The Journal of Clinical Investigation

STUDIES IN PHOSPHORUS METABOLISM IN MAN. III. THE DISTRIBUTION, EXCHANGE AND EXCRETION OF PHOSPHORUS IN MAN USING RADIOACTIVE PHOSPHORUS (P³²) AS A TRACER

Stanley M. Levenson, ..., Hyman Rosen, F. H. Laskey Taylor

J Clin Invest. 1953;32(6):497-509. https://doi.org/10.1172/JCI102766.

Research Article

Find the latest version:

https://jci.me/102766/pdf

STUDIES IN PHOSPHORUS METABOLISM IN MAN. III. THE DISTRIBUTION, EXCHANGE AND EXCRETION OF PHOSPHORUS IN MAN USING RADIOACTIVE PHOSPHORUS (P³²) AS A TRACER¹

By STANLEY M. LEVENSON,^{2, 3, 4} MARGARET A. ADAMS,³ HYMAN ROSEN,² and F. H. LASKEY TAYLOR ³

(From the U. S. Army Medical Nutrition Laboratory 9937 TSU-SGO, 1849 West Pershing Road, Chicago 9, Ill.)

(Submitted for publication August 25, 1952; accepted March 4, 1953)

INTRODUCTION

In the course of some metabolic studies in man. it became important to know in some detail the fate of injected radiophosphorus. Although P³² has been used extensively as a tracer in animal metabolic studies, its use in man has been largely limited to the therapy of various hematologic and malignant disorders, and to the determination of circulating red cell volume. Accordingly, we have followed the distribution of radiophosphorus in various plasma, red cell, and urine fractions, after the intravenous administration of 100 to 200 microcuries of P³², as inorganic phosphate, into normal men. The effects of glucose and insulin on phosphorus partition were also observed. These data form the basis for a discussion of the kinetics of phosphorus transfer and distribution.

METHODS

Healthy young adult males served as subjects. They weighed, on the average, about 75 Kg. and were on normal food intakes prior to study. Observations were made after a 12 hour fast. Radioactive phosphorus (100 to 200 μ c P³⁰), in the form of Na₃HP³⁰O₄⁵ (carrier-free) dissolved in about 3 ml. of pyrogen-free water, was injected intravenously in a few seconds into an antecubital vein. Blood samples were thereafter collected serially from the opposite arm. The blood was collected in bottles containing dried potassium-ammonium oxalate ad-

¹ This work was aided in part, by gifts from Smith, Kline and French Laboratories, Philadelphia, and the American Cancer Society (Massachusetts Division), to Harvard University.

⁵ P²⁰ was supplied by Monsanto Chemical Co., Clinton Laboratories, Oak Ridge, Tennessee.

justed to produce no change in red cell size. The blood samples, cooled in ice, were centrifuged for 10 minutes at 2,000 rpm as soon as possible, and the plasma removed. The red cells were washed once with ice cold isotonic sodium chloride solution, centrifuged again, and the supernatant washings removed as completely as possible and discarded. The washed red blood cells were rapidly frozen at -20° C. to minimize hydrolysis of phosphorus compounds and to produce hemolysis. Plasma and hemolyzed red blood corpuscles were each analyzed chemically for total phosphorus, total acid soluble phosphorus, and inorganic phosphorus by the methods of Fiske and Subbarow (1). The radioactivity of these phosphate fractions was determined according to methods previously described (2). Values for the trichloroacetic acid soluble organic and the trichloroacetic acid insoluble fractions were calculated. In some subjects, the effects of intravenous glucose (25 gm.), or crystalline insulin (0.1 unit per Kg. body weight) were observed. Urine samples were also collected serially and total P" and phosphorus measured.

RESULTS

1. Disappearance of P³² from plasma

The course of the disappearance of P^{32} from the plasma, following the single rapid intravenous injection of labeled phosphate, is shown in Figure 1. The experimental points have been plotted semi-logarithmically and represent observations made on seven normal young adult males.

The data suggest a very rapid transcapillary migration of P^{32} . This is evident from the following calculation: if the mixing phase of P^{32} in the plasma is over, and the uptake of P^{32} by the blood cells is minimal in the first few minutes (3, 4, *vide infra*) the dilution of P^{32} at the end of this time would represent the plasma volume were the P^{32} wholly contained in the vascular tree. It can be seen from Figure 1 that after the first few minutes only some 1 per cent of the total injected P^{32} is found in each 100 ml. plasma. This leads to a calculated plasma volume of some 10

² Army Medical Service Graduate School, Walter Reed Army Medical Center, Washington 12, D. C.

⁸ Thorndike Memorial Laboratory, 2nd and 4th Medical Services (Harvard), Boston City Hospital, Boston, Massachusetts.

⁴ Surgical Service of the Medical College of Virginia, Richmond, Virginia.

These data are derived from the experimental curve, and illustrate its double exponential nature.

litres. This figure is much too high for plasma volume, but only slightly lower than an expected value (12 litres) for total extracellular fluid (5), and suggests a very rapid transcapillary migration of radiophosphorus. A true value for extracellular space is not to be expected from this calculation, since it would necessitate homogeneous distribution of the radiophosphorus in the interstial fluid and limitation of the radiophosphorus to this space. Pappenheimer, Renkin, and Borrero (6) have shown that there is an arterio-venous difference in the concentrations of various injected ions and that a homogeneous plasma ion pool can only be approximated. Because of the access of phosphate to intracellular pools, it is unlikely to be uniformly mixed in the extravascular fluid after its escape from the capillaries.

An apparent rapid transcapillary movement of P^{s_2} was also observed by Kleiber, Smith, and Ralston in cows (7). Walker and Wilde (8) similarly found that 90 per cent of injected K⁴² moves out of the plasma of rabbits within one minute following its intra-arterial injection.

Following the initial very rapid decrease in

plasma radioactivity in the first few minutes after the injection of labeled phosphate, its disappearance slows. A smooth curve drawn through the experimental points plotted semilogarithmically (Figure 1) fits the exponential type equation

$$P = a_1 e^{-b_1 t} + a_2 e^{-b_2 t} \cdots + a_n e^{-b_n t} + P_{eq}.$$
 (1)

In the equation, P = per cent injected P^{s_2} found in each 100 ml. plasma at time t after injection, P_{eq} represents the "steady state" level expressed in the same units, and a_1 , a_2 , a_n and b_1 , b_2 , b_n are constants.

By the seventh hour after the injection of the labeled phosphate the rate of its disappearance from the plasma has become very slow. As a first approximation, it is assumed that a steady state has been reached. In Figure 1 the straight line drawn from this point and extrapolated back to zero time represents P_{eq} . When this "equilibrium" line is subtracted graphically from the experimentally obtained curve, another curve is obtained. The process of extrapolation and subtraction is repeated with this curve, and a last, steep straight line is the result.

The three straight lines can be formally considered to represent three processes, in which a is the y intercept of each line, and b is the slope. The equation now becomes

$$P = 0.85 e^{-0.08t} + 0.27 e^{-0.01t} + 0.03. \quad (2)$$

One other formal mathematical manipulation can be applied to the derived equation. This is the assignment of "transfer coefficients" to the two processes represented on the graph by the two steep straight lines, and in the equation by the first two terms. This is a formal step, and does not imply that the processes are separate or real, or that they are taking place in homogeneous "pools."

According to Solomon (9), the transfer coefficients of the processes represented by the semilogarithmic plots can be evaluated with a degree of accuracy depending on the validity of the following assumptions:

1) The various body compartments maintain a constant size during the period of study;

2) The transfer coefficients across membranes are the same in both directions;

3) The total injected P^{32} is maintained within the body compartments under study, *i.e.*, no excretion. It is clear that this assumption is to some extent unwarranted, since it was found that in the first seven hours after injection, 5 to 10 per cent of the injected P^{32} was excreted (Figure 5). Neglecting this error, the slopes (b_1 and b_2) bear the following relationships to the transfer coefficients (k_1 and k_2):

$$b_1 = (k_1 + k_2) + \sqrt{k_1^2 - k_1 k_2 + k_2^2},$$
 (3)

$$b_2 = (k_1 + k_2) - \sqrt{k_1^2 - k_1 k_2 + k_2^2}.$$
 (4)

Solving these equations simultaneously,

 $k_1 = 38 \times 10^{-3}$ per min., $t_2^1 = 18$ min.

$$k_2 = 7.9 \times 10^{-8}$$
 per min., $t_2^* = 87$ min.

It will be seen that k_1 and k_2 have the units of time⁻¹. They are, therefore, in a mathematical sense true rate constants, and signify that the labeled phosphate is disappearing in one process at the rate of 3.8 per cent per minute, and in the other process at 0.79 per cent per minute based on the amounts still present at time t.

What these processes represent physiologically is not certain. They may represent intracellular transfer. The double exponential nature of this phase of the disappearance suggests that phosphate enters one group of cells rapidly and another group relatively slowly. More precise characterization of these transfers depends on specific cellular analyses.

2. Appearance of P^{32} in the red cells

The *in vivo* uptake of P³² by red cells is shown graphically in Figure 2. This curve can be represented by

$$Q = a_1(1 - e^{-b_1 t}) + a_2(1 - e^{-b_2 t}).$$
 (5)

When Q = per cent injected P^{32} per 100 ml. red cells,

$$Q = 0.07(1 - e^{-.30t}) + 0.13(1 - e^{-.02t}).$$
 (6)

The first term is significant during only the first 10 to 20 minutes. The concentration of P³² in the red cell increases sharply during this time and then rather abruptly levels off. The rapid leveling off is probably due to the simultaneous es-

FIG. 2. SEMI-LOGARITHMIC PLOT OF P²² UPTAKE BY RED CELLS IN VIVO

The curve is a composite of data on four subjects.

FIG. 3. GRAPHICAL DERIVATION OF THE TRANSFER COEFFICIENT OF P²⁰ FROM PLASMA TO RED CELLS, AT 37° C. IN VITRO

cape of P^{32} from the plasma into other body compartments. Experiments, done by ourselves and others, on the uptake of P^{32} by red cells *in vitro* (8), indicate that the uptake from plasma by red cells is relatively slow. During the first two hours the measured disappearance of P^{32} from the plasma *in vitro* occurs exponentially. From our *in vitro* data (Figure 3), we have calculated a transfer coefficient of 0.4 per cent per min. at 37° C.

3. Effect of insulin and glucose on plasma radiophosphate disappearance

The effect of insulin and glucose on the movement of P^{32} was studied in a few subjects. Crystalline insulin (0.1 unit per Kg. I.V.), or glucose (25 gm. I.V.) was administered one hour after injection of P^{32} . In each case, an accelerated movement of P^{32} out of the plasma was observed (Figure 4). In the case of glucose, this movement was approximately three times normal, while insulin gave rise to a rate four times normal. In all cases, the eventual equilibrium level of P^{32} found in the plasma was about 0.03 per cent P^{32} injected per 100 ml. plasma.

No information regarding the effect of glucose or insulin on the rate of entry of P^{82} into the red cell was obtained in our *in vivo* studies since the net uptake was practically over at the time of glucose and insulin administration.

4. Urinary excretion of injected P³²

The cumulative values of per cent injected P³² excreted in the urine are shown in Figure 5 and Table I. These curves were found empirically to be represented by the equation

$$R = R_0 a (1 - e^{-bt}),$$
 (7)

where R = per cent injected P^{s_2} found in urine after t minutes, and a and b are constants. Since the first urine collections were made one hour after P^{s_2} injection, the single term of this equation applies only to later data. A rearrangement of equation 7 gives

$$\ln\left(1-\frac{R}{R_{0}a}\right) = -bt. \qquad (8)$$

A plot of ln $\left(1 - \frac{R}{R_0 a}\right)$ against t should yield a

straight line, the slope of which is -b (Figure 6), representing the rate of passage of P³² into urine. Failure of this function to pass through the value 1.0 at zero time probably reflects the effect of another term in equation 7 which we have neglected, as mentioned. The average rate of urinary P³² excretion obtained in this way is 7.8×10^{-3} per min. (Table II), a figure identical to that of rate constant k₂ derived from the plasma radiophosphate determinations. The effects of a single intravenous injection of glucose or insulin were not reflected in the urine phosphorus.

5. Body phosphorus pool

We have calculated the size of a body "phosphorus pool," and its turnover rate, using the methods which Sprinson and Rittenberg developed for calculation of the body "nitrogen pool" (10).

Fig. 4. Effect of Intravenous Glucose and Insulin on the Rate of Disappearance of P^{a} from Plasma

The body "phosphorus pool" with which we are concerned is the rapidly exchangeable phosphorus. Sprinson and Rittenberg showed theoretically,

$$a = \frac{E}{E+S}$$
 and $b = \frac{E+S}{P}$, (9)

where a and b are the constants of equations 7 and 8 above, E = mg. nitrogen excreted per min., S = rate of turnover of body pool nitrogen in mg. per min., and P = size of the nitrogen body pool in mg.

We have assumed these same relationships for phosphorus. The results of our calculations are listed in Table II. The average size of the rapidly exchangeable phosphorous body pool (P) is about 1,200 mg. in our subjects. These subjects, as mentioned, were young adult males in good health, weighing on the average about 75 Kg., and were on normal food intakes prior to study. The observations were made after a 12 hour fast. The total phosphorus in such an individual is about 150 gm. (11). Thus, under the conditions of this study, the rapidly exchangeable phosphorus amounts to about 0.2 per cent of the total body phosphorus. Kleiber, Smith, and Ralston (7), calculated the exchangeable body phosphorus for cows to be about 0.5 to 0.9 per cent of the total body phosphorus. The average rate (S) at which phosphorus leaves the rapidly exchangeable body phosphorus pool in our subjects is about 8.5 mg. per min. or about 0.7 per cent of the pool per min., a figure similar to the rate at which P^{32} enters the urine (0.8 per cent injected P^{32} per min.) and the rate of disappearance of P^{32} from plasma represented by k_2 (0.8 per cent per min.). Thus, the rapidly exchangeable body phosphorous pool turns over approximately ten times per day under the conditions of this study.

6. Distribution of injected P³² in various plasma phosphorus fractions

Tables III, IV, and V present detailed data on distribution of P^{s_2} in various plasma phosphorous fractions of control subjects, those receiving glucose, and those receiving insulin, respectively. Control data are available as serial observations in two subjects over a four hour period, and in six

FIG. 5. CUMULATIVE URINARY P²⁰ Excretion of Six Normal Males

subjects at one hour after injection. Variations in some of the chemically measured fractions in the plasma and red cells, somewhat greater than expected from possible technical error, were observed in some of the control subjects. During the period of time under consideration, most of the injected P³² remained in the inorganic fraction. The percentage of P³² in the organic phosphorus fractions varied from 0 to 12 per cent, with a mean of 6 per cent. This average percentage is just outside the error of the methods of measurement. Essentially all of the P⁸² which had gone into the organic fractions was in the acid insoluble phase. These in vivo data demonstrate substantially the same findings as the results obtained previously in in vitro studies at 37° C. (12).

Regarding the organic fractions, there does not appear to be any progressive shift of P³² to the very small acid soluble organic component. This raises the question of whether there actually exists, in human plasma, an acid soluble organic fraction, since one would expect that during a period of four hours, there would be a measurable

Time after njection <i>hrs</i> .	Subject	Total P excreted (cumulative) <i>mg</i> .	Per cent injected P ²² excreted (cumulative)	Specific activity*
1	1	83	2.5	0.030
	2	4	2.9	0.725
	3	115	1.6	0.014
	5	23	3.9	0.170
	07	80 50	4.2	0.049
	8	30	2.0	0.044
	ğ	160	4.8	0.002
	10	54	4.7	0.087
	11	120	6.4	0.054
	13	88	3.1	0.038
	14	16	1.8	0.110
	15	280	1.0	0.006
	10	110	3.1	0.028
2	2	12	3.2	0.267
	3	205	2.5	0.012
	ğ	200	5.1	0.032
	10	94	6.5	0.055
	11	165	9.2	0.056
	13	105	4.0	0.038
	14	35	2.8	0.080
	15	290	1.9	0.007
	16	120	3.6	0.030
3	2	27	3.7	0.140
	3	250	2.9	0.012
	5	33 125	5.2	0.095
	7	115	5.0 4.6	0.042
	8	115	4.9	0.040
	9	255	7.8	0.030
	10	115	7.1	0.060
	11	190	10.0	0.052
	13	125	4.4	0.035
	14	55	4.3	0.078
	15	300	2.2	0.007
	10	125	5.7	0.030
4	2	63	4.3	0.068
	12	315	3.0 7 5	0.012
-	12	200	7.5	0.037
5	5	175	7.1	0.041
	9	185	7.4	0.039
	8	215	0.1	0.028
	ŏ	335	0.3	0.034
	13	280	6.5	0.027
7	5	300	84	0.028
•	ő	240	7.8	0.028
24	4	1.480	12.0	0.008
	6	905	9.4	0.010
	7	870	11.0	0.013
	12	610	11.0	0.018
	16	940	6.7	0.007
	10	1,010	13.0	0.008
	10	113	4.1	0.000

* Specific activities were obtained by dividing the per cent of injected P²⁸ per 100 ml. plasma, red cells and urine, by the mg. per cent of phosphorus in each fraction. The use of the percentage of added P²⁸ rather than the number of counts as the basis of calculation permitted direct comparison of the different experiments despite variation in the actual amount of P²⁸ added.

 TABLE I

 Urinary excretion of P^m following the intravenous administration of P^m labeled phosphate

Subject	Rate of Par excretion Per cent body Par	Total P ²² excreted in 7 hours after injection <i>Per cent</i> <i>injected</i>	Rate of phosphorus excretion (E)	Size of body pool (P)	Rate at which phosphorus leaves pool (S)
	per min.	dose	mg. per min.	mg.	mg. per min.
1	0.78	10.0	1.1	1,400	10.0
2	0.78	7.0	0.6	1,100	8.0
3	0.79	8.0	1.0	1.400	10.2
4	0.76	7.5	0.6	1.050	7.4
5	0.77	7.5	0.6	1.050	7.4
6	0.77	5.6	1.3	3,400*	24.5*
Avg.	0.78	7.5	0.9	1,200	8.6

TABLE II

• .

* Not included in average.

movement of P³² into this fraction. The possibility exists, however, that a very slow shift of P³² into the acid soluble organic phase does take place.

Observations were made regarding the possible effects of glucose and insulin on the distribution of P³². With regard to glucose, we have data on two subjects, and in these, there was no apparent effect on P³² distribution as compared with normals (Tables IV and V). Of the three subjects receiving insulin, on whom we have detailed data, two showed no differences in P³² distribution compared to normal, while in the third, there was a slight additional shift into the acid insoluble organic phase. A pre-insulin level of 6 per cent of the total P³² increased to 16 per cent in this fraction two hours after insulin administration. The blood sugar curve was no different in this subject from those in the other two subjects nor was the curve of inorganic or total P32 concentrations different (Table V).

7. Distribution of injected P³² in the various red cell phosphorus fractions

Data are available in four subjects regarding partition of phosphorus fractions in red cells (Table VI). In each instance the major portion of the P³² was initially present in the inorganic fraction. At the peak uptake, about 85 per cent of the total P³² was present as inorganic phosphorus, a figure which corresponds closely with in vitro data previously obtained (12). This would seem definitely to establish the existence of inorganic

FIG. 6. SEMI-LOGARITHMIC PLOT OF DATA OF FIGURE 5 FROM WHICH RATE OF P²² EXCRETION IS CALCULATED

	nic	Specific activity	000000	000000	00000			
	soluble org	Per cent injected pu	.00 000000	000000	00000			
	Acid	Organic P not ppt'd	mg . % 0.1 0.1 0.1 0.1 0.1 0.1	0.4 0.0 0.0 0.0 0.0	0.3 0.2 0.1 0.0			
sphate	ble	Specific activity	.277 .220 .165 .129 .094 .064	.265 .125 .054 .040 .016	.341 .045 .029 .025 .021			
rbeled pho.	tal acid solu	Per cent injected Pas	.75 .75 .45 .34 .16	1.06 .45 .15 .09 .05	.75 .095 .05 .04			
n of Pu l	Tot	P not ppt'd by TCA	m <i>x</i> . % (3.5) t (3.5) t (3.7) (3.5) (3.5) (3.5) (3.5)	4.4.8.3.3.4.0 1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	2.2 2.1 2.0 1.9			
ninistratic	ganic)	Specific activity	00000000000000000000000000000000000000	.000 000 000 000 000 00 00 00 00 00 00 0	8.8.9.8.9. •			
renous adn	nsoluble (or	Per cent injected	6.9.9.9.9.9.9.9 6.9.9.9.9.9		8.0.0.0			
g the intra	Acid i	P ppt'd by TCA	me. % 8.1 9.5 9.6 10.0 9.7 10.4	8.2 10.5 10.4 7.7 9.3 9.0	16.3 15.4 15.3 16.1 14.0			
a followin _l		norganic P12 as per cent of total	90 93 104 103 95 95 97	92 96 104 102 102 102 102	91 91 94 86 88 Av. 94			
14			V	•				
in plasn	anic	Specific I activity			.43 .053 .032 .025 .023			
tion of P ^{us} in plasn	Inorganic	Per cent Specific I injected activity I		1.10 .31 .48 .13 .21 .058 .16 .046 .066 .015 .051 .013	.82 .43 .10 .053 .061 .032 .047 .025			
–Distribution of P ¹⁸ in plasn	Inorganic	Inorganic Per cent Specific I part activity J	ms. % 3.4 90 26 3.3 3.3 76 23 3.3 3.6 19 3.6 19 3.6 13 3.5 3.4 3.6 19 3.6 19 3.5 3.3 3.4	3.6 1.10 .31 3.6 .48 .13 3.6 .21 .058 3.5 .16 .058 3.6 .068 .015 4.0 .051 .013	1.9 .82 .43 1.9 .10 .053 1.9 .061 .032 1.9 .047 .025 1.9 .044 .023	3.1 3.6 3.1 2.9	2.9 2.8 2.8 2.8 2.8 2.9 2.8 2.9 2.8 2.9 2.8 2.9 2.8 2.9 2.8 2.4 5 2.5 5 2.5 5 2.5 5 2.5 5 2.5 5 2.5 5 2.5 5 2.5 5 2.5 5 2.5 5 2.5 5 2.5 5 2.5 5 5 5	2.3 2.3 2.3 2.3
TABLE III—Distribution of P ²⁸ in plasn	Inorganic	Specific Inorganic Per cent Specific I activity activity	ms.% 90 26 .083 3.4 .90 .26 .064 3.3 .76 .23 .050 3.6 .69 .19 .035 3.4 .48 .14 .026 3.5 .37 .14 .026 3.3 .27 .068 .026 3.4 .48 .14 .012 3.3 .277 .068 .012 3.4 .16 .047	.098 3.6 1.10 .31 .035 3.6 1.48 .13 .016 3.5 .48 .13 .011 3.5 .16 .058 .008 3.6 .21 .058 .008 3.6 .066 .015 .005 4.4 .066 .015 .005 0.051 .013 .013	.047 1.9 .82 .43 .006 1.9 .10 .053 .004 1.9 .061 .032 .003 1.9 .047 .025 .003 1.9 .044 .023	.0738 3.1 .0162 3.6 .0038 3.1 .0031 2.9	.082 2.6 .0178 2.7 .0063 2.8 .0042 2.8 .0035 2.9 .0031 2.9	.082 1.9 .011 2.0 .0034 2.0 .0018 2.3 .0015 2.5 .0015 2.5
TABLE III—Distribution of P ¹⁸ in plasn	Total Inorganic	Per cent Specific Inorganic Per cent Specific I injected activity*	me.% 90 .083 3.4 90 .26 .23 .76 .23 .26 .23 .26 .23 .26 .23 .26 .23 .26 .23 .26 .23 .26 .23 .26 .23 .26 .23 .26 .23 .26 .23 .26 .23 .26 .23 .26 .23 .26 .23 .26 .23 .26 .23 .26 .23 .23 .26 .23 .26 .23 .26 .23 .26 .23 .23 .21 <td>1.20 .098 3.6 1.10 .31 .50 .035 3.6 .48 .13 .22 .016 3.6 .21 .058 .16 .011 3.5 .16 .046 .094 .008 3.6 .066 .015 .058 .005 4.4 .051 .015 .050 .004 4.0 .051 .015</td> <td>.88 .047 1.9 .82 .43 .11 .006 1.9 .10 .053 .065 .004 1.9 .061 .033 .055 .003 1.9 .047 .025 .045 .003 1.9 .047 .023 .045 .003 1.9 .044 .023</td> <td>.66 .0738 3.1 .16 .0162 3.6 .037 .0038 3.1 .028 .0031 2.9</td> <td>.75 .082 2.6 .15 .0178 2.7 .061 .0063 2.8 .041 .0042 2.8 .035 .0035 2.9 .038 .0031 2.9</td> <td>.67 .082 1.9 .10 .011 2.0 .031 .0034 2.0 .021 .0018 2.3 .024 .0015 2.5 .022 2.3</td>	1.20 .098 3.6 1.10 .31 .50 .035 3.6 .48 .13 .22 .016 3.6 .21 .058 .16 .011 3.5 .16 .046 .094 .008 3.6 .066 .015 .058 .005 4.4 .051 .015 .050 .004 4.0 .051 .015	.88 .047 1.9 .82 .43 .11 .006 1.9 .10 .053 .065 .004 1.9 .061 .033 .055 .003 1.9 .047 .025 .045 .003 1.9 .047 .023 .045 .003 1.9 .044 .023	.66 .0738 3.1 .16 .0162 3.6 .037 .0038 3.1 .028 .0031 2.9	.75 .082 2.6 .15 .0178 2.7 .061 .0063 2.8 .041 .0042 2.8 .035 .0035 2.9 .038 .0031 2.9	.67 .082 1.9 .10 .011 2.0 .031 .0034 2.0 .021 .0018 2.3 .024 .0015 2.5 .022 2.3
TABLE III—Distribution of P ^{as} in plasm	Total Inorganic	TotalPer centSpecificInorganicPer centSpecificIPinjectedactivity*norganicinjectedactivityn	me. % me. % 11.6 .99 .083 3.4 .90 .26 12.9 .82 .064 3.3 .76 .23 14.1 .70 .050 3.6 .69 .19 13.1 .46 .035 3.4 .48 .14 13.1 .36 .026 3.3 .44 .14 13.1 .36 .026 3.3 .34 .48 .14 13.1 .24 .018 3.3 .37 .11 .11 13.1 .17 .012 3.3 .275 .068 .14 13.9 .17 .012 3.3 .275 .068 .047 A		18.5 .88 .047 1.9 .82 .43 17.5 .11 .006 1.9 .10 .053 17.4 .065 .004 1.9 .061 .032 18.1 .055 .003 1.9 .061 .032 18.1 .055 .003 1.9 .047 .023 15.9 .045 .003 1.9 .024 .023	9.0 .66 .0738 3.1 9.8 .16 .0162 3.6 9.8 .037 .0038 3.1 8.9 .028 .0031 2.9	9.0 .75 .082 2.6 8.6 .15 .0178 2.7 9.2 .061 .0063 2.8 9.7 .041 .0042 2.8 10.0 .035 .0035 2.9 112.2 .038 .0031 2.9	8.2 .67 .082 1.9 9.0 .10 .011 2.0 9.2 .031 .0034 2.0 11.6 .021 .0018 2.3 13.2 .020 .0015 2.5 10.9 .024 .0022 2.3
TABLE III—Distribution of P ^{us} in plasn	Total Inorganic	Time Total Per cent Specific Inorganic Per cent Specific I Per cent injected activity*	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 12.2 1.20 .098 3.6 1.10 .31 15 14.1 .50 .035 3.6 .48 .13 45 13.9 .22 .016 3.6 .21 .058 60 14.1 .16 .011 3.5 .16 .046 120 11.3 .008 .008 .3.6 .066 .015 180 13.7 .008 .008 .006 .015 .027 240 13.1 .050 .003 4.4 .051 .015 240 13.1 .050 .004 4.0 .051 .015	5 18.5 .88 .047 1.9 .82 .43 60 17.5 .11 .006 1.9 .10 .053 120 17.4 .065 .004 1.9 .061 .032 180 18.1 .055 .003 1.9 .047 .023 240 15.9 .045 .003 1.9 .047 .023	5 9.0 .66 .0738 3.1 60 9.8 .16 .0162 3.6 300 9.8 .037 .0038 3.1 24 hr. 8.9 .028 .0031 2.9	5 9.0 .75 .082 2.6 60 8.6 .15 .0178 2.7 180 9.2 .061 .0063 2.8 300 9.7 .041 .0042 2.8 24 hr. 12.2 .038 .0031 2.9	5 8.2 .67 .082 1.9 60 9.0 .10 .011 2.0 180 9.2 .031 .0034 2.0 300 11.6 .021 .0018 2.3 420 13.2 .024 .0012 2.5 24 hr. 10.9 .024 .0022 2.3

504

		-					Blood sugar	mg. % 113 260 110 110	888801 888801 888801 88801 88801 88801 88801 88801 88801 88801 88801 88801 88801 88801 88801 88801 88801 88801 88801 8901	172 55 75 95 95 110
-		· · · · ·				anic	Specific activity		00000	
-					hate*	soluble org	Per cent injected		00000	
					eled phospi	Acid	Organic P not ppt'd	mg. %	0.3 0.1 0.3 0.2 0.2	
					of Pm lab	ble	Specific activity		.033 .023 .019 .013 .013	
•					nistration	tal acid solı	Per cent injected		.08 .07 .05 .05	
					ous admi	To	P not ppt'd by TCA	mg. %	4.2 3.5 3.8 3.8	
					e intraven	rganic)	Specific activity	00000	00000	
Continued		<u></u>			llowing th	insoluble (o	Per cent injected	00000	00000	
ILE III					þlasma fo	Acid	P ppt'd by TCA	mg. % 7.7 7.1 8.2 8.4 8.4	10.6 10.6 10.0 10.0	
TAF					of Pu in 1		Inorganic Pat as per cent of total	100 100 100 100	000000	
		- / 			stribution	ganic	Specific activity	.059 .037 .030 .020 .015	.039 .029 .018 .018	.00 00 00 00 00 00 00 00 00 00 00 00 00
	5349	8000110			e on the di	Inor	Per cent injected Pu	.20 .11 .083 .060 .051	.150 .097 .064 .059	(55) (20) (009) (011) (011) (011) (011)
				lated.	of glucos		Inorganic	ms . % 3.4 3.0 3.1 3.1 3.1	3.5 3.5 3.5 3.5	41112555 41112555
	000000000000000000000000000000000000000	4 m m m m m m m m m m m m m m m m m m m		() Calcu	-Effect		Specific	.015 .006 .005 .005	.014 .005 .005 .005	.003 .008 .008 .008 .009 .009 .009 .009 .009
	.0395 .0295	861411688	.0.08011387	+	TABLE IV	Total	pus cent pus	.170 .110 .059 .050	.150 .093 .075 .057	.55 .20 .099 .018 .018
	11.5 12.2 13.9 14.1	12.3 10.6 11.7 10.3	13.2 13.2 13.1 13.1 13.1	ole I.			Paral Ir	8.1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	4.8 4.5 13.8 13.8	11.2 11.2 11.0 11.0 11.0 11.0 11.0 11.0
	60 00 24 hr.	30805120 3080505 3080505 308055	5 00 1120 00 1120 00 1120 00 5 00 5 00 5	See Tal			Time	3 35 3 37 - 2 3	-#20 m	2242 ¹¹ ***
	~	80	<u>م</u>	•			Sub- ject	10	11	12

STUDIES IN PHOSPHORUS METABOLISM

505

t() Calculated.

t See Table I.

* Glucose administered one hour after P¹² injection in all cases.

		Blood sugar	me. % 75 19 53 53 69	100 42 94 109	114 37 67 88 100	110 49 63 83 105	
	anic	Specific activity		00000	00000	00000	
	soluble org	Per cent injected Pa		00000	00000	00000	
anna Jaan	Acid	Organic P not ppt'd	m8 . %	<i></i>	いすいいい	1.1 0 .3 .3	
J	ıble	Specific activity		.047 .026 .016 .013 .013	.040 .027 .017 .014 .013	.056 .024 .017 .013 .013	
- 6	tal acid solı	Per cent injected Pa		.142 .066 .041 .043	.15 .05 .05 .05	.18 .073 .044 .044 .048	
	T	P not ppt'd by TCA	mg. %	3.0 3.5 3.5 3.5 3.5	3.8 3.3 3.6 4.0	3.2 3.1 3.5 3.5 3.9	
	rganic)	Specific activity		.002 .0015 .000 .000	.001 .0015 .001 .001 .001	000	
0	insoluble (o	Per cent injected par		.020 .014 .000 .000	.010 .012 .009 .009	.020 .001 .005 .005	
	Acid	P ppt'd by TCA	mg. %	8.1 9.0 9.0 9.0	8.1 7.7 7.0 7.3 7.3	5.6 5.9 6.1 6.1	
1		Inorganic Ps2 as per cent of total		88 82 92 100 Av. 92	94 88 85 91 91 Av. 88	90 100 100 100 Av. 98	
•	ganic	Specific activity	.059 .054 .029 .021 .021	.054 .029 .019 .015 .015	.054 .030 .020 .015 .013	.059 .039 .017 .017 .015	n all cases
	Inor	Per cent injected	(.20) (.14) (.051) (.051) (.029)	.150 .067 .046 .046 .048	.16 .088 .052 .050 .047	.18 .079 .053 .055	njection ir
		Inorganic	mg .% 3.4 2.5 3.1 3.1 3.1	3.0.4 3.0 3.0 4.0 5.8	3.6 3.4 3.4 3.7	3.1 2.0 3.2 3.7 3.7	after P¤ i
		Specific activity†	.006 006 003 003 003 003 003	.015 .004 .004 .004	.014 .005 .005 .005 .005	.021 .009 .005 .006	one hour a
	Total	Per cent injected Pas	.056 .056 .033 .036	.17 .081 .050 .044	.17 .10 .055 .055	.20 .05 .05 .06	iinistered ed.
		Total	mg . % 11.0 10.9 9.8 11.3 12.0	11.1 11.5 11.6 12.1 12.4	11.9 11.1 10.5 10.6 11.3	9.4 8.5 9.7 10.0	lin adm Table I. alculate
		Time	5333 14 17 14 17 17 17 17 17 17 17 17 17 17 17 17 17	37507FT	37 57 F	32223	Insu See
		Sub- ject	13	14	15	16	

Effect of insulin on the distribution of $P^{\mathbf{u}}$ in plasma following the intravenous administration of $P^{\mathbf{u}}$ labeled phosphate*

TABLE V

506

S. M. LEVENSON, M. A. ADAMS, H. ROSEN, AND F. H. L. TAYLOR

	Acid soluble	organic P ²² as per cent of total acid soluble P ²²		5.55 15.8 19.0 23.8 23.8	9.55 9.55 5.55 13.3 8.5 20.0 20.0	10.0 13.1 21.4 28.6 28.6 28.6 28.6	26.3 25.0 21.0 21.0 15.0
	ganic	Specific activity		.0003 .0010 .0010 .0010 .0010	.0005 .0005 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0005	.0005 .0005 .0006 .0005 .005 .0005	.0014 .0013 .0014 .0010 .0012 .0007
	d soluble or	Per cent injected Pas		.01 .03 .03 .03 .05	.02 .02 .010 .010 .010		.05 .05 .03 .03 .03
	Aci	Organic P not ppt'd	mg. %	35.2 31.7 30.3 32.6 32.5	41.7 40.7 39.4 33.4 37.2 36.1	39.8 43.4 45.0 37.3 41.3 36.6	37.4 38.5 37.7 39.1 39.6 39.6
-	able	Specific activity	-	.005 .005 .005 .005 .005	.004 .004 .003 .003 .0015 .0015	.004 .003 .003 .003 .004	.0042 .0043 .0041 .0040 .0041
	tal acid solı	Per cent injected P#		.18 .21 .21 .21	.21 .21 .18 .15 .094 .072	.20 .19 .14 .01 .14 .01	.19 .19 .19 .20
•	To	P not ppt'd by TCA	m8. %	42.7 40.5 41.6 40.8	52.4 53.6 54.5 48.1 41.7 49.1	46.7 50.2 52.6 43.6 47.9 47.9	45.5 45.7 45.3 46.2 46.2 48.2
	rganic)	Specific activity		00000	000000	000000	000000
	insoluble (o	Per cent injected		<u>9</u> 99999	.005 .005 .005 .005 .005 .005 .005 .005	.006 .012 .004 .001 .001 .006	100.0.000
	Acid	P ppt'd by TCA	m8. %	17.7 12.8 16.3 15.4 17.7	24.6 28.2 25.1 25.4 19.4	12.5 10.6 17.2 18.7 18.7 18.7	22.8 20.4 19.9 19.6 20.5
		Inorganic Par as per cent of total		89.5 84.2 81.0 82.0 73.0	90.5 86.5 86.5 78.0 73.0	90.0 90.0 85.0 78.7 71.0 75.5	70.0 75.0 75.0 85.0 85.0
	ganic	Specific activity		.023 .018 .021 .020	.018 .015 .013 .010 .000 .000 .000 .000	.026 .026 .017 .013 .013 .013	.017 .021 .018 .021 .019 .020
-	Inor	Per cent injected Pu	14 19 22 23 23 23	.17 .16 .16 .17	.19 .17 .17 .086 .086 .040	.18 .17 .17 .085 .053	115 115 117 117
		Inorganic	mg. %	7.5 8.8 8.3 8.3 8.3	10.7 12.9 8.7 8.3 9.6 13.0	6.9 6.7 6.7 6.7 6.7 7.6 7.6	8.6 8.6 8.6
		Specific activity*		.003 .004 .004 .004 .004	.0027 .0027 .0023 .0023 .0010 .0010	002000000000000000000000000000000000000	.003 .003 .003 .003 .003 .003
	Total	Per cent injected Pas	.17 .22 .28 .28 .28	22219 222219	.21 .18 .115 .055 .055	.20 .114 .125 .07	50,000,000
		Total	mg. %	60.4 53.3 54.8 57.0 58.5	77.0 81.8 79.6 64.8 67.1 65.7 68.5	59.2 64.8 63.6 63.6 63.6 63.6	68.3 66.1 66.1 66.1 66.1 68.7
		Time	44.5 00230715.	9707F	120 120 120 120 120	23 4 30 4 304 544 724 121	255 273 283 283
		Sub- ject	19	20	21	22	23

TABLE VI Distribution of P^{m} in red cells following the intravenous administration of P^{m} labeled those have

* See Table I.

STUDIES IN PHOSPHORUS METABOLISM

507

TABLE VII
Distribution of P ^a between plasma and red blood cell Specific activities [*] Inorganic fractions

•	Plasma	Red blood cells
In vitro, after 4 hrs. incubation at 37° C.	14	13
In vivo, 5 hrs. after I.V. injection	0.019	0.018

* See Table I.

phosphorus in human erythrocytes. What P³² is present as organic is in the acid soluble fraction.

It may be seen in Table VII that specific activities in the inorganic fractions of plasma and red cells are identical at equilibrium. This steady state has occurred both in vivo and in vitro by four to five hours. The in vitro experiments were carried out at 37° C. In vivo, there is a gradual shift of P³² from the inorganic to the organic phase in the red cells, such that at five hours, 91 per cent of the total P³² is in the inorganic, while at 120 hours, this percentage has decreased to 71, and the organic has risen concomitantly from 9 per cent to 24 per cent (Table VIII). All of the P³² present in the organic fraction was present in the acid soluble phase five hours after injection. In the next few days, some appeared in the acid insoluble organic phase, but the major part still was found in the acid soluble fraction.

SUMMARY

1. The distribution of radiophosphorus has been studied in various plasma, red cell, and urine fractions of normal young men following the rapid intravenous administration of 100 to 200 microcuries of P^{32} as $Na_2HP^{32}O_4$. The subjects were on normal intakes prior to study. Observations were made after a 12 hour fast.

 TABLE VIII

 Per cent Pⁿ in various red blood cell phosphorus fractions

Time (hrs.) after I.V. injection	Inorganic P	Total acid solubl e P	Acid soluble organic P	Acid insoluble organic P
5	91	100	9	0
24	83	98	15	2
48	79	93	14	7
72	76	92	16	8
120	71	95	24	5

2. Most of the labeled phosphate leaves the blood within a few minutes after injection, indicating a very rapid transcapillary movement of phosphate.

3. Following this initial rapid decrease in plasma radioactivity its disappearance slows. This may represent entrance of phosphate into cells. Mathematical analysis of this transfer shows it to be of a double exponential nature. The double exponential takes the form:

$$P = 0.85e^{-0.08t} + 0.27e^{-0.01t} + 0.03$$

where P = per cent injected P^{32} per 100 ml. plasma found t minutes after injection. The rate constants for the two processes are 38×10^{-3} per min. and 7.9×10^{-3} per min., respectively.

4. The uptake of P^{32} by the red cells in vivo was found to be represented by the equation:

$$Q = 0.07(1 - e^{-0.30t}) + 0.13(1 - e^{-0.02t}),$$

where Q = per cent injected P³² per 100 ml. red cells found t minutes after injection.

5. Glucose (25 gm.), administered intravenously one hour after injection of $Na_2HP^{32}O_4$, accelerates the movement of P^{32} out of the plasma by a factor of 3, while intravenous insulin (0.1 unit per Kg. body weight) accelerates it by a factor of 4.

6, Excretion of P³² in the urine during the period one to seven hours after injection was shown to follow the process:

$$R = R_0 a (1 - e^{-bt}),$$

where R = per cent injected P^{32} found in urine at t minutes after injection and a and b are constants. The excretion of P^{32} was 0.8 per cent per min. of the injected P^{32} .

7. From the above data and measurement of urinary phosphorus as such, certain average body "constants" were calculated. These are the rapidly exchangeable body "phosphorus pool" (about 1.2 gm.) and the rate at which phosphorus leaves this pool (about 8.5 mg. per min.). These data suggest that the rapidly exchangeable body phosphorus turns over approximately 10 times per day under the conditions of this study.

8. Over a four hour period following the injection of labeled phosphate approximately 95 per cent of the P^{32} is in the inorganic phosphorus fraction. Almost all the remaining P^{32} is in the acid insoluble organic fraction. No definite changes were found in the P^{32} distribution in the plasma phosphate fractions as a result of glucose or insulin administration.

9. The distribution of P^{s_2} was also studied in various red cell phosphorus fractions. At peak uptake (about five to seven hours after injection) about 85 per cent was found in the inorganic phosphorus fraction. The specific activities of P^{s_2} in the inorganic fractions of plasma and red cells are identical at this time. There is a gradual shift of P^{s_2} from the inorganic to the organic fraction so that at 120 hours after injection about 30 per cent of the P^{s_2} is present as organic phosphorus, chiefly as acid soluble compounds.

REFERENCES

- 1. Fiske, C. H., and Subbarow, Y., Phosphocreatine. J. Biol. Chem., 1929, 81, 629.
- Adams, M. A., Levenson, S. M., Fluharty, R. G., and Taylor, F. H. L., Methods for the determinations of radioactive phosphorus (P²⁸) in body fluids. J. Lab. & Clin. Med., 1949, 34, 1301.
- Gourley, D. R. H., and Gemmill, C. L., The effect of temperature upon the uptake of radioactive phosphate by human erythrocytes in vitro. J. Cell. & Comp. Physiol., 1950, 35, 341.
- 4. Erf, L. A., and Lawrence, J. H., Clinical studies with the aid of radioactive phosphorus. I. The absorption and distribution of radio-phosphorus in the blood

and its excretion by normal individuals and patients with leukemia. J. Clin. Invest., 1941, 20, 567.

- Cardozo, R. H., and Edelman, I. S., The volume of distribution of sodium thiosulfate as a measure of the extracellular fluid space. J. Clin. Invest., 1952, 31, 280.
- Pappenheimer, J. R., Renkin, E. M., and Borrero, L. M., Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am. J. Physiol., 1951, 167, 13.
- Kleiber, M., Smith, A. H., and Ralston, N. P., Mixing rate of phosphate between plasma and interstitial body fluid of cows. J. Gen. Physiol., 1950, 33, 525.
- Walker, W. G., and Wilde, W. S., Kinetics of radiopotassium in the circulation. Amer. J. Physiol., 1952, 170, 401.
- 9. Solomon, A. K., Equations for tracer experiments. J. Clin. Invest., 1949, 28, 1297.
- Sprinson, D. B., and Rittenberg, D., The rate of interaction of the amino acids of the diet with the tissue proteins. J. Biol. Chem., 1949, 180, 715.
- Widdowson, E. M., McCance, R. A., and Spray, C. M., The chemical composition of the human body. Clin. Sc., 1951, 10, 113.
- 12. Taylor, F. H. L., Levenson, S. M., and Adams, M. A., Studies of phosphorus metabolism in man: II. A study of the permeability of the human erythrocyte to inorganic phosphate in vitro by the use of radioactive phosphate (P²⁰). Blood, 1948, 3, 1472.