JC The Journal of Clinical Investigation

THE EFFECT OF HEXAMETHONIUM BROMIDE ON SPLANCHNIC BLOOD FLOW, OXYGEN CONSUMPTION AND GLUCOSE OUTPUT IN MAN

T. B. Reynolds, ..., F. Howard, Sheila Sherlock

J Clin Invest. 1953;32(9):793-800. https://doi.org/10.1172/JCI102794.

Research Article

Find the latest version:

https://jci.me/102794/pdf

THE EFFECT OF HEXAMETHONIUM BROMIDE ON SPLANCHNIC BLOOD FLOW, OXYGEN CONSUMPTION AND GLUCOSE OUTPUT IN MAN

BY T. B. REYNOLDS,¹ A. PATON, M. FREEMAN,² F. HOWARD, and SHEILA SHERLOCK

(From the Department of Medicine, Postgraduate Medical School of London, London, England)

(Submitted for publication April 2, 1953; accepted May 1, 1953)

The fall in blood pressure following autonomic blockade with methonium compounds could be attributed to a fall in cardiac output or to vasodilatation. In the recumbent position, however, cardiac output is usually well-maintained (1, 2, 3, 4) and blood flow through brain (5) and kidneys (1, 6) is not greatly altered. Increased blood flow has been reported in the digits and feet (1). This would hardly account for the large fall in blood pressure, and it seemed possible that the splanchnic area might be the site of the major vasodilatation. There is little information concerning splanchnic blood flow after hexamethonium. Freis and associates (1) state that it is not significantly changed, while Hoobler is said to have found a fall after tetraethylammonium chloride (7). We have therefore studied the effect of hexamethonium on splanchnic blood flow in subjects without liver disease. The opportunity has also been taken to make observations on the metabolic effects of hexamethonium on splanchnic oxygen consumption, hepatic glucose output and arterial lactic acid concentration.

METHODS AND MATERIAL

The 17 subjects had no known hepatic dysfunction or disturbance of carbohydrate metabolism, and had not previously received hexamethonium. Five had essential hypertension with diastolic blood pressures between 90 and 110 mm. Hg. Studies were made in the morning after an overnight fast, and one hour after an oral dose of 0.2 Gm. sodium amytal. A radio-opaque nylon catheter was introduced under fluoroscopic control into a radicle of the hepatic vein, and the subjects were then returned to a comfortable position in bed with the head on one small pillow. A priming dose of bromsulphalein (B.S.P.)

¹Giannini Research Fellow. Present address: Department of Medicine, University of Southern California, Los Angeles, Calif.

²Lund Research Fellow of the Diabetic Association (Great Britain)—to which we are also indebted for an expenses grant.

was given and B.S.P. (4.5 to 7.0 mg. per min.) was infused at a constant rate. An in-dwelling needle was placed in a brachial or femoral artery. Thirty to forty minutes were allowed for stabilization; simultaneous hepatic vein and arterial samples were then taken for determination of B.S.P., glucose, lactic acid and oxygen. Three or four such determinations were made over twenty minutes and the results averaged to obtain the control values for splanchnic blood flow, hepatic glucose output, arterial lactic acid concentration and arterialhepatic venous oxygen difference. The brachial blood pressure (auscultatory) and pulse rate were recorded frequently during this time. When the circulatory state was reasonably steady, hexamethonium bromide (1 mg. per Kg. body weight) was injected intramuscularly and the determinations repeated 5, 15, 30, 45 and 60 minutes later. In six subjects, observations were continued at 20 minute intervals for a further hour.

Estimated splanchnic blood flow (E.S.B.F.) was calculated with appropriate corrections for changing plasma B. S. P. levels (8). Plasma levels over 1 mg. per cent were maintained in all instances and extraction by the liver always exceeded 15 per cent. Plasma B.S.P. levels tended to rise after hexamethonium because of the marked fall in E.S.B.F. Decreasing the infusion rate by 20 to 30 per cent at the time of giving the hexamethonium usually prevented this rise. If the B.S.P. level five minutes after hexamethonium had risen in spite of this, the determination was discarded.

Hepatic glucose output (HGO) was determined by multiplying the arterial-hepatic vein glucose difference by the E.S.B.F. For the control value the average of the three or four arteriovenous glucose differences was multiplied by the average value for blood flow. Intestinal and splenic metabolism of glucose is probably negligible in the fasting state (9, 10) and the term "hepatic" rather than "splanchnic" glucose output has therefore been used throughout.

"Mean" blood pressure was expressed as half the sum of the systolic and diastolic auscultatory levels. In certain subjects this was checked by direct tracings obtained by strain gauge from the in-dwelling arterial needle.

Overall splanchnic vascular resistance was calculated by dividing the "mean" blood pressure (mm. Hg) by the splanchnic blood flow (ml. per min.) and expressed in arbitrary units.

"Portal venous pressure" was measured with a strain gauge in six subjects before and after hexamethonium by the technique of "occluded" hepatic vein catheterization (11, 12, 13), the catheter being advanced deep into the substance of the liver so as to occlude an hepatic vein. A close correlation has been found between the pressure recorded in this position and the portal venous pressure (13). These six subjects remained recumbent on the padded fluoroscopy table throughout the study.

Blood samples were preserved with heparin and sodium fluoride. Glucose was measured on duplicate 0.2 ml. whole blood samples (14), bromsulphalein on 1 or 2 ml. of plasma (15) and lactic acid on 2 ml. of whole blood (16). Oxygen unsaturation was determined without delay on 5 ml. blood samples collected under paraffin using the Haldane blood gas apparatus (17). Plasma volume (18) and surface area were calculated from tables.

RESULTS

Changes in Splanchnic Circulation (Table I)

In 15 subjects the reaction to hexamethonium was similar (Figure 1).

The "mean" blood pressure fell within 5 minutes, and within 30 minutes had reached levels averaging 32 per cent below the control value. A fall in blood pressure occurred in all subjects, even though recumbent. The magnitude of the fall varied considerably, being greatest in those with the highest resting values.

Pulse rate increased by an average of 11 per cent of the resting value.

E.S.B.F. initially was slightly higher than previously reported values for normal subjects under similar conditions (15). After hexamethonium the E.S.B.F. fell, reaching an average of 67 per cent of the control value at the end of 30 minutes. The fall in E.S.B.F. paralleled the fall in "mean" blood pressure and the correlation coefficient, being more than six times its standard error, was therefore highly significant (Figure 2).

FIG. 1. MEAN RESULTS OF 15 OBSERVATIONS SHOWING EFFECT OF HEXA-METHONIUM ON "MEAN" B.P., SPLANCHNIC BLOOD FLOW (E.S.B.F.), ARTERIAL-HEPATIC VEIN OXYGEN DIFFERENCE AND SPLANCHNIC VASCULAR RESISTANCE

Semilogarithmic scale. The *increase* in arterial-hepatic vein oxygen difference is plotted downwards.

TABLE I

*
e.
ñ
re
£
11
2
en
8
- 8
0
ï.
ě
ti.
g
é
4
a
.5
1.
a1
3
n
a
е
2
2
·5
S
*
a,
n l
S
ē
9
.2
n n
2
1 u
2
S
:
Р.
æ.
'n
ä
'n
· .
12
~
4
S
E
5.9
6
r
m
6
÷2-
-
neti
amet
xamet
hexameti
of hexameti
t of hexameti
ect of hexameti
ffect of hexameti

1	1	I		1.0	1	1
Arterial-Hepatic Vein Oxygen Difference (vol./100 ml.)		09	9.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7	8.0† ₩.6	3.2 5.1	
		45	7.9 3.39 8.3 7.0 7.0 7.0 7.0 111.8 8.7 111.8 111.8 10.9	7.9† ±.72	3.5 3.2	
	fter C6	30	8.3 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	7.8† ±.60	3.5 3.5	
	min. af	15	6.6 8.4 10.7 10.7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	7.7† ±.52	5.3 4.1	
		s	5.2 6.4 6.4 7.3 5.5 5.5 7.5 7.5 7.5 10 10 10 10 10 10	6.3 ±.59	3.1 6.5	
		0	8.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	5.5 ±.34	4.2 5.6	
	er Có	8	$\begin{array}{c} .052 \\ .052 \\ .065 \\ .075 \\ .0$	±.005	.026	
• •		45		±.008	.022	
c. Resist y units)		30	$\begin{array}{c} 0.45\\ 0.45\\ 0.051\\ 0.051\\ 0.078\\ 0.093\\ 0.09$	±.006	.026	
Splanchnic Vasc (Arbitrary	min. aft	15	$\begin{array}{c} 0.48\\ 0.48\\ 0.054\\ 0.054\\ 0.054\\ 0.056\\ 0.053\\ 0.053\\ 0.053\\ 0.053\\ 0.056\\ 0.053\\ 0.054\\ 0.056\\ 0.054\\ 0.056\\ 0.054\\ 0.056\\ 0.05$.078 ±.007	.043	
		ىد ر	.048 .046 .046 .057 .058 .044 .072 .044 .072	±.013	.045	
		•	$\begin{array}{c} 0.55\\ 0.056\\ 0.0$	±.007	.045	
		8	88 88 88 81 88 88 88 88 88 88 88 88 88 8	76† ±2.1]=	83 70	
	min. after C6	45	88 87 70 60 80 80 80 80 80 80 80 80 80 80 80 80 80	75† ±3.7	73	
, B.P. Hg)		30	78 87 75 75 70 75 70 75 70 70 70 70 70 70 70 70 70 70 70 70 70	75† ±4.0	73	
''Mean' (<i>mm</i> .		15	78 88 1102 1102 1102 1102 1102 1102 1102	79† ±4.4	73	ext).
		s	883 835 100 100 100 100 105 100 105 100 100 10	86† ±4.2	90 75	mean. r (see t
		0	90 1125 1125 1125 1125 1125 1125 1125 112	110 ±5.2	107 92	of the manne
E.S.B.F. (ml./min./m ²)	min. after C6	99	900 520 550 550 550 570 570 570 570 570 570 57	680† ±55	2040 1220	errors tlue. nalous
		45	$\begin{array}{c c}1080\\1080\\550\\550\\550\\710\\1030\\1030\\860\\340\\1030\\860\\1030\\1030\\1030\\1030\\1030\\1030\\1030\\10$	690† 100±	2110 1230	andard ntrol va
		30	950 810 350 350 350 4430 4430 4430 4450 4450 4	620† ±59	1720 1210	s are st rom coi
		15	880 800 800 800 870 870 870 870 870 840 610 610 840 840 840 840 870 870 870 870 870 870 870 870 870 87	690† ±68	1060 950	± value <.05) fi H. react
		5	960 1070 400 850 850 830 850 830 830 830 830 830 830 830 830 830 83	820 ±170	1270	e III ∃ thy (p. id H. I
		0	940 11110 720 810 950 950 950 950 1930 1930 1930 860 860 860 860 860 860 860 860 860 86	930 ±80*:	1510 1010	d Table nifican
	Sex	<u> </u>	ZZFZZZZZFFFFZZZ		μΣ	s an s sig
	Age		422 442 442 442 442 442 442 442 442 442	::	49 69	iffer.
	Subject		FFJRFRFCSARAF	Meć	T. A. ‡ H. H.‡	∺Ω * + +

HEXAMETHONIUM AND SPLANCHNIC CIRCULATION

795

.

FIG. 2. RELATION BETWEEN FALL IN SPLANCHNIC BLOOD FLOW (E.S.B.F.) AND "MEAN" B.P. AFTER HEXAMETHONIUM

Splanchnic vascular resistance initially was highest in those with the highest systemic blood pressure, confirming the observations of Culbertson, Wilkins, Ingelfinger, and Bradley (19). There was no change following hexamethonium in either normotensive or hypertensive subjects.

Arterial-hepatic venous oxygen difference increased significantly (Figure 1). This increase was entirely due to a drop in hepatic venous oxygen content, for arterial oxygen unsaturation did not change during the course of the study. It coincided in time with the fall in "mean" blood pressure and in E.S.B.F.

"Portal Vein Pressure" (Table II)

In six subjects the "portal venous pressure" measured by the "occluded" hepatic vein technique fell after hexamethonium. The degree of fall in pressure varied considerably and was unrelated to the fall in E.S.B.F.

Observations during Second Hour

In six subjects in whom observations were continued for a second hour, the fall in blood pressure and E.S.B.F. and the increase in arterial-hepatic venous oxygen difference were maintained, with only a slight return towards control values.

Anomalous Results

Two subjects reacted in a different manner (T. A., H. H., Table I). After a brief initial drop, E.S.B.F. rose moderately and was accompanied by a fall in arterial-hepatic venous oxygen difference. Since the blood pressure fell, there was a drop in estimated splanchnic resistance, indicating splanchnic vasodilatation. There was no obvious explanation for this anomalous behaviour.

Changes in Splanchnic Metabolism (Table III)

Splanchnic oxygen consumption calculated by multiplying E.S.B.F. by the arterial-hepatic venous oxygen difference did not change significantly during the hour following hexamethonium.

TADLE I

	Occluded hepatic vein pressure (mm. Hg)		Fall in E.S.B.F.	
Subject	Before C6	After C6	control value	
T. S.	10.2	5.0	55	
A. Y.	5.3	4.1	25	
E. W.	13.0	10.0	40	
Р. Т.	9.0	5.5	27	
C. M.	14.5	2.0	16	
C. W.	13.3	1.6		

796

Hepatic glucose output. The basal glucose output of 120 mg. per min. per sq. meter agrees well with previous findings (20). There were considerable fluctuations in output following hexamethonium, the mean values being higher than the basal output except at 30 minutes. The changes, however, were not statistically significant.

Arterial blood glucose concentration increased slightly, but again the change was not statistically significant.

Arterial lactic acid concentration rose from 8.2 mg. per cent to a maximum of 9.7 mg. per cent. This change was of doubtful significance.

DISCUSSION

The fall in E.S.B.F. after hexamethonium correlated well with the fall in "mean" blood pressure (Figure 2), and there was therefore little change in calculated splanchnic vascular resistance. Appreciable splanchnic vasodilatation apparently did not occur and splanchnic blood flow fell as a direct consequence of the drop in arterial pressure. This is rather surprising inasmuch as changes in capacity of the splanchnic bed have long been thought to play an important part in the production of the hypotensive state. The present results could have two interpretations. The dose of hexamethonium employed might have failed to block the splanchnic sympathetic ganglia. This could hardly be true of sympathetic ganglia elsewhere, for the general blood pressure fell Alternatively, splanchnic vasodilatamarkedly. tion produced by hexamethonium might have been balanced by splanchnic vasoconstriction, in response to hypotension. For example, the hypotension initiated by changing from the recumbent to the erect posture is prevented by reflex splanchnic vasoconstriction (19). The hypotension following hexamethonium might also be balanced in this way, although this could hardly have been mediated through autonomic ganglia which are presumably already blocked.

Whatever the mechanism, the fall in E.S.B.F. was not associated with overall changes in the capacity of the splanchnic vascular bed.

Changes in splanchnic blood flow could, of course, be due to alterations in resistance in any

150 CHANGE IN ARTERIAL-HEPATIC VEIN OXYGEN DIFFERENCE 140 0.54 ±.12 130 P<0.01 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -20 -10 .so ò io 20 30 40 -40 -30 - 50 CHANGE IN E.S.B.F. ~

FIG. 3. RELATION BETWEEN CHANGES IN E.S.B.F. AND ARTERIAL-HEPATIC VENOUS OXYGEN DIFFERENCE AFTER HEXAMETHONIUM

e	min. after Có	09	4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	9.0 ±1.37	
rterial Lactic Acid Concentration (<i>mg./100 ml.</i>)		45	6.5 6.5 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	9.7 ±1.24	
		30	900 112555 112555 112555 112555 112555 112555 112555 112555 112	$^{9.4}_{\pm 1.09}$	
		15	7.5 5.5 6.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	± 0.76	
		ŝ	6.5 6.0 7.5 7.5 7.5 7.5 6.5 7.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 7.5 6.5 7.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	8.6 ±0.99	
4		0	900 100 100 100 100 100 100 100	± 0.82	
	min. after Có	60	234 98 98 140 147 147 55 55 55 55 163 184 184 184 184 184 184 184 184 184 184	124 ±19.7	
put		45	281 142 154 157 177 57 177 57 57 126 126 126 126 126 126 126 127 57 57 57 57 57 57 57 57 57 57 57 57 57	143 ±21.9	
Hepatic Glucose Outr (mg./min./m ²)		30	228 126 126 126 126 128 128 123 123 123 123 123 123 123 123 123 123	97 ±13.4	
		15	211 104 108 235 235 109 1109 1125 1125 1125 1125 1125 1125 1125 112	$\frac{135}{\pm 19.7}$	
		S	240 171 52 53 53 125 118 118 60 60 60 102	126 ±23.3	
		0	$\begin{array}{c} 111\\ 132\\ 64\\ 122\\ 122\\ 123\\ 96\\ 158\\ 151\\ 121\\ 121\\ 121\end{array}$	120 土15.4	
	min. after C6	60	94 69 71 71 95 95 95 93 86 93 87 87 87 87 87 87 87 87 87 87 87 87 87	90 ±2.8	
tration		45	88 99 92 88 92 92 88 88 88 88 88 88 88 88 88 88 88 88 88	87 ±2.0	
e Concen 00 nil.)		30	$\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & &$	87 ±2.3	
I Glucos (mg./1		15	90 75 885 885 93 94 94 989 889 889 889 889 889 889 889 8	87 ±1.9	
Arterial		ŝ	75 74 86 86 87 88 87 87 87 87 87 87 87	84 ±1.6	
		0	7728 7728 7728 7728 7728 7728 7728 7728	84 ±1.7	
	min. after C6	09	82 33 33 34 35 55 55 55 55 55	54 ±4.8	
achnic O2 Consumption (vol./min./m ²)		45	88 35 37 37 37 46 51 51 52 40 52 52 85 52 85 85 85 85 85 85 85 85 85 85 85 85 85	51 ±4.6	
		30	72 232 232 232 232 232 232 232 232 232 2	45 ±3.8	
		15	$\begin{array}{c} 338\\ 346\\ 356\\ 356\\ 356\\ 356\\ 356\\ 356\\ 356\\ 35$	4 ± ±2.1	
Splai		<u>ъ</u>	53 53 10 10 10 10 10 10 10 10 10 10 10 10 10	4 ±7.	
		0	55 56 56 56 56 56 56 56 56 56 56 56 56 5	± 50 ± 3.	
Subject Age Sex			ZZFZZZZFFFFZZZFZ	. 4	
			FFJUJUTA ACCOUTA AA AA AA AA AA AA AA AA AA AA AA AA A	Mea	

Effect of hexamethonium on splanchnic oxygen consumption, arterial glucose and lactic acid concentrations and hepatic glucose output* TABLE III

of three systems, namely hepatic arterioles, portal vein radicles or intestinal arterioles. All parts of the splanchnic vasculature need not react similarly in producing the overall unchanged splanchnic vascular resistance after hexamethonium.

Theoretically, constriction in the portal vein radicles and dilatation in the intestinal arterioles might occur without any change in overall vascular resistance. Portal venous pressure would then be expected to rise. Hexamethonium, however, lowered "portal venous pressure," suggesting that there was no significant portal venous constriction.

On the other hand, dilatation in the portal vein radicles with intestinal arteriolar constriction might occur, and again overall vascular resistance would be unaltered. In this case there would be a fall in portal venous pressure, as in fact occurred. However, it seems unlikely that hexamethonium would cause arteriolar vasoconstriction.

Hepatic arteriolar dilatation, by raising intrasinusoidal pressure, might decrease portal venous inflow (21) and hence total splanchnic blood flow. But in this case portal venous pressure would be expected to rise.

Finally, a fall in splanchnic blood flow without any change in vessel caliber would lead to a fall in portal venous pressure, with unchanged splanchnic vascular resistance. This seems the most likely explanation of the present results.

Additional evidence for the fall in splanchnic blood flow was afforded by the arterial-hepatic venous oxygen difference. If oxygen utilization by the splanchnic area is unchanged (Table II), then the arterial-hepatic venous oxygen difference should vary inversely with the splanchnic blood flow. This in fact proved to be the case (Figure 3). The mean rise in arterial-hepatic venous oxygen difference was 31 per cent, a similar figure to that obtained for E.S.B.F. by the B.S.P. clearance technique.

The effects of hexamethonium on the splanchnic area appear to be limited to changes in circulation. Changes in hepatic glucose output and arterial glucose concentration did not occur. The failure of arterial lactic acid concentrations to rise appreciably indicates that the basal state of the subjects was maintained, since blood lactic acid increases rapidly following muscular activity or release of epinephrine (22).

SUM MARY

The effect of hexamethonium bromide (1 mg. per Kg. intramuscularly) on the splanchnic circulation, splanchnic oxygen consumption, hepatic glucose output and arterial lactic acid concentration was measured in 17 subjects.

In 15 subjects splanchnic blood flow fell in proportion to the fall in arterial blood pressure. No change occurred in splanchnic vascular resistance, indicating that there was no splanchnic vasodilatation.

In two subjects splanchnic blood flow rose, together with a fall in splanchnic vascular resistance.

Splanchnic oxygen consumption, hepatic glucose output and arterial glucose and lactic acid concentrations were not significantly altered.

ACKNOWLEDGMENTS

We wish to thank Dr. I. D. P. Wootton for statistical advice and Miss J. Fletcher, S.R.N., for nursing assistance.

REFERENCES

- Freis, E. D., Rose, J. C., Higgins, T. F., Kelley, R. T., Schnaper, H. W., and Johnson, R. L., The hemodynamic effects of hexamethonium in man. J. Clin. Invest., 1952, 31, 629.
- 2. Gilmore, H. R., Kopelman, H., McMichael, J., and Milne, I. G., The effect of hexamethonium bromide on the cardiac output and pulmonary circulation. Lancet, 1952, 2, 898.
- 3. Werkö, L., Frisk, A. R., Wade, G., and Eliasch, H., Effect of hexamethonium bromide in arterial hypertension. Lancet, 1951, 2, 470.
- May, L. G., Bennett, A., Gregory, R., Shih Yuan Tsai, and Lynn-Schoomer, M., The effect of tetraethylammonium bromide on the cardiac output of normotensive and hypertensive patients. J. Lab. & Clin. Med., 1949, 34, 1622.
- Crumpton, C. W., and Murphy, Q. R., Effects of hexamethonium bromide upon hemodynamics of cerebral and coronary circulation in hypertension: J. Clin. Invest., 1952, 31, 622.
- Miles, B. E., de Wardener, H. E., Churchill-Davidson, H. C., and Wylie, W. D., The effect on the renal circulation of pentamethonium bromide during anaesthesia. Clin. Sc., 1952, 11, 73.
- Hoobler, S. W., Unpublished observations, in Moe, G. K., and Freyburger, W. A.: Ganglion-blocking agents. Pharmacol. Rev., 1950, 2, 61.

- 8. Bradley, S. E., Ingelfinger, F. J., Bradley, G. P., and Curry, J. J., The estimation of hepatic blood flow in man. J. Clin. Invest., 1945, 24, 890.
- 9. Sherlock, S., and Walshe, V., The use of a portal anastomotic vein for absorption studies in man. Clin. Sc., 1946, 6, 113.
- Bean, W. B., Franklin, M., Embick, J. F., and Daum, K., Absorption studies using portal anastomotic veins. J. Clin. Invest., 1951, 30, 263.
- Myers, J. D., and Taylor, W. J., An estimation of portal venous pressure by occlusive catheterization of an hepatic venule. J. Clin. Invest., 1951, 30, 662.
- 12. Friedman, E. W., and Weiner, R. S., Estimation of hepatic sinusoid pressure by means of venous catheters and estimation of portal pressure by hepatic vein catheterization. Am. J. Physiol., 1951, 165, 527.
- Paton, A., Reynolds, T. B., and Sherlock, S., The assessment of portal venous hypertension by hepatic vein catheterization. Lancet, 1953, 1, 918.
- King, E. J., Haslewood, G. A. D., Delory, G. E., and Beall, D., Micro-chemical methods of blood analysis. Lancet, 1942, 1, 207.
- Sherlock, S., Bearn, A. G., Billing, B. H., and Paterson, J. C. S., Splanchnic blood flow in man by the bromsulfalein method: the relation of peripheral plasma bromsulfalein level to the calculated flow. J. Lab. & Clin. Med., 1950, 35, 923.

- Barker, S. B., and Summerson, W. H., The colorimetric determination of lactic acid in biological material. J. Biol. Chem., 1941, 138, 535.
- Douglas, C. G., and Priestley, J. G., Human Physiology; A Practical Course, 3rd ed., Oxford University Press, London, 1948, p. 148.
- Gibson, J. G., 2nd, and Evans, W. A., Jr., Clinical studies of the blood volume. I: Clinical application of a method employing the azo dye "Evans Blue" and the spectrophotometer. J. Clin. Invest., 1937, 16, 301.
- Culbertson, J. W., Wilkins, R. W., Ingelfinger, F. J., and Bradley, S. E., The effect of the upright posture upon hepatic blood flow in normotensive and hypertensive subjects. J. Clin. Invest., 1951, 30, 305.
- Bearn, A. G., Billing, B. H., and Sherlock, S., The response of the liver to insulin in normal subjects and in diabetes mellitus: hepatic vein catheterization studies. Clin. Sc., 1952, 11, 151.
- Bradley, S. E., Ingelfinger, F. J., and Bradley, G. P., Determinants of hepatic haemodynamics. In CIBA Foundation Symposium: Visceral Circulation, Churchill, London, 1952, p. 219.
- 22. Bearn, A. G., Billing, B., and Sherlock, S., The effect of adrenaline and noradrenaline on hepatic blood flow and splanchnic carbohydrate metabolism in man. J. Physiol., 1951, 115, 430.

SPECIAL NOTICE TO SUBSCRIBERS

Post Offices will no longer forward the Journal when you move.

Please notify The Journal of Clinical Investigation, Business Office, 622 West 168th Street, New York 32, N. Y. at once when you have a change of address, and do not omit the zone number if there is one.