JCI The Journal of Clinical Investigation

STUDIES ON THE CIRCULATION IN PREGNANCY. I. THE VELOCITY OF BLOOD FLOW AND RELATED ASPECTS OF THE CIRCULATION IN NORMAL PREGNANT WOMEN

Mandel E. Cohen, K. Jefferson Thomson

J Clin Invest. 1936;15(6):607-625. https://doi.org/10.1172/JCI100813.

Research Article

STUDIES ON THE CIRCULATION IN PREGNANCY. I. THE VELOCITY OF BLOOD FLOW AND RELATED ASPECTS OF THE CIRCULATION IN NORMAL PREGNANT WOMEN 1

By MANDEL E. COHEN AND K. JEFFERSON THOMSON

(From the Department of Obstetrics, Harvard University Medical School and the Cardiac Clinic and Research Laboratory, Boston Lying-in Hospital, Boston)

(Received for publication June 15, 1936)

It has long been known that pregnancy imposes a "burden" upon the maternal circulation. Gain in body weight (1, 2, 3, 4), anemia (5, 6, 7), increased cardiac output (8, 9, 10, 11, 12, 13), increased oxygen consumption (8, 14, 15, 16, 17), increased blood volume (18, 19, 20), elevation in pulse rate (11, 21) and the addition of the placental circulation are all probable factors in the production of the increased load on the heart in pregnancy.

General studies on the circulation are being carried out at the Boston Lying-in Hospital in an attempt to understand the physiology of the circulation in pregnancy and to determine, if possible, the nature of this so-called "burden" on the circulation. It was hoped that such studies would lead to a practical, satisfactory method of predicting and diagnosing early heart failure in pregnant women with heart disease before the clinical signs of cardiac decompensation become evident.

This communication presents, in the main, studies on the circulation of a group of normal pregnant women, with particular emphasis on the velocity of blood flow. This aspect of the circulation in pregnancy has received little attention in contrast to its extensive study in non-pregnant individuals (22 to 37 inclusive).

The only two studies on the velocity of blood flow in pregnant women can be reviewed briefly. F. Klee (38) in 1924, studied the circulation time (which varies inversely with the velocity of blood flow), in pregnancy by the fluorescein method of Koch (37). He made single observations on 100 pregnant women in the last three months of pregnancy and found that whereas in normal non-pregnant controls the average circulation time was 20.8 seconds, in pregnant women there was a slow-

ing to 25.2 seconds in primiparae and to 23.4 seconds in multiparae. The maximum slowing occurred in the eighth month.

W. Spitzer (39) in 1933, using the decholin (sodium dehydrocholate) method of Winternitz. Deutsch and Brüll (27), studied the velocity of blood flow in 27 normal pregnant women and in 29 abnormal ones. From single observations on each patient he found no change between normal pregnant women and normal non-pregnant controls (the circulation time, arm to tongue, for normal non-pregnant individuals varied between 8 to 14 seconds, no average given; for normal pregnant ones the variation was between 10 and 16 seconds, with an average of 14.3 seconds). There was some slowing of the circulation in 4 cases of toxemia of pregnancy (25, 16.5, 26 and 25 seconds), in 3 cases of eclampsia (22, 17 and 17 seconds) and in 1 case of mitral stenosis (19 seconds). On the basis of these findings Spitzer suggested that this test might be used as an efficiency test for cardiac function in pregnant women with cardiac disease and as a test for the severity of the toxemias of pregnancy.

PROCEDURE

The subjects for this study were obtained from the prenatal clinics of the Boston Lying-in Hospital and only those who had no serious medical or obstetrical complication were included in the normal group. Observations were made, when possible, at monthly intervals throughout pregnancy; at 2 and 6 weeks postpartum and in some patients 7 weeks or longer after delivery. The number of observations on the same patient varied between 1 and 10.

The following determinations were usually made at each visit: weight, arterial blood pressure, pulse and respiratory rates, circulation time (28) (arm to carotid, crude pulmonary and venous),

¹ This is the first of a series of papers concerning various aspects of the circulation in pregnancy.

vital capacity, subcostal angle, hemoglobin, hematocrit and, in some patients, venous pressure and basal metabolic rate. Seven foot x-rays of the heart and electrocardiograms were taken on some of the patients in this study. Basal metabolic rates were determined on the patients in whom there was any suspicion of thyroid dysfunction. Every patient at each visit received a careful physical examination of the heart, lungs, abdomen and extremities.

All patients were studied under basal conditions, i.e., fasting and resting. Determinations of venous pressure were preceded by at least 20 minutes rest in bed and measurements of the circulation time by at least 30 minutes rest in bed. Vital capacities were determined after the patient had been sitting upright for at least 30 minutes and with a 5 minute interval between each reading. The highest of at least 3 observations which checked within 50 cc. was taken as the value for that day. (Further details of the exact procedure used for determining the vital capacity will appear in a subsequent communication.)

METHODS

The arterial blood pressure was measured with a standard mercury sphygmomanometer; the venous blood pressure was determined by the direct venipuncture method of Moritz and von Tabora Determinations of vital capacity were made with a simple calibrated water spirometer (Collins). Measurements of the circulation time were made according to the cyanide method of Robb and Weiss (28), which consists of the injection of sodium cyanide into a vein and measuring the time elapsing between its injection and the appearance of a characteristic respiratory response. The technique of determining the arm to carotid (referred to subsequently in this paper as the A-C), crude pulmonary (referred to subsequently as the pulmonary), and the venous circulation time, which was used throughout this study has been fully described in previous reports by Robb and Weiss (28, 29). In some instances the decholin method (which measures the arm to tongue circulation time), as modified by Gargill (34), was used in conjunction with the cyanide method.

The surface area was computed from height-

weight tables based on the formula of DuBois and DuBois (41) for surface area. The subcostal angle, except where otherwise noted, was measured with a protractor; the determining points for the angle measured being the xyphoid process, and points 7 cm. distant from it, on the border of each costal margin. Hemoglobin determinations were made with a Sahli hemoglobinometer calibrated so that 100 per cent represents 15.6 grams of hemoglobin per 100 cc. of blood. Hematocrit readings were made by the Wintrobe method (42). Edema was noted from either history or physical examination or both. Either subjective or objective evidence of shortness of breath was interpreted as dyspnea. The duration of gestation in weeks, which represents the time during pregnancy at which any given observation was made, has been calculated back from the actual date of delivery; the duration of a normal full term pregnancy being taken as 40 weeks. those patients whose pregnancy was terminated at any point before term, the date of observation in terms of duration of pregnancy was calculated in the usual manner (Naegele's method) from the date of the last menstrual period.

RESULTS

Of 37 normal pregnant women studied (Table I), there are 20 primiparae, 10 secundiparae, 3 tertiparae, and 4 quadriparae. The average age of the group is 24.5 years; of the primiparae 22.9 years, of the secundiparae 24.8 years, of the tertiparae 28.3 years, of the quadriparae 28.5 years.

Arm to carotid circulation time

One hundred and forty-three determinations of the A-C circulation time were made on 36 normal pregnant women; 100 observations ante partum and 43 postpartum (Figure 1). The A-C circulation time varied between 10 and 24 seconds, ante partum, an average of 14.5 seconds; between 9 and 23 seconds, postpartum, an average of 14.9 seconds. The normal range in non-pregnant individuals by the cyanide method is from 9 to 21 seconds with an average of 15.6 seconds (28). The postpartum variation in the 7th to 81st week period was from 12 to 23 seconds, with an average time of 16.0 seconds which corresponds closely with the normal non-pregnant average of

The velocity of blood flow and related aspects of the circulation in normal pregnant women

		V LLL	<i>,</i>		Or	BLOOD FLO	W 11	N NUKMA	AL PREGNAN	I, MOW					
•	Kemarks			Delivered Apr. 3, 1984	Delivered May 26, 1934	Delivered June 30, 1984	Delivered May 7, 1934	Delivered Apr. 26, 1854	Doivered May 19, 1984	Delivered June 21, 1984	Delivered Mar. 29, 1884	Delivered Apr. 6, 1934	Delivered Mar. 8, 1954	Delivered Mar. 18, 1934	Ddivered Mar 31, 1934
	Edema		27	0	0	0000000	00	00000	0000000	0000	0000	•	•	•	000
	Dyspnea		8	+	+	00+++000	00	+0000	0000000	000+	0000	•	•	•	000
	Hemstocrit	per	22	40.60	36.20	37.10 38.60 34.21 35.91 40.68 40.48	33.90	31.20 34.10 36.80	33.95 33.96 34.66 37.86 37.86 37.86 37.86 37.86	36.10 33.50 34.49	37 80 36.23 39.57	32.80	28.90		33.60 38.40
Hemo- globin	amario		22	12.8	11.7	111.4 111.7 10.5 10.6 10.8	10.8	10.8 10.8 10.6 11.1	111.1 10.6 10.6 10.8 10.8 13.3 13.4	12.6 10.8 10.9	12.8 12.3 13.5 11.8	11.2	9.7		10.8
Ħ S	Per cent		প্ল	82	22	73 67 68 68 78	69	28282	27.88.88.27.88 27.88.88.25.88	28 82	3828	22	5		282
(D-A)	Дозе Иа Сп	møm.	22	5.6	4.0	5.6 7.0 7.7 8.0 8.0	5.2	6.500	0.0000	6.4	5.6 7.0 7.0	9.0	2.0	4.4	6.4 6.4 7.0
u o	Venous	sec- onds	2	7		4 66 40	∞ 4	٨	ಬಹಬ4 <i>∽ಕ್</i> ಹ	40	4-1-60	8	4		00
Circulation time	Pulmonary	sec- onds	8	۵		11 11 110 8	===	138	2222 222	9:	21100	=	2	2	=
రే	Arm to earotid	sec- onds	2	2	2	28844147	44	4555	8,621,636	547	4275	71	71		422
əlgu	Subcostal angle		<u></u>			\$2.50 \$2.50		888	\$28885	100 85 ***					8
Vital capacity	Per square meter	ક્ર	17	2160	1870	2290 2290 2290 2296 2313 2573 2541	1770 1820	2350 2350 2445 2445	1840 1915 1955 2025 2025 1967 1948	1730 1830 1960	2200 2300 2365 8865	2190	2010	1994	2530 2500 2500 2500
Cap C	ремлееdO	કું	2	3800	3150	3525 3450 3450 3500 3540 3680 3680	2400 2550	3550 3725 3550 3640 3690	2900 2950 2950 3120 3120 360 3860	3350 3525 3550 3800	3300 3450 3400 3520	3500	3900	3320	4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ərns	Venous pres	F.O.	22			4.6		77							
Arterial pressure	Diastolic	mm. Hg	41	8	88	08488000	22	88 72 80 80 80	\$\$8 5885	2828	5888	8	8	8	288
Art	Systolic	mm. Hg	13	8	126	222852 <i>858</i>	801 901	11021	1118 1112 1116 1116 1100 1100	81128 118 118 118	12811	9	102	110	116
9181	Respiratory	per minute	12	16	20	18 112 115 116 118 118 118 118	18 16	72 74 78 78	18 18 18 18 18 18 18 18 18	2222	22280	14	18	22	79
	Heart rate	per minute	=	7.	22	22882888	82	28222	85 58 88 75 86 58 88 75 86 58 88 75	2822	8888	8	≵ .	8	588
pe.	vrsedo staC		10	1. 18, 1934	18, 1934	1. 18, 1934 b. 15, 1934 rr. 14, 1934 rr. 21, 1934 ry 19, 1934 g. 8, 1935 g. 8, 1935 r. 28, 1935	n. 19, 1934 b. 23, 1934		ర్షణ చ్రహ్మే తో ఉ. ఉ.		1. 22, 1934 7. 19, 1934 7. 10, 1934 19 11, 1934	1. 23, 1934	83	. 23, 1934	8,6,6,
		1 .33		Jan.	Jan.	Jan. Feb. Mar. May July Aug.	Jan. Feb.	Jan. Feb. Mar. Apr.	Jan. Mar. Apr. May June Peb. Dec.	Jan. Mar. May	Jan. Feb. Apr.	Jar	Jan.	Jan.	Jan. Feb. Mar
	Ante partum Postpartum	weeks week	8	90		17 22 33 34 1	200	8288 88 38 38 38 48 48 48 48 48 48 48 48 48 48 48 48 48	88 23 88 88 88 88 88 88 88 88 88 88 88 88 88	32 20 32 32 30 30 32 30 30 30 30 30 30 30 30 30 30 30 30 30	04 es eo		*	e	
	sers earland	equare meters	2	1.75	1.69	55	1.40	2.68 2.68 2.68	2. 2. 3. 3. 3. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	1.98	1.50 30		1.44		1.60
(bevræd)	Weight (obe	be spunod	9	 _	132	119 135 118 118 118 118	82	110 120 116	142 153 180 184 141	190	140 1	120 1		151 1	143
("lamno	on'') tágisW	d spunod	20	135	134	109	\$	901	122	081	011	113	8	143	311
	Heighth	inches p	7	29	9	\$	63.5	62.5	61.5	67.0	63.5	67.5	62.0	63.0	67.5
	Parity		8	-	87	-	-	-	7	4	-	63	4	4	-
	93J.A.	years	63	8	21	25	19	8	61	31	ន	8	\$	22	22
			1								N10	N13			

7	-
-	33
- 6	3
	٠.
	6
•	5
	3
	3
	١.
	0
7	7
	Ī
	Ĭ
	Į
	Ī
	BLE I
	ABLE
	ABLE

610					MANDEL E.	сон	EN A	AND K.	JEFFERSON	тном	ıso	N		
				7 foot x-ray plate of heart	Twin pregnancy			7 foot x-ray plate of heart				Basal metabolic rate + 3	7 foot x-ray plate of heart	
	Remarks				Delivered Aug. 25, 1934.	Delivered Feb. 21, 1934.	Delivered July 20, 1934	Delivered Apr. 24, 1934	Delivered Aug. 23, 1934. normal	Delivered May 18, 1934	Delivered May 11, 1934	Delivered May 29, 1934	Delivered May 24, 1934, on June 5, 1934	Delivered July 11, 1934. normal
		Edema		27	0000000	00	00	00000	<u></u>	0000	•	000000	00++000	<u> </u>
		Dyspnea		8	00000000		00	+0000	4.0++0	00++	+	000 4 %	008048	
		Hematocrit	per	22	34.35 32.29 32.29 32.32 33.21 38.11 39.48		37.70	34.30 34.60 37.31 38.88	35.43 30.63 33.04 31.99	36.40 34.10 33.67	34.50	29.60 27.40 26.54 36.23	29.40 26.90 27.18 33.90 38.64 39.28	36.90
	Hemo- globin	sms1Đ		22	12.6 10.1 10.3 11.3 11.3	9.4	9.8	11.9 11.1 10.0 11.9 10.9	9.3 9.3 9.3 9.3	12.5 11.5 11.5 9.3	12.0	9.8 8.1 8.3 9.4	9.8 9.1 8.9 10.0 11.5	11.7
ļ	H 20	Per cent		83	73 73 73 73 73 73 73 73 73		76 63	76 71 76 76 76	73 69 60 60 69	8448	72	63 52 52 61	53 57 77 71	7.5
	(D-A)	Dose ИаСп	mom.	22	0.0000000000000000000000000000000000000	9.0 7.0 6.6	6.0	7.00 7.20 7.20 8.80	5.00.0 6.00.0	4.6.8.8 4.2.8.8	6.0	6.0 6.0 6.0 6.0 6.0	88.6 7.7 7.0 7.0 7.0 7.0 7.0	6.0
	g O	Venous	sec- onds	21	⊕ ⊕∞40 €	2	5	99		0.00		469846	4 9 9 9 9	۲
	Circulation time	Ридтопату	sec- onds	20	112 110 110 110 128	27	10	10	10 9 9	9 11		08.00 H	21122	6
	ਠੋ	ot mrA carotid	sec- onds	13	80255547	17	15	13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	100	=222	Ξ	4112 122 123 124 125	16 17 17 18 18 19	16
ned	Subcostal angle		de- grees	128	28 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	*06	88	\$28.	\$22 82 82 83 80	* * 88		000 22 22 23 24 24 25	8888	
I—Continued	Vital capacity	Per square reter		17	2343 2343 2343 2358 2358 2358 2358	2314 1862 1878	2270	2100 2155 2210 2210 22869	2070 2170 2250 2299 8116	2220 2110 2130 2010	1700	2150 2225 2220 2220 2301 \$110	1910 1750 1890 1875 1875 1998	2150
		Observed	છ	9	3800 3810 3820 3820 3820 3820 3660		3750	3050 3125 3200 3200 3240	3050 3190 3110 3110 3180	3725 3550 3575 3380	2900	3350 3475 3590 3590 3460	3225 2950 3200 3170 3180 3560	3200
TABLE	Yenous pressure		cm H ₂ O†	15		5								
TA	re ire	Diastolic	mm. Hg	4	22222422	2 28 28	828	82 866	888828	5888	2	25623 662 662 662 662 662 662	688845 688863	02
	Arterial pressure	Systolic	mm. n	22	00000000000000000000000000000000000000		116	108 108 124 118	1108 1100 1100 1100	98 6 130 8 130 8 130 8	124	90011111	1112 100 100 100 100	104
		Respiratory	per minute	12	200200000000000000000000000000000000000		41 7,	40250 1000 1000 1000 1000 1000 1000 1000	2250 2824 1804 1804 1804	2644	14	220 160 160 160	4412 20 20 10 10	
		Heart rate	er tute	_	8272288	2 40	C1 91	\$\$\$10 \infty	400000	0880		200004		
		.,,	per minute		##########									
	n c	A TOGGIA AMERI		01	27, 1934 26, 1934 26, 1934 6, 1934 16, 1934		30, 1934 3, 1934	8, 193 6, 193 8, 193 1, 193	8, 193 9, 193 8, 193 8, 193 8, 198	1, 193 7, 193 8, 193 8, 193	2, 193	6, 1934 6, 1934 4, 1934 8, 1934 <i>I</i> , <i>1934</i> 3, <i>1934</i>	6, 1934 5, 1934 1, 1934 30, 1934 6, 1934 13, 1934	7, 1934
	Date observed			=	Jan. 26 Apr. 26 June July Sept. 8		Jan. 30 Aug. 3						Feb. Apr. Apr. June July Italy	
		Postpartum	weeks	6	## 45 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		S. A.	S P. F. P. S. J. S. J. S. J. S. J. S. S. J. S.	S. S. Z.	FEZA	E	***	**************************************	<u>F4</u>
		Ante partur	weeks we	1	042886			3338	36. 36. 36. 36. 36. 36. 36.	స్తులు గా		33383	33332	18
.						3 37								
		sera esartud	square meters	7	1.62	1.73	1.65	1.45	1.47	1.68	1.71		1.69	1.49
	erved)	Weight (ob	pounds	9	117 129 148 153 153 130	182	145 16\$	125 140 113 107	119 125 132 116	142 145 144	180	135 184 120	145 151 134 135	101
	("lamro	Weight ("n	pounds	2	123	145	130	105	107	136	150		135	107
		Heighth	inches	4	65.5	65.0	64.5	62.0	62.0	65.0	63.25	65.0	0.99	63.0
		Parity		က	ო	ო	-	=	-	81	63	-	0	23
		эзү	years	2	26	35	17	52	81	23	%		8	- 22
		Сазе питъъ		-	N17	N18	N19	N20	N21	N22	N23	N24	N25	N26

TABLE I—Continued

		Remarks			Delivered June 28, 1934	Delivered Feb. 26, 1934	Delivered June 28, 1934	Delivered July 25, 1934. The baby weighed 5 pounds 8 ounces, at birth, 18 hours after delivery baby died of respiratory distress. The autopsy alowed intracranial hemorrhage and pulmonary atelectasis	Deliseral Aug. 13, 1934. 7 foot x-ray plate of heart and electrocardiogram normal. Basal metabolic rate on July 16, 1934. + 12 per cent; on Nov. 14, 1935, minus 2 per cent	Delivered Apr. 13, 1934	Delivered Sept. 18, 1934	Delivered Oct. 12, 1934	Delivered Jan. 21, 1935. 7 foot x-ray plate of heart and electrocardiogram normal	Delinered June 26, 1935
		Edema		22	00	000	0	00+00	00000+0000	0	0	0	0+0+0000	000
		Dyspnea		88	+	000	0	000+0	000++++000	0	+	0	++0++00	000
		Hematocrit	per cent	25	34.60 59.56	35.00 48.40 39.35	39.10	36.83 45.40	35.22 33.39 33.39 35.83 36.80 36.80 36.80		36.10	32.90	33.98 34.48 33.58 36.02 40.67 59.40	34.94 31.83 34.95
	ë ië	Grams		22	11.9	12.5 15.4 18.6	12.8	13.7 11.5 10.5 11.9 13.6	9.5 11.0 11.0 10.8 10.8 11.8 11.8	12.0	10.9	9.7	10.6 10.6 10.9 10.5 18.5 18.5	10.8 10.3 10.3
	Hemo- globin	Per cent		23	85	888	8	84448	77.2868.27	1	<u>2</u>	8	278877878	828
	(U-A)	Dose ИаСп	mom.	83	6.4	222	2.6	6.4 6.8 6.8	84444666	0.0	0.0	9.0	0.04.2.2.2.0.0	6,62
	17	1		 	100	600						•		
	tion	Venous	sec-	12			~	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		4		0440040V	œ4
	Circulation time	Pulmonary	sec- onds	ន			==	10 113 113	92199992198	11	12		110000000000000000000000000000000000000	=21
	చే	ot mrA bitorso	sec- onds	2	12	19	14	2224 <i>2</i>	51505055 5177 5177 51050 5177 51050 5177 51050 5175 5105 510	17	16	14	8444446	149
	əlgu	Subcostal as	de- grees	82		\$ 2		<u>\$</u> 888	\$\$ 2\$ 55 55 55 55 55 55 55 55 55 55 55 55 55	\$	\$2	28	28822	848
arano.	Vital capacity	Per square meter	કું	17	2220	2200	2300	2190 2140 2131 2131	1570 1540 1540 1700 1762 1746 1748 1738	1800	2015	1700	2417 2384 2356 2358 2358 2358 2358 2417 2417	2020 1941 1909
.		БөчтөөбО	ક	91	3800	3300	3325	3700 3625 3560 3560 3680	2300 2250 2150 2480 2570 2570 2570 2570 2570 2570 2570 257	2850	3125	2690	3770 3720 3520 3680 3680 3680 3680	3880 3730 3660
1	eire	cm. H₂O†	2					<i>a</i> , a,				07.41.000.42	10.4 12.0 11.7	
5	rial ure	Diastolic	mm. Hg	=	88	8888	8	2582 2	888485888	74	22	99	288784800	828
	Arterial pressure	Systolic	mm. Hg	22	88	1882	102	82282 130228	28 4 5858888	110	115	110	120 1120 1130 1100 1100	282
	9181	Respiratory	per minute	12	129	16 14 16	20	222 2	118 118 118 10 10 10 10 10 10 10 10 10 10 10 10 10	14	88	24	118 118 127 127 137 147 148	282
		Star frasH	per minute	=	£ 5	27.88	8	25883	73 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		&	2 5	8888885 <i>\$</i> 5	3 288
			E	<u> </u>	414	444	-#	44444	4 4 4 4 4 4 4 4 4 6 50	4	-	*	44446666	41010
					1934 1954	1934 1934 1934	, 1934	1934 1934 1934 1934	1934 1934 1934 1934 1934 1936 1936 1936	, 1934	, 1934	, 1934	1934 1934 1934 1935 1935 1935	1934 1935 1935
	be	vrsedo staC		2	1				16, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20					
					Feb.	Feb. Mar. June	Feb.	Feb. May June Aug.	Feb. Mar. May June July Aug. Sept. Feb.	Feb	Feb.	Ma	Sept. Oct. Jan. Feb. Nor.	Jan. Mar
		Postpartum	weeks	۵	•	17.8		91	6 6 6 6 6 6 6 6				er as 14	
	u	nutraq ətnik	weeks	∞	ន	88	21	33321	412 82 82 83 83 83 83 84 84 85 85 85 85 85 85 85 85 85 85 85 85 85	33	12	20	22222	222
	•	Surface area	square meters	7	1.71	1.50	1.44	1.69	1.46	1.58	1.55	1.58	1.56	1.92
			pound	9	143	122	111	136 149 154 136	80 1288111	901	125	133	136 142 142 151 151 155 188	170 181 191
	("lamro	Weight ("n	spunod	20	52	105	90	7 <u>8</u>	105	122	124	135	116	175
		Heighth	inches	4	63.0	64.0	62.0	0.09	62.0	63.0	61.5	0.09	64.0	0.79
-		Parity		60	-	8	•	-	-	-	_	7	64	69
		эзγ	years	63	19	27	×	35	28	82	32	2	88	21
	16	Свае пишре		-	N27	N28	N29	N30	N31	N32	N33	N35	N36	N87

TABLE I—Continued

			141		DEL E. COHEN	_		10MSON +	ا ديد
		Remarks			Delivered June 8, 1935. 7 foot x-ray plate of heart and electrocardiogram normal. Basal metabolic rate on Nov. 9, 1935, was minus 17 per cent	Delisered Aug. 27, 1985. 7 foot x-ray plate of heart and electrocardiogram normal	Delivered Sept. 22, 1985. 7 foot x-ray plate of heart and electrocardiogram normal	Delivered Oct. 29, 1934. 7 foot x-ray plate of heart and electrocardiogram normal	Delivered Apr. 12, 1934. 7 foot x-ray plate of heart normal
		Edema		22	00000+000	0000000	000000	00000000	0000
		Dyspace		8	+0000000	++000000	000000	00000000	0000
		Hemstocrit	per	22	36.40 34.80 34.02 39.08 32.64 32.94 40.88	35.88 31.62 31.82 31.82	41.17 37.92 34.72 32.88 34.08 41.36	30.24 27.20 27.20 25.75 27.42 34.19 38.88	28.50 \$9.51 52.78
	Hemo- globin	Bettana		24	11.4 10.8 10.5 10.3 8.8 10.6 13.1	11.9 11.9 10.8 10.6	11.7 10.7 10.6 10.6	9.4 8.3 7.8 10.6 1.8 1.8 1.8 1.8	10.0 8.6 9.4
	H es	Per cent		প্ল	288883283	73 76 68 65 65	8882833	50 57 57 58 57 58 57 58	64 66 60
	(A-C)	Dose ИаСп	møm.	22	6.6 4.6 6.7 7.0 8.7 4.7 8.8	80.	4444666 6418446	5.6 6.0 7.0 6.6 7.0 4.0 4.0	6.8
	g	Venous	sec-	12	46666	10	4488-86	<i>≻</i> 104440000€	45
	Circulation time	Pulmonary	sec- onds	ន	**************************************	12	=22==2°	11008800000	118
	Ş	ot mrA bitorae	sec- onds	2	######################################	119	#	######################################	16
	9 37	s latecodus	ge-	82	485555	8 2288	\$\$5 \$ 5 <u>\$</u>	888 889 860 860 860 860 860 860 860	7.6
	al city	Per square raterr	કું	12	1875 1890 1894 1931 1937 1861	2296 2288 2286 2224 2224 2248 2365 2365 2365	2361 2291 2303 2202 2202 2203	1920 1986 1997 1972 1952 1932 1938	1860 1910 1930 1930
•	Vital capacity	Devreed	છ	2	2700 2720 2720 2720 2730 2730 2730 8680	3510 3500 3400 3400 3450 3620 3620	3730 3620 3800 3840 3510 3480 3480	2800 2870 2870 2880 2880 2880 8800	2825 2900 8900 8940
	eme	Venous pres	cm. H ₂ O†	22	2.88888.610 8.000889.610 4.000889.610	8.8 6.1 0.0 0.5 0.5 0.0	6.0 6.1 6.9 6.8 6.8	8.0 7.1 7.5	
	rial ure	Disatolic	mm. Hg	12	258888255	2 22 22 22 2	558888 %	228828828	8882
	Arterial pressure	Systolic	mm. Hg	22	100000000000000000000000000000000000000	585585 %	224255 224255 224255	01000100000000000000000000000000000000	116 108 114
	ətaı	Respiratory	per minute	12	914819 91819 91819 91819 91819 91819	222 4 22 2	4888998 9999	16 20 20 20 20 20 20 20 20 20 20 20 20 20	18 16 24
		etar traeH	per minute	=	8888888888	888888	2822228	28288888	288
	pe.	vrsedo stad	*	10	I.			20, 1934 20, 1934 20, 1934 20, 1934 20, 1934 20, 1934 6, 1935 6, 1935	. 26, 1934 . 26, 1934 . 26, 1934
					Dec. Jan. Mar. May July Nos.	Feb. Mar. May June June Oct. Nos.	Mar. Apr. May June July Aug. Nos.	May May June July Aug. Sept. Nov. Dec.	Feb. May Kay
		Postpartum	weeks	۵	es @ \$5	130		et @ 86	es @
	U	nutreq etnA	weeks	∞	284888	48888	222222	452222 2022 2022 2022 2022	33.8
	-	sera ecartud	square meters	7	1.44	1.53	1.58	1.46	1.52
	(bevie	edo) tdgisW	spunod	9	100 11 11 11 11 11 11 11 11 11 11 11 11	13 23 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	2889137	109	130 148 114
	("lamro	Weight ("n	spunod	20	102	119	116	106	118
		Heighth	inches	4	62.0	62.0	64.0	62.0	62.0
		Parity		60	84		-	-	-
		93A	years	2	23	8	21	22	53
	æ	edanna ees D		-	N38	N39	N40	N41	N42

* Estimated. \dagger Measured in cm. of normal saline, reported in cm. of H_2O .

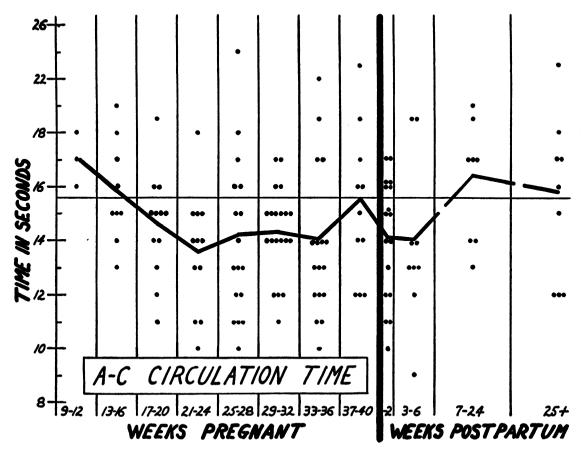


Fig. 1. The Arm to Carotid Circulation Time in Normal Pregnant Women.

The solid dots represent individual observations; the solid heavy line represents the average values. The horizontal black line represents the average normal non-pregnant A-C circulation time. The heavy perpendicular line represents delivery and separates the ante and postpartum periods.

15.6 seconds. These late postpartum observations constitute a normal control group for this study.

The shortening of the circulation time indicated by the curve of average values (Table II) did not occur invariably or at every observation, although present in the majority of repeatedly studied cases. In a few instances there was prolongation, while occasionally no change could be detected.

TABLE II

The average A-C, pulmonary and venous circulation times; the average pulse rate, hemoglobin, hematocrit and viscosity of the blood at varying intervals during pregnancy and the puerperium

				Weeks postpartum								
	9 to 12	13 to 16	17 to 20	21 to 24	25 to 28	29 to 32	33 to 36	37 to 40	1 to 2	3 to 6	7 to 24	25+
A-C circulation time, seconds Pulmonary circulation time,	17.0	15.9	14.6	13.6	14.2	14.3	14.0	15.5	14.1	14.0	16.4	15.8
seconds	11.6	10.7	10.4	10.4	9.7	10.0	10.0	10.6	10.7	10.1	10.6	9.8
seconds Pulse rate Hemoglobin, per cent Hematocrit, per cent		5.2 79.8 72.0 35.49	3.8 81.8 72.4 34.21	3.4 77.4 67.3 33.95	4.3 82.1 67.8 33.47	4.2 79.8 67.1 32.93	3.0 81.6 64.6 32.90	5.4 80.0 67.7 35.08	3.6 69.3 69.6 36.64	3.6 69.7 69.5 37.50	5.2 70.0 74.8 39.28	6.5 71.0 78.4 39.03
Viscosity, relative to water												

The ante and postpartum values fell within the normal non-pregnant range in all but 4 instances; 3 ante partum and 1 postpartum (Table I, Cases N7, N16, N17 and N25). In contrast to Klee's findings (38) the average circulation time for primiparae and multiparae in this group was essentially the same; for primiparae the average ante partum A-C time was 14.6 seconds; for multiparae 14.4 seconds.

No obvious correlation existed between the A-C circulation time and pulse rate or hemoglobin content of the blood (Figures 2 and 3).

Pulmonary circulation time

One hundred and twelve determinations of the pulmonary circulation time were made on 34 normal pregnant women; 78 before and 34 after de-

livery (Figure 4). The pulmonary circulation time varied between 9 and 13 seconds ante partum, an average of 10.7 seconds; the postpartum variation was from 8 to 14 seconds, an average of 10.3 seconds. The variation in the pulmonary circulation time by the cyanide method in normal non-pregnant individuals is from 7 to 14 seconds with an average of 10.6 seconds (28). All of the values in the normal pregnant group are within the normal non-pregnant range and the average of 10.7 seconds for all the ante partum observations corresponds closely with the average of the normal non-pregnant individuals of 10.6 seconds; the average for all the postpartum values is 10.3 seconds.

Here again there is a definite slight shortening of the average pulmonary circulation time during

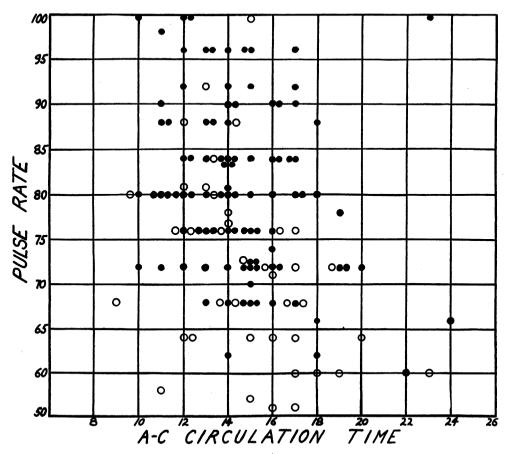


Fig. 2. The Relationship Between the Pulse Rate and the Arm to Carotid Circulation Time.

The solid dots represent individual ante partum observations, the circles represent individual postpartum observations.

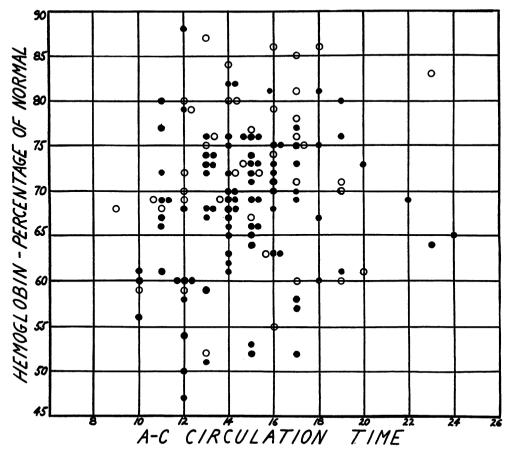


Fig. 3. The Relationship Between the Hemoglobin and the Arm to Carotid Circulation Time,

The solid dots represent individual ante partum observations, the circles represent individual postpartum observations.

pregnancy (Table II) although the change could not be detected in every case.

There was no obvious correlation between the pulmonary circulation time and the pulse rate and hemoglobin respectively (Figures 5 and 6).

Venous circulation time

The venous circulation time was calculated 108 times, 76 before, 32 after delivery, in 29 normal pregnant women. It varied between 1 and 9 seconds ante partum (average 4.1 seconds). The postpartum variation was between 1 and 10 seconds (average 4.5 seconds). The average venous time after the seventh week postpartum was 6.0 seconds. The normal non-pregnant variation in venous time by the cyanide method is from 1 to 9 seconds (average 4.5 seconds) (28). Since the

average pulmonary circulation time showed relatively slight change throughout pregnancy and the puerperium (Figure 4) and because of the method of calculating the venous time, it is evident that the changes in the average venous time will vary as the A–C circulation time varies (Figure 7).

No correlation between either the pulse rate or hemoglobin and the venous circulation time could be demonstrated.

Dose of sodium cyanide

The effective dose of sodium cyanide for measuring the A-C circulation time varied between 4.0 and 9.0 mgm. per patient (corresponding to 0.2 cc. to 0.45 cc. of a 2 per cent aqueous solution of

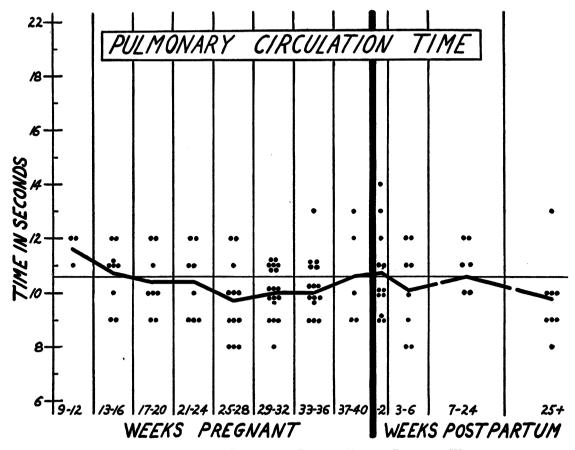


FIG. 4. THE PULMONARY CIRCULATION TIME IN NORMAL PREGNANT WOMEN.

The solid dots represent individual observations; the solid, heavy line represents the average values. The horizontal black line represents the average normal non-pregnant pulmonary circulation time. The heavy perpendicular line represents delivery and separates the ante and postpartum periods.

NaCN). The dose per kilogram of body weight ante partum varied between 0.067 and 0.142 mgm. (average 0.102 mgm.). The average postpartum dose per kilogram of body weight was 0.127 mgm.; the smallest effective dose postpartum was 0.092 mgm. per kilo; the largest was 0.170 mgm. per kilo. The effective dose of sodium cyanide for non-pregnant normal individuals ranged from 5.0 to 10.0 mgm., or from 0.07 to 0.19 mgm. per kilogram of body weight, with an average dose of 7.0 mgm. or 0.11 mgm. per kilogram body weight (28). In 2 patients in this series the dose per kilogram body weight was less postpartum than ante partum; in 14 it was more and in 3 it remained the same. The effective dose of sodium cyanide required in determining the pulmonary circulation time was less in all instances than that

required for determining the A-C time, averaging about 75 per cent of the effective A-C dose. This is essentially what is found in non-pregnant normal subjects (28).

Venous pressure

Determinations of venous pressure were made on 10 patients, but in only 5 were they made ante partum (Cases N36, N37, N38, N39 and N40, Table I).

It varied between 4.0 and 12.0 cm. of water ante partum and between 6.4 and 12.0 cm. post-partum. The average ante partum was 7.9 cm. of water, and postpartum 9.1 cm. All of the values were within normal limits (12.0 cm. or less). In the one patient in whom it was consistently above 10 cm. it should be noted that rather marked

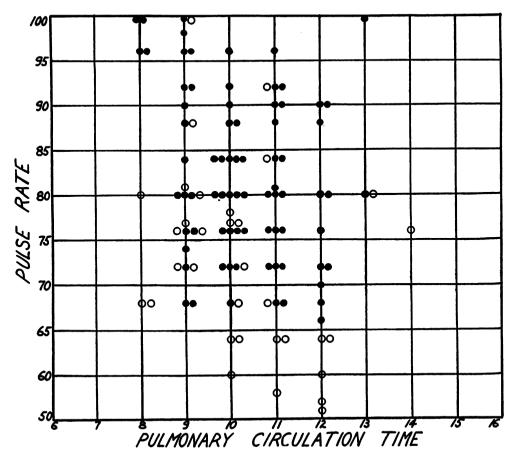


Fig. 5. The Relationship Between the Pulse Rate and the Pulmonary Circulation Time.

The solid dots represent individual ante partum observations, the circles represent individual postpartum observations.

obesity was present, since it is high in obesity (43, 44). In Cases N36 and N38 the postpartum values were higher than the ante partum values.²

Vital capacity

One hundred and fifty-two determinations of the vital capacity were made on 37 normal pregnant women; 108 before and 44 after delivery. The values in most instances were within the limits set as normal for non-pregnant women, i.e., 2000 cc. per square meter body surface area (45, 46). Thirty-four of the 37 had vital capacities of at least 90 per cent of normal and 36 at least 85 per

cent of normal, only one (Case N31) falling below 85 per cent. In this patient it was 74 per cent of normal at its lowest level in the 24th week and 88 per cent at its highest in the 36th week. During postpartum observations on this patient, made at 2, 6, 26 and 65 weeks after delivery, the vital capacity never exceeded its highest pregnancy level of 88 per cent of normal. It is sufficient to note here 3 that the vital capacity either remained constant or rose during the course of pregnancy in the majority of the patients in this group; in a few there was a slight decrease as pregnancy progressed.

² Further observations on the venous pressure in pregnancy will appear in a subsequent communication.

³ Further discussion of the observations on the vital capacity in pregnancy will appear in a subsequent paper.

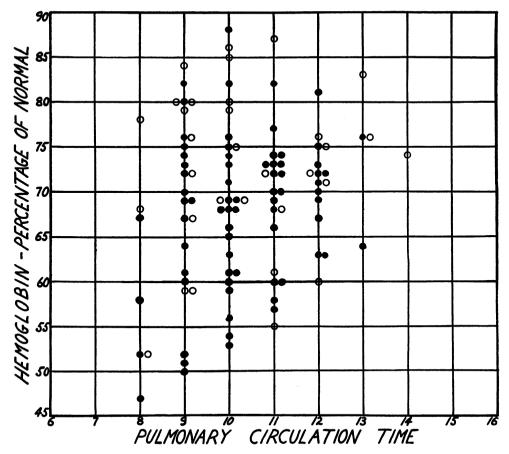


Fig. 6. The Relationship Between the Hemoglobin and the Pulmonary Circulation Time.

The solid dots represent individual ante partum observations, the circles represent individual postpartum observations.

Subcostal angle

In all but 2 patients (Cases N25 and N30), in whom the subcostal angle was measured with a protractor, there was an increase as pregnancy progressed with a decrease after delivery (Table I). The maximum increase observed during pregnancy was 44°.

Blood pressure

The basal arterial blood pressure (Table I) was within the limits set as normal for pregnant women (47) except for 2 cases (Case N20 at 2 weeks postpartum and Case N16 at 38 weeks pregnant).

Pulse rate

The pulse rate ante partum (Table I) under basal conditions varied from 60 to 100 beats per

minute (average 80.6 beats). Postpartum, it varied between 52 and 92 (average 70 beats).

Respiratory rate

The basal respiratory rate (Table I), ante partum, varied between 10 and 28 per minute (average 18.0 per minute). Postpartum, the variation was between 10 and 28 (average 17.5).

Blood

Hemoglobin determinations and hematocrit readings were carried out at frequent intervals, before and after delivery (Table I). In every subject observed two or more times during gestation there was a fall in the hemoglobin, as pregnancy progressed. This change was usually accompanied by a fall in the hematocrit reading.

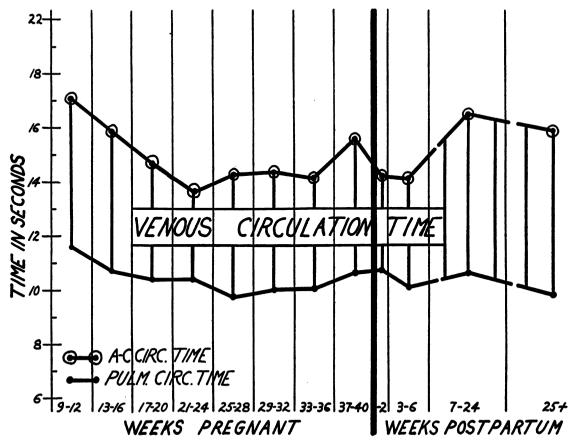


Fig. 7. THE VENOUS CIRCULATION TIME IN NORMAL PREGNANT WOMEN.

The upper curve represents the average arm to carotid circulation time; the lower curve represents the average pulmonary circulation time; the shaded area between represents the average venous circulation time. The heavy perpendicular line represents delivery and separates the ante and postpartum periods.

During the latter weeks there was a tendency for both measurements to rise (Figure 8). This observation is in accord with that of Kühnel (5). Of 15 patients, 10 showed an increase in the postpartum hemoglobin value; 5 showed a decrease. Of 18 patients, the hemoglobin rose in 14 by the 7th week postpartum; 4 showed a decrease.

DISCUSSION

Method

The cyanide method proved to be practical for studying the velocity of blood flow in pregnant women. Sodium cyanide, in the doses reported here, can be administered to pregnant women without harm to either mother or child. Early in the study, the fetal heart was examined with the fetoscope during and after the administration of

cyanide and no apparent change in rate or rhythm was noted. No ill effects to the baby were demonstrable at birth or afterwards. There was one fetal death but it was clearly unrelated to the administration of cyanide. (Table I, Case 30. The last dose of cyanide was given one month before delivery. The baby died 18 hours after delivery of respiratory failure. The autopsy showed intracranial hemorrhage and pulmonary atelectasis.)

An occasional patient, usually one to whom a relatively large dose of cyanide was given, showed, after the respiratory response, flickering of the eyelids. Rarely, coincident with this, there was a period during which the patient could not speak for a few moments but could comprehend and execute physical commands. Such reactions were of short duration and did not prevent further tests. Antidotes against cyanide, namely, amyl

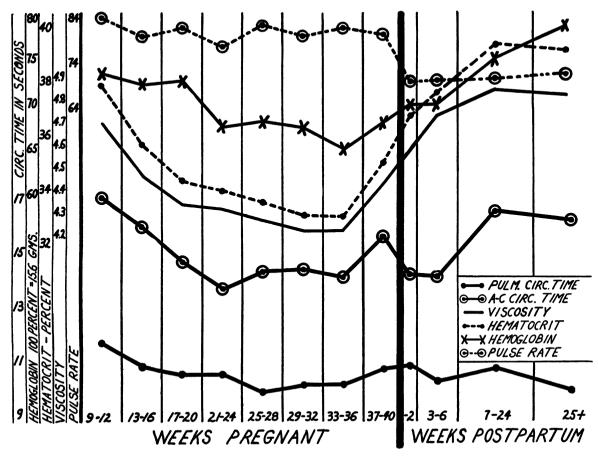


Fig. 8. The Relationship Between the Average Arm to Carotid and Pulmonary Circulation Times and the Average Viscosity of the Blood, the Average Hematocrit, the Average Hemoglobin and the Average Pulse Rate in 37 Normal Pregnant Women.

The heavy perpendicular line represents delivery and separates the ante and postpartum periods. For numerical values see Table II.

nitrite, sodium nitrite, sodium thiosulphate and methylene blue (48), were always at hand but it was never necessary to use them.

The decholin method of Winternitz, Deutsch and Brüll (27), as modified by Gargill (34), was used in a few patients. Because, in some there was vomiting and in others the response was not definite or consistent, perhaps due to the raising, by 60 per cent, of the threshold for bitter taste in pregnancy described by Hansen and Langer (49), this method was not felt to be as satisfactory as the cyanide method.

For pregnant women the effective dose of sodium cyanide was less per kilogram of body weight than that used in normal non-pregnant subjects (28). The increase in the weight of the mother caused by pregnancy might cause a relative decrease in dosage; but this explanation is probably incorrect because the dose required is usually greater after delivery than before. The smaller dose might reflect an increased sensitivity of the carotid sinus in pregnancy.

Results

The values for the A-C circulation time in normal pregnancy fall almost without exception within the normal non-pregnant limits of 9 to 21 seconds (28). From the 17th, through the 36th week of gestation, there seems to be a definite decrease in the average A-C circulation time. The diminished arteriovenous oxygen difference in pregnancy, and the lag in oxygen consumption

as compared with the cardiac output, demonstrated by Burwell and Strayhorn (8), are additional evidence that the circulation is speeded during pregnancy.

In the last 4 weeks (37th to 40th) there is an apparent increase in the A-C circulation time as compared with the preceding weeks. The number of observations in the 37th to 40th week period presented here is not sufficient to establish this The fact that the pulmonary circulation shows a parallel, though slight, rise during the same period, and the observation that a group of 33 pregnant women with compensated heart disease (50) shows a similar change in the last 4 weeks of pregnancy, are, however, further corroborative evidence. Burwell and Stravhorn (8) have shown, furthermore, that the cardiac output increases during pregnancy but that during the last weeks it is less than in the preceding months. Gammeltoft (10, 11) found a similar change. This change is corroborative evidence that the A-C circulation time is increased in the 37th to 40th week period, if the assumption is correct that. other factors remaining equal, the speed of the circulation varies directly with the cardiac output (51).

Following delivery there is again a decrease of the A-C circulation time, which seems to persist for several weeks after delivery (Figure 1). Further evidence that the circulation is speeded immediately postpartum and for some time afterwards, is given by Gammeltoft (10, 11) and Haupt (13), who showed that the cardiac output, although less postpartum than ante partum, did not return to the normal non-pregnant level for several weeks (as long as 4 months in 1 patient of Gammeltoft) after parturition. From the observations presented here, it appears that the A-C circulation time returns to normal certainly by the sixth month postpartum and probably earlier.

The explanation of the decrease in the circulation time during pregnancy and early in the puerperium (to the 7th week) is not clear. The various factors known to affect the velocity of blood flow in non-pregnant individuals should be considered.

Anemia in non-pregnant individuals has been reported to cause a decrease in the pulmonary, arm to arm, and arm to tongue circulation times

(22, 30, 34) and histamine reaction time (35). In most of the patients in this series a fall in hemoglobin and hematocrit values typical of pregnancy was observed (5). There seems to be no apparent correlation, however, between the per cent of hemoglobin and the A-C circulation time when these two factors are plotted against each other (Figure 3). Neither is there any apparent correlation between the individual hematocrit readings and A-C circulation time. Yet, when the average values for hemoglobin and hematocrit readings are plotted, the resultant curves are similar to the course of the average A-C circulation time during pregnancy (Figure 8). Immediately after delivery and up to the 7th week postpartum this apparent similarity is absent.

A decrease in the pulmonary, arm to arm, and arm to tongue circulation times (22, 25, 34, 36) and histamine reaction time (35) has been reported in non-pregnant cases of hyperthyroidism. It has also been reported that the basal metabolic rate is increased in pregnancy (15, 52, 53, 54). This might account for the decreased circulation time demonstrated in this series. The occasional measurements of basal metabolic rate, while not sufficient in number to be conclusive, were within normal limits, however, in spite of the decreased circulation time. The postpartum decrease in the A-C circulation time observed is probably not due to increase in the basal metabolic rate. since this and oxygen consumption are reported to return to normal within a few days postpartum (15, 16, 53), while the cardiac output and velocity of blood flow do not for several weeks at least (10, 11, 13).

The pulse rate is elevated during pregnancy and drops on the average about 10 beats per minute (Table II) after delivery. There seems to be no correlation, however, between the A-C circulation time and pulse rate as regards either individual observations (Figure 2) or average values (Figure 8).

There is an increased cardiac output during pregnancy (8, 9, 10, 11, 12, 13) which might contribute to the decrease in the A-C circulation time or might be dependent upon it. Further study is necessary to elucidate this point.

It was shown by Esiaschwili (55) that the viscosity of the blood is decreased in pregnancy

up to the sixth month, is slightly increased in the seventh month, is unknown in the latter months, and presents a consistent postpartum rise. It is known that the speed of flow of a liquid varies inversely with its viscosity (Poiseuille's law). Lowered blood viscosity would result accordingly in increased velocity of blood flow.

Nygaard, Wilder and Berkson (56) showed that the relation of the viscosity of whole blood to the hematocrit readings may be expressed by the linear equation $V_{wb} = 0.978 + 0.098H$, where $V_{wb} =$ the viscosity of whole blood and H = hematocrit reading in per cent (this relationship holds only when the hematocrit reading ranges between 15 to 50 per cent).

The average viscosity was calculated, from this equation, for the various periods of pregnancy and the puerperium. There is a steady decrease to the 37 to 40th week period (Table II) when an increase occurs and continues on through the postpartum period.

When the average viscosity values are plotted with the average values of the A-C circulation time there is a similarity in the curves (Figure 8) which suggests that there is a definite relationship between the blood viscosity and the velocity of blood flow. Immediately after delivery, however, and up to the 7th week postpartum this apparent similarity is lacking. Although the complex bodily readjustments which occur during this time (from delivery to the 7th postpartum week), make a simple explanation of the speeding of the A-C circulation difficult, it seems possible that lactation, with its concomitant physiological changes, is an important factor.

From the preceding discussion it is evident that there are several factors which might produce the acceleration of the circulation in pregnancy. The decrease in the viscosity of the circulating blood would seem to be one of the most important since the changes in the velocity of blood flow which occur simultaneously with, or are dependent upon it, coincide with Poiseuille's law.

The results presented here seem at first glance to disagree with the work of Klee (38) who found a slowing in the rate of flow of the circulation in pregnancy. However, the fluorescein method of Koch (37) which he used, necessitates that the test substance traverse the peripheral capillary circulation, which in the measurements

of the A-C circulation by the cyanide method is not the case. Since the velocity of the circulation is reported as slowed in the capillaries in normal pregnancy (38, 57) there need be no contradiction in the results. Klee also reported a difference between primiparae and multiparae but since only single observations during the last three months of pregnancy were made his results are difficult to evaluate. Such a difference was not demonstrated in this series.

In a study by Spitzer of the circulation time in pregnancy, the use of the decholin method indicated no difference in the arm to tongue pathway between normal non-pregnant and pregnant women. In that study single observations were made on 27 normal patients, all in the last three months of pregnancy. This fact, plus the possible effect of the altered sensibility of the tongue in pregnancy (49) make the results from that study difficult to compare with those obtained by the cyanide method.

The values for pulmonary circulation time fall, without exception, within the normal non-pregnant limits of 7 to 14 seconds. Its curve follows quite closely that of the average A-C time (Figures 4, 7, 8), although the changes are slight. Between it and the pulse rate and hemoglobin (individual observations) no evident correlation exists (Figures 5 and 6). X-ray photographs of the lungs during normal pregnancy show an increase in the pulmonary markings (58) which might be interpreted as being due to increase in the size of the capillary bed. If this is true, it would account for the relatively slight increase in the velocity of the pulmonary blood flow as contrasted with that observed in the A-C pathway. It would also account for the increase in total amount of blood flowing through the lungs, coincident with the increase in cardiac output, without an increase in the velocity of pulmonary flow.

Since the pulmonary circulation time shows but slight change throughout pregnancy and the puerperium, the venous circulation time follows the changes observed in the A-C time and the factors influencing it are the same as those discussed in relation to the A-C circulation time. The speeding of the circulation apparently occurs in this component of the circulatory pathway and not in the pulmonary circuit.

The vital capacity, blood pressure, pulse rate, respiratory rate, venous pressure, and subcostal angle showed no apparent relationship to the changes observed in the circulation time and need not be discussed here.

Neither dyspnea or edema bore any constant relationship to the changes in the velocity of blood flow (Table I).

CONCLUSIONS

- 1. The arm to carotid, pulmonary and venous circulation times can be studied safely in pregnancy by the cyanide method.
- 2. The values for the arm to carotid, pulmonary and venous circulation times fall within the normal non-pregnant range.
- 3. There is a decrease in the average arm to carotid circulation time from the 17th to the 36th week of pregnancy, inclusive.
- 4. There is probably an increase in the average arm to carotid circulation time, relative to the 17th to 36th week period, in the period from the 37th to the 40th week.
- 5. There is a decrease in the average arm to carotid circulation time following delivery which persists until the 7th postpartum week; after which the arm to carotid circulation time returns to the normal non-pregnant level.
- 6. There is little change in the pulmonary circulation time during pregnancy, although the trend is the same as that of the arm to carotid circulation time.
- 7. The speeding of the circulation in pregnancy seems to occur in the peripheral venous component of the vascular system.
- 8. Various factors that might decrease the circulation time in pregnancy are discussed, and, of them, the decreased viscosity of the blood is considered the most probable important contributing factor.

The authors are indebted to Doctors Geo. P. Robb and Duncan E. Reid for assistance in part of this work and to Dr. E. B. Wilson, statistician, for reviewing the charts and data.

BIBLIOGRAPHY

- Gassner, U. K., Veränderungen des Körpergewichtes bei Schwangeren, Gebärenden und Wöcherinnen. A. Th. Engelhardt, Leipzig, 1861.
- Zangemeister, W., Der Hydrops gravidarum sein Verlauf und seine Beziehungen zur Nephropathie

- und Eklampsie. Ztschr. f. Geburtsh. u. Gynäk., 1919. 81, 491.
- Davis, C. H., Weight in pregnancy. Its value as a routine test. Am. I. Obst. and Gynec., 1923, 6, 575.
- Kerwin, W., Weight estimates during pregnancy and the puerperium. Am. J. Obst. and Gynec., 1926, 11, 473.
- Kühnel, P., Untersuchungen über die physiologische Schwangerschaftsanämie. Ztschr. f. Geburtsh. u. Gynäk., 1927. 90, 511.
- Galloway, C. E., Anemia of pregnancy. J. A. M. A., 1929, 93, 1695.
- Strauss, M. B., and Castle, W. B., Studies of anemia in pregnancy. II. The relationship of dietary deficiency and gastric secretion to blood formation during pregnancy. Am. J. M. Sc., 1932, 184, 663.
- Burwell, C. S., and Strayhorn, W. D., Observations on the circulation during and after pregnancy. J. Clin. Invest. (Proc.), 1933, 12, 977.
- Stander, H. J., and Cadden, J. F., The cardiac output in pregnant women. Am. J. Obst. and Gynec., 1932. 24, 13.
- Gammeltoft, S. A., Recherches sur le débit cardiaque par minute pendant la grossesse. Compt. rend. Soc. de biol., 1926, 94, 1099.
- Gammeltoft, S. A., The heart in pregnancy. Surg., Gvnec., and Obst., 1928, 46, 382.
- Schmidt, R. H., Über die Herzarbeit in der Frühschwangerschaft in der Ruhe und nach Arbeitsversuchen. Monatschr. f. Geburtsh. u. Gynäk., 1932, 90, 83.
- Haupt, W., Vergleichende Kreislaufuntersuchungen bei gesunden Schwangeren und Wöchnerinnen. Ztschr. f. Geburtsh. u. Gynäk., 1927, 91, 577.
- Magnus-Levy, Stoffwechsel und Nahrungsbedarf in der Schwangerschaft. Ztschr. f. Geburtsh. u. Gynäk., 1904, 52, 116.
- Root, H. F., and Root, H. K., The basal metabolism during pregnancy and the puerperium. Arch. Int. Med., 1923, 32, 411.
- Rowe, A. W., Alcott, M. D., and Mortimer, E., The metabolism in pregnancy. II. Changes in the basal metabolic rate. Am. J. Physiol., 1925, 71, 667.
- Sandiford, I., and Wheeler, T., The basal metabolism before, during, and after pregnancy. J. Biol. Chem., 1924, 62, 329.
- Miller, J. R., Keith, N. M., and Rowntree, L. E., Plasma and blood volume in pregnancy. J. A. M. A., 1915, 65, 779.
- Neubauer, W., Blutmengenbestimmung vor, während und nach der Geburt. Deutsche med. Wchnschr., 1923, 49, 520.
- Dieckmann, W. J., and Wegner, C. R., The blood in normal pregnancy. I. Blood and plasma volumes. Arch. Int. Med., 1934, 53, 71.
- Corwin, J., Herrick, W. W., Valentine, M., and Wilson, J. M., Pregnancy and heart disease. A statistical report and summary of 196 cases. Am. J. Obst. and Gynec., 1927, 13, 617.

- Blumgart, H. L., The velocity of blood flow in health and disease. Medicine. 1931. 10. 1.
- Blumgart, H. L., and Weiss, S., Studies on the velocity of blood flow. II. The velocity of blood flow in normal resting individuals and a critique of the method used. J. Clin. Invest., 1927, 4, 15.
- Blumgart, H. L., and Weiss, S., Studies on the velocity of blood flow. VII. The pulmonary circulation time in normal resting individuals. J. Clin. Invest., 1927, 4, 399.
- Blumgart, H. L., Gargill, S. L., and Gilligan, D. R., Studies on the velocity of blood flow. XIII. The circulatory response to thyrotoxicosis. J. Clin. Invest., 1930. 9, 69.
- 26. Blumgart, H. L., and Weiss, S., Clinical studies on the velocity of blood flow. IX. The pulmonary circulation time, the velocity of venous blood to the heart, and related aspects of the circulation in patients with cardiovascular disease. J. Clin. Invest., 1928, 5, 343.
- Winternitz, M., Deutsch, J., and Brüll, Z., Eine klinisch brauchbare Bestimmungsmethode der Blutumlaufszeit mittels Decholininjektion. Med. Klin., 1931, 27, 986.
- Robb, G. P., and Weiss, S., A method for the measurement of the velocity of the pulmonary and peripheral venous blood flow in man. Am. Heart J., 1933, 8, 650.
- Robb, G. P., and Weiss, S., The velocity of pulmonary and peripheral venous blood flow and related aspects of the circulation in cardiovascular disease. Their relation to clinical types of circulatory failure. Am. Heart J., 1934, 9, 742.
- 30. Blumgart, H. L., Gargill, S. L., and Gilligan, D. R., Studies on the velocity of blood flow. XV. The velocity of blood flow and other aspects of the circulation in patients with "primary" and secondary anemia and in two patients with polycythemia vera. J. Clin. Invest., 1931, 9, 679.
- 31. Blumgart, H. L., and Weiss, S., Studies on the velocity of blood flow. IV. The velocity of blood flow and its relation to other aspects of the circulation in patients with arteriosclerosis and in patients with arterial hypertension. J. Clin. Invest., 1927, 4, 173.
- Weiss, S., and Blumgart, H. L., Studies on the velocity of blood flow. VIII. The velocity of blood flow and its relation to other aspects of the circulation in patients with pulmonary emphysema. J. Clin. Invest., 1927, 4, 555.
- 33. Blumgart, H. L., and Weiss, S., Studies on the velocity of blood flow. III. The velocity of blood flow and its relation to other aspects of the circulation in patients with rheumatic and syphilitic heart disease. J. Clin. Invest., 1927, 4, 149.
- Gargill, S. L., The use of sodium dehydrocholate as a clinical test of the velocity of blood flow. New England J. Med., 1933, 209, 1089.

- Weiss, S., Robb, G. P., and Blumgart, H. L., The velocity of blood flow in health and disease as measured by the effect of histamine on the minute vessels. Am. Heart J., 1929, 4, 664.
- Blumgart, H. L., Gargill, S. L., and Gilligan, D. R., Studies on the velocity of blood flow. XIV. The circulation in myxedema with a comparison of the velocity of blood flow in myxedema and thyrotoxicosis. J. Clin. Invest., 1930. 9, 91.
- Koch, E., Die Stromgeschwindigkeit des Blutes. Deutsches Arch. f. klin. Med., 1922, 140, 39.
- Klee, F., Die Strömungsgeschwindigkeit des Blutes in der Schwangerschaft. Ztschr. f. Geburtsh. u. Gynäk., 1924, 88, 308.
- Spitzer, W., Die Blutströmungsgeschwindigkeit in normaler und gestörter Schwangerschaft. Beitrag zur Funktionsprüfung des Herzens in der Schwangerschaft und vor der Geburt. Arch. f. Gynäk., 1933, 154, 449.
- Moritz, F., and von Tabora, D., Über eine Methode, beim Menschen den Druck in oberflächlichen Venen exakt zu bestimmen. Deutsches Arch. f. klin. Med., 1910, 98, 475.
- Dubois, D., and DuBois, E. F., Clinical calorimetry.
 X. A formula to estimate the approximate surface area if height and weight be known. Arch. Int. Med., 1916, 17, 863.
- 42. Wintrobe, M. M., Macroscopic examination of the blood. Discussion of its value and a description of the use of a single instrument for the determination of sedimentation rate, volume of packed red cells, leukocytes and platelets and of icterus index. Am. J. M. Sc., 1933, 185, 58.
- Rotky, H., and Klein, O., Studien über Venendruck und Kreislaufsuffizienzprüfung nach E. Weiss nebst einem Beitrag über die Ursachen der Steigerung des Venendrucks bei Hypertonikern. Med. Klin., 1923, 19, 1542.
- Kroetz, C., Die Koeffizienten des klinisch messbaren Venendruckes. Deutsches Arch. f. klin. Med., 1922, 139, 325.
- Christie, C. D., and Beams, A. J., The estimation of normal vital capacity with special reference to the effect of posture. Arch. Int. Med., 1922, 30, 34.
- West, H. F., Clinical studies on the respiration. VI. A comparison of various standards for the normal vital capacity of the lungs. Arch. Int. Med., 1920, 25, 306.
- Irving, F. C., The systolic blood pressure in pregnancy. Observations on 5000 consecutive cases in the pregnancy clinic of the Boston Lying-in Hospital. J. A. M. A., 1916, 66, 935.
- Hanzlik, P. J., and Richardson, A. P., Cyanide antidotes. J. A. M. A., 1934, 102, 1740.
- Hansen, R., and Langer, W., Über Geschmacksveränderungen in der Schwangerschaft. Klin. Wchnschr., 1935, 14, 1173.
- 50. Cohen, M. E., and Thomson, K. J., Unpublished data.

- Grollman, A., The Cardiac Output of Man in Health and Disease. Chas. C. Thomas, Springfield, 1932.
- 52. Cornell, E. L., Metabolism readings in 84 pregnant cases. Surg., Gynec., and Obst., 1923, 36, 53.
- Plass, E. D., and Yoakam, W. A., Basal metabolism studies in normal pregnant women with normal and pathologic thyroid glands. Am. J. Obst. and Gynec., 1929, 18, 556.
- Stander, H. J., and Peckham, C. H., Basal metabolism in the toxemias of pregnancy. Bull. Johns Hopkins Hosp., 1926, 38, 227.
- Esiaschwili, I., Blutgerinnung und Viskosität in der Schwangerschafts und Nachgeburtsperiode. Zentralbl. f. Gynäk., 1933, 57, 2717.
- Nygaard, K. K., Wilder, M., and Berkson, J., The relation between the viscosity of the blood and the relative volume of erythrocytes (hematocrit value). Am. J. Physiol., 1935, 114, 128.
- Hinselmann, H., Nettekoven, H., and Silberbach, W., Die Capillarströmung bei der Eklampsie. Arch. f. Gvnäk., 1923, 116, 443.
- 58. Robbins, S. A., Personal communication.