium and a loss of potassium in the arterial wall in dogs during norepinephrine infusion and have suggested that these electrolyte shifts play a part in smooth muscle contractility. Friedman, Jamieson and Friedman (34) have demonstrated that smooth muscle tone and responsiveness to drug-induced contraction are enhanced in the rat when the ratio of extracellular to intracellular sodium concentration is reduced. The applicability of these observations to our results cannot be assessed inasmuch as we have no data relative to the effect of sodium restriction on the sodium gradient across the vessel wall in our patients. The fact that the reactivity of the renal circulation to l-norepinephrine was increased to a greater extent in normotensive than in hypertensive subjects during sodium restriction may be attributed to the initially greater vasoconstriction which had already been produced by sodium restriction in the latter.

CONCLUSIONS

1. Renal and systemic arteriolar vasoconstrictor reactivity is equal in normotensive and hypertensive subjects, as shown by equal relative increases in both renal resistance and systemic blood pressure in response to the administration of *l*-norepinephrine and epinephrine. This observation is contrary to the thesis that essential hypertension is related to increased vascular sensitivity to circulating norepinephrine.

2. Restricted sodium intake fails to decrease renal arteriolar vasoconstrictor reactivity to *l*-norepinephrine and epinephrine in either normotensive or hypertensive subjects.

REFERENCES

- 1. Kylin, E. Über Hypertonie und Nierenkrankheit. Zbl. inn. Med. 1921, 42, 441.
- Brems, A. Über die perorale Adrenalinblutdruckwirkung. Acta med. scand. 1926, 64, 69.
- Gordon, W., and Levitt, G. Blood pressure changes in normals and in hypertensives after intravenous epinephrine and histamine. J. clin. Invest. 1935, 14, 367.
- 4. Fatherree, T. J., and Hines, E. A., Jr. The blood pressure response to epinephrine administered intravenously to subjects with normal blood pressure and to patients with essential hypertension. Amer. Heart J. 1938, 16, 66.
- 5. Judson, W. E., Culbertson, J. W., Tinsley, C. M., Litter, J., and Wilkins, R. W. The comparative effects of small intravenous doses of epinephrine upon arterial pressure and pulse rate in normotensive subjects and in hypertensive patients before and after thoracolumbar sympathectomy. J. clin. Invest. 1950, 29, 1405.
- 6. Judson, W. E., Epstein, F. H., and Wilkins, R. W. The comparative effect of small intravenous doses of *l*-norepinephrine upon arterial pressure and pulse rate in normotensive subjects and hypertensive patients before and after thoracolumbar sympathectomy. J. clin. Invest. 1950, 29, 1414.
- Barany, F. R., and James, P. The sensitivity to *l*-noradrenalin of patients with high blood pressure. Clin. Sci. 1959, 18, 543.

- Goldenberg, M., Pines, K. L., Baldwin, E. de F., Greene, D. G., and Roh, C. E. The hemodynamic response of man to nor-epinephrine and epinephrine and its relation to the problem of hypertension. Amer. J. Med. 1948, 5, 792.
- Clough, P. W. A study of the cardiovascular reaction to epinephrin. Epinephrin sensitiveness in patients with hypertension. Bull. Johns Hopk. Hosp. 1920, 31, 266.
- 10. Jensen, J. The adrenalin test in hypertension. Amer. Heart J. 1930, 5, 763.
- Doyle, A. E., and Black, H. Reactivity to pressor agents in hypertension. Circulation 1955, 12, 974.
- Pickering, G. W., and Kissin, M. The effects of adrenaline and of cold on the blood pressure in human hypertension. Clin. Sci. 1936, 2, 201.
- Prinzmetal, M., and Wilson, C. The nature of the peripheral resistance in arterial hypertension with special reference to the vasomotor system. J. clin. Invest. 1936, 15, 63.
- Mendlowitz, M., and Naftchi, N. Work of digital vasoconstriction produced by infused norepinephrine in primary hypertension. J. appl. Physiol. 1958, 13, 247.
- Doyle, A. E., Fraser, J. R., and Marshall, R. J. Reactivity of forearm vessels to vasoconstrictor substances in hypertensive and normotensive subjects. Clin. Sci. 1959, 18, 441.
- Duff, R. S. Adrenaline sensivity of peripheral blood vessels in human hypertension. Brit. Heart J. 1957, 19, 45.
- 17. Greisman, S. E. The reaction of the capillary bed of the nailfold to the continuous intravenous infusion of levo-nor-epinephrine in patients with normal blood pressure and with essential hypertension. J. clin. Invest. 1954, 33, 975.
- Chasis, H., Ranges, H. A., Goldring, W., and Smith, H. W. The control of renal blood flow and glomerular filtration in normal man. J. clin. Invest. 1938, 17, 683.
- 19. Smythe, C. McC., Nickel, J. F., and Bradley, S. E. The effect of epinephrine (USP), *l*-epinephrine and *l*-norepinephrine on glomerular filtration rate, renal plasma flow, and the urinary excretion of sodium, potassium, and water in normal man. J. clin. Invest. 1952, 31, 499.
- 20. Pullman, T. N., and McClure, W. W. The response of the renal circulation in man to constant-speed infusion of *l*-norepinephrine. Circulation 1954, 9, 600.
- Raab, W., Humphreys, R. J., Makous, N., De-Grandpré, R., and Gigee, W. Pressor effects of epinephrine, norepinephrine and desoxycorticosterone acetate (DCA) weakened by sodium withdrawal. Circulation 1952, 6, 373.
- Aleksandrow, D., Wysznacka, W., and Gajewski, J. Influence of chlorothiazide upon arterial responsiveness to nor-epinephrine in hypertensive subjects. New Engl. J. Med. 1959, 261, 1052.

- Dahl, L. K. Pressor effects of norepinephrine after drastic reduction of sodium intake. Circulation 1957, 15, 231.
- Gomez, D. M. L'hémodynamique de la circulation renalé. Rev. Sci. 1947, 85, 451.
- 25. Smith, H. W. Principles of Renal Physiology. New York, Oxford Univ. Press, 1956.
- 26. Folkow, B., and Öberg, B. The effect of functionally induced changes in wall/lumen ratio on the vasoconstrictor response to standard amounts of vasoactive agents. Acta physiol. scand. 1959, 47, 131.
- Chasis, H., Goldring, W., Breed, E. S., Schreiner, G. E., and Bolomey, A. A. Salt and protein restriction—Effects on blood pressure and renal hemodynamics in hypertensive patients. J. Amer. med. Ass. 1950, 142, 711.
- 28. Weston, R. E., Hellman, L., Escher, D. J. W., Edelman, I. S., Grossman, J., and Leiter, L. Studies on the influence of the low sodium cardiac diet and the Kempner regimen on renal hemodynamics and electrolyte excretion in hypertensive subjects. J. clin. Invest. 1950, 29, 639.

- Corcoran, A. C., Taylor, R. D., and Page, I. H. Controlled observations on the effect of low sodium dietotherapy in essential hypertension. Circulation 1951. 3, 1.
- McCance, R. A. The effect of salt deficiency in man on the volume of the extracellular fluids, and on the composition of sweat, saliva, gastric juice and cerebrospinal fluid. J. Physiol. (Lond.) 1938, 92, 208.
- Dustan, H. P., Cumming, G. R., Corcoran, A. C., and Page, I. H. A mechanism of chlorothiazideenhanced effectiveness of antihypertensive ganglioplegic drugs. Circulation 1959, 19, 360.
- 32. Frohlich, E. D., Schnaper, H. W., Wilson, I. M., and Freis, E. D. Hemodynamic alterations in hypertensive patients due to chlorothiazide. New Engl. J. Med. 1960, 262, 1261.
- Tobian, L., and Fox, A. The effect of nor-epinephrine on the electrolyte composition of arterial smooth muscle. J. clin. Invest. 1956, 35, 297.
- Friedman, S. M., Jamieson, J. D., and Friedman, C. L. Sodium gradient, smooth muscle tone, and blood pressure regulation. Circulat. Res. 1959, 7, 44.

ANNOUNCEMENT OF MEETINGS

The Nineteenth Annual Meeting of THE AMERICAN FEDERATION FOR CLINICAL RESEARCH will be held in Atlantic City, N. J., on Sunday, April 29, 1962 at 9:00 a.m. at the Casino Theatre on the Steel Pier. On Sunday afternoon, April 29, 1962, joint sectional meetings with The American Society for Clinical Investigation will be held in rooms in Chalfonte-Haddon Hall; and on Sunday evening, additional meetings will be held under the auspices of The American Federation for Clinical Research, in Chalfonte-Haddon Hall.

The Fifty-fourth Annual Meeting of THE AMERICAN SOCIETY FOR CLINICAL INVESTIGATION, INC., will be held in Atlantic City, N. J., on Sunday afternoon, April 29, 1962, in Chalfonte-Haddon Hall in simultaneous programs sponsored in conjunction with The American Federation for Clinical Research; and on Monday, April 30, at 9:00 a.m. at the Casino Theatre on the Steel Pier.

THE ASSOCIATION OF AMERICAN PHYSICIANS will hold its Seventy-fifth Annual Meeting at Atlantic City, N. J., at the Casino Theatre on the Steel Pier on Tuesday, May 1, 1962, at 9:30 a.m., and in the Vernon Room, Chalfonte-Haddon Hall on Wednesday, May 2, 1962, at 9:30 a.m.