Population-based assessment of a biomarker-based screening pathway to aid diagnosis of monogenic diabetes in young-onset patients

BM Shields, M Shepherd, M Hudson… - Diabetes …, 2017 - Am Diabetes Assoc
Diabetes Care, 2017Am Diabetes Assoc
OBJECTIVE Monogenic diabetes, a young-onset form of diabetes, is often misdiagnosed as
type 1 diabetes, resulting in unnecessary treatment with insulin. A screening approach for
monogenic diabetes is needed to accurately select suitable patients for expensive
diagnostic genetic testing. We used C-peptide and islet autoantibodies, highly sensitive and
specific biomarkers for discriminating type 1 from non–type 1 diabetes, in a biomarker
screening pathway for monogenic diabetes. RESEARCH DESIGN AND METHODS We …
OBJECTIVE
Monogenic diabetes, a young-onset form of diabetes, is often misdiagnosed as type 1 diabetes, resulting in unnecessary treatment with insulin. A screening approach for monogenic diabetes is needed to accurately select suitable patients for expensive diagnostic genetic testing. We used C-peptide and islet autoantibodies, highly sensitive and specific biomarkers for discriminating type 1 from non–type 1 diabetes, in a biomarker screening pathway for monogenic diabetes.
RESEARCH DESIGN AND METHODS
We studied patients diagnosed at age 30 years or younger, currently younger than 50 years, in two U.K. regions with existing high detection of monogenic diabetes. The biomarker screening pathway comprised three stages: 1) assessment of endogenous insulin secretion using urinary C-peptide/creatinine ratio (UCPCR); 2) if UCPCR was ≥0.2 nmol/mmol, measurement of GAD and IA2 islet autoantibodies; and 3) if negative for both autoantibodies, molecular genetic diagnostic testing for 35 monogenic diabetes subtypes.
RESULTS
A total of 1,407 patients participated (1,365 with no known genetic cause, 34 with monogenic diabetes, and 8 with cystic fibrosis–related diabetes). A total of 386 out of 1,365 (28%) patients had a UCPCR ≥0.2 nmol/mmol, and 216 out of 386 (56%) were negative for GAD and IA2 and underwent molecular genetic testing. Seventeen new cases of monogenic diabetes were diagnosed (8 common Maturity Onset Diabetes of the Young [Sanger sequencing] and 9 rarer causes [next-generation sequencing]) in addition to the 34 known cases (estimated prevalence of 3.6% [51/1,407] [95% CI 2.7–4.7%]). The positive predictive value was 20%, suggesting a 1-in-5 detection rate for the pathway. The negative predictive value was 99.9%.
CONCLUSIONS
The biomarker screening pathway for monogenic diabetes is an effective, cheap, and easily implemented approach to systematically screening all young-onset patients. The minimum prevalence of monogenic diabetes is 3.6% of patients diagnosed at age 30 years or younger.
Am Diabetes Assoc