Combination therapy with sirolimus and interleukin-2 prevents spontaneous and recurrent autoimmune diabetes in NOD mice

A Rabinovitch, WL Suarez-Pinzon, AMJ Shapiro… - Diabetes, 2002 - Am Diabetes Assoc
A Rabinovitch, WL Suarez-Pinzon, AMJ Shapiro, RV Rajotte, R Power
Diabetes, 2002Am Diabetes Assoc
Sirolimus is an immunosuppressant that inhibits interleukin (IL)-2 signaling of T-cell
proliferation but not IL-2-induced T-cell apoptosis. Therefore, we hypothesized that
administration of IL-2, together with sirolimus, might shift T-cell proliferation to apoptosis and
prevent autoimmune destruction of islet β-cells. We found that sirolimus and IL-2 therapy of
female NOD mice, beginning at age 10 weeks, was synergistic in preventing diabetes
development, and disease prevention continued for 13 weeks after stopping sirolimus and IL …
Sirolimus is an immunosuppressant that inhibits interleukin (IL)-2 signaling of T-cell proliferation but not IL-2-induced T-cell apoptosis. Therefore, we hypothesized that administration of IL-2, together with sirolimus, might shift T-cell proliferation to apoptosis and prevent autoimmune destruction of islet β-cells. We found that sirolimus and IL-2 therapy of female NOD mice, beginning at age 10 weeks, was synergistic in preventing diabetes development, and disease prevention continued for 13 weeks after stopping sirolimus and IL-2 therapy. Similarly, sirolimus and IL-2 were synergistic in protecting syngeneic islet grafts from recurrent autoimmune destruction after transplantation in diabetic NOD mice, and diabetes did not recur after stopping sirolimus and IL-2 combination therapy. Immunocytochemical examination of islet grafts revealed significantly decreased numbers of leukocytes together with increased apoptosis of these cells in mice treated with sirolimus and IL-2, whereas β-cells were more numerous, and significantly fewer were apoptotic. In addition, Th1-type cells (γ-interferon-positive and IL-2+) were decreased the most, and Th2-type cells (IL-4+ and IL-10+) and Th3-type cells (transforming growth factor-β1+) were increased the most in islet grafts of sirolimus and IL-2-treated mice. We conclude that 1) combination therapy with sirolimus and IL-2 is synergistic in protecting islet β-cells from autoimmune destruction; 2) diabetes prevention continues after withdrawal of therapy; and 3) the mechanism of protection involves a shift from Th1- to Th2- and Th3-type cytokine-producing cells, possibly due to deletion of autoreactive Th1 cells.
Am Diabetes Assoc