Review

Abstract

While immune responses in neurodegeneration were regarded as little more than a curiosity a decade ago, they are now increasingly moving toward center stage. Factors driving this movement include the recognition that most of the relevant immune molecules are produced within the brain, that microglia are proficient immune cells shaping neuronal circuitry and fate, and that systemic immune responses affect brain function. We will review this complex field from the perspective of neurons, extra-neuronal brain cells, and the systemic environment and highlight the possibility that cell intrinsic innate immune molecules in neurons may function in neurodegenerative processes.

Authors

Eva Czirr, Tony Wyss-Coray

×

Abstract

Immunological and neural synapses share properties such as the synaptic cleft, adhesion molecules, stability, and polarity. However, the mismatch in scale has limited the utility of these comparisons. The discovery of phosphatase micro-exclusion from signaling elements in immunological synapses and innate phagocytic synapses define a common functional unit at a common sub-micron scale across synapse types. Bundling of information from multiple antigen receptor microclusters by an immunological synapse has parallels to bundling of multiple synaptic inputs into a single axonal output by neurons, allowing integration and coincidence detection. Bonafide neuroimmune synapses control the inflammatory reflex. A better understanding of the shared mechanisms between immunological and neural synapses could aid in the development of new therapeutic modalities for immunological, neurological, and neuroimmunological disorders alike.

Authors

Michael L. Dustin

×

Abstract

Neurobiologists and immunologists study concepts often signified with identical terminology. Scientists in both fields study a structure known as the synapse, and each group analyzes a subject called memory. Is this a quirk of human language, or are there real similarities between these two physiological systems? Not only are the linguistic concepts expressed in the words “synapse” and “memory” shared between the fields, but the actual molecules of physiologic importance in one system play parallel roles in the other: complement, the major histocompatibility molecules, and even “neuro”-transmitters all have major impacts on health and on disease in both the brain and the immune system. Not only are the same molecules found in diverse roles in each system, but we have learned that there is real “hard-wired” crosstalk between nerves and lymphoid organs. This issue of the JCI highlights some of the lessons learned from experts who are working at this scintillating intersection between immunology and neuroscience.

Authors

Lawrence Steinman

×

Abstract

Chromosomal instability (CIN) is a hallmark of human neoplasms. Despite its widespread prevalence, knowledge of the mechanisms and contributions of CIN in cancer has been elusive. It is now evident that the role of CIN in tumor initiation and growth is more complex than previously thought. Furthermore, distinguishing CIN, which consists of elevated rates of chromosome missegregation, from aneuploidy, which is a state of abnormal chromosome number, is crucial to understanding their respective contributions in cancer. Collectively, experimental evidence suggests that CIN enables tumor adaptation by allowing tumors to constantly sample the aneuploid fitness landscape. This complex relationship, together with the potential to pharmacologically influence chromosome missegregation frequencies in cancer cells, offers previously unrecognized means to limit tumor growth and its response to therapy.

Authors

Samuel F. Bakhoum, Duane A. Compton

×

Abstract

Diversity and plasticity are hallmarks of cells of the monocyte-macrophage lineage. In response to IFNs, Toll-like receptor engagement, or IL-4/IL-13 signaling, macrophages undergo M1 (classical) or M2 (alternative) activation, which represent extremes of a continuum in a universe of activation states. Progress has now been made in defining the signaling pathways, transcriptional networks, and epigenetic mechanisms underlying M1-M2 or M2-like polarized activation. Functional skewing of mononuclear phagocytes occurs in vivo under physiological conditions (e.g., ontogenesis and pregnancy) and in pathology (allergic and chronic inflammation, tissue repair, infection, and cancer). However, in selected preclinical and clinical conditions, coexistence of cells in different activation states and unique or mixed phenotypes have been observed, a reflection of dynamic changes and complex tissue-derived signals. The identification of mechanisms and molecules associated with macrophage plasticity and polarized activation provides a basis for macrophage-centered diagnostic and therapeutic strategies.

Authors

Antonio Sica, Alberto Mantovani

×

Abstract

Retinoblastoma is a pediatric retinal tumor initiated by biallelic inactivation of the retinoblastoma gene (RB1). RB1 was the first identified tumor suppressor gene and has defined roles in the regulation of cell cycle progression, DNA replication, and terminal differentiation. However, despite the abundance of work demonstrating the molecular function and identifying binding partners of pRb, the challenge facing molecular biologists and clinical oncologists is how to integrate this vast body of molecular knowledge into the development of targeted therapies for treatment of retinoblastoma. We propose that a more thorough genetic understanding of retinoblastoma would inform targeted treatment decisions and could improve outcomes and quality of life in children affected by this disease.

Authors

Uma M. Sachdeva, Joan M. O’Brien

×

Abstract

The adult hair follicle houses stem cells that govern the cyclical growth and differentiation of multiple cell types that collectively produce a pigmented hair. Recent studies have revealed that hair follicle stem cells are heterogeneous and dynamic throughout the hair cycle. Moreover, interactions between heterologous stem cells, including both epithelial and melanocyte stem cells, within the hair follicle are just now being explored. This review will describe how recent findings have expanded our understanding of the development, organization, and regeneration of hair follicle stem cells. At a basic level, this review is intended to help construct a reference point to integrate the surge of studies on the molecular mechanisms that regulate these cells.

Authors

Peggy Myung, Mayumi Ito

×

Abstract

Cutaneous squamous cell carcinoma (cSCC) is the second most common human cancer with over 250,000 new cases annually in the US and is second in incidence only to basal cell carcinoma. cSCC typically manifests as a spectrum of progressively advanced malignancies, ranging from a precursor actinic keratosis (AK) to squamous cell carcinoma (SCC) in situ (SCCIS), invasive cSCC, and finally metastatic SCC. In this Review we discuss clinical and molecular parameters used to define this range of cutaneous neoplasia and integrate these with the multiple experimental approaches used to study this disease. Insights gained from modeling cSCCs have suggested innovative therapeutic targets for treating these lesions.

Authors

Vladimir Ratushny, Michael D. Gober, Ryan Hick, Todd W. Ridky, John T. Seykora

×

Abstract

Classic atopic dermatitis is complicated by asthma, allergic rhinitis, and food allergies, cumulatively referred to as atopic diseases. Recent discoveries of mutations in the filaggrin gene as predisposing factors for atopic diseases have refocused investigators’ attention on epidermal barrier dysfunction as a causative mechanism. The skin’s barrier function has three elements: the stratum corneum (air-liquid barrier), tight junctions (liquid-liquid barrier), and the Langerhans cell network (immunological barrier). Clarification of the molecular events underpinning epidermal barrier function and dysfunction should lead to a better understanding of the pathophysiological mechanisms of atopic diseases.

Authors

Akiharu Kubo, Keisuke Nagao, Masayuki Amagai

×

Abstract

Basal cell carcinoma (BCC) of the skin, the most common malignancy in individuals of mixed European descent, is increasing in incidence due to an aging population and sun exposure habits. The realization that aberrant activation of Hedgehog signaling is a pathognomonic feature of BCC development has opened the way for exciting progress toward understanding BCC biology and translation of this knowledge to the clinic. Genetic mouse models closely mimicking human BCCs have provided answers about the tumor cell of origin, and inhibition of Hedgehog signaling is emerging as a potentially useful targeted therapy for patients with advanced or multiple BCCs that have hitherto lacked effective treatment.

Authors

Maria Kasper, Viljar Jaks, Daniel Hohl, Rune Toftgård

×

No posts were found with this tag.