Mild overexpression of MeCP2 causes a progressive neurological disorder in mice

AL Collins, JM Levenson, AP Vilaythong… - Human molecular …, 2004 - academic.oup.com
AL Collins, JM Levenson, AP Vilaythong, R Richman, DL Armstrong, JL Noebels
Human molecular genetics, 2004academic.oup.com
Mutations in the X-linked methyl-CpG-binding protein 2 (MECP2), encoding a transcriptional
repressor, cause Rett syndrome and a variety of related neurodevelopmental disorders. The
vast majority of mutations associated with human disease are loss-of-function mutations, but
precisely what aspect of MeCP2 function is responsible for these phenotypes remains
unknown. We overexpressed wild-type human protein in transgenic mice using a large
genomic clone containing the entire human MECP2 locus. Detailed neurobehavioral and …
Abstract
Mutations in the X-linked methyl-CpG-binding protein 2 (MECP2), encoding a transcriptional repressor, cause Rett syndrome and a variety of related neurodevelopmental disorders. The vast majority of mutations associated with human disease are loss-of-function mutations, but precisely what aspect of MeCP2 function is responsible for these phenotypes remains unknown. We overexpressed wild-type human protein in transgenic mice using a large genomic clone containing the entire human MECP2 locus. Detailed neurobehavioral and electrophysiological studies in transgenic line MeCP2Tg1, which expresses MeCP2 at ∼2-fold wild-type levels, demonstrated onset of phenotypes around 10 weeks of age. Surprisingly, these mice displayed enhanced motor and contextual learning and enhanced synaptic plasticity in the hippocampus. After 20 weeks of age, however, these mice developed seizures, became hypoactive and ∼30% of them died by 1 year of age. These data demonstrate that MeCP2 levels must be tightly regulated in vivo, and that even mild overexpression of this protein is detrimental. Furthermore, these results support the possibility that duplications or gain-of-function mutations in MECP2 might underlie some cases of X-linked delayed-onset neurobehavioral disorders.
Oxford University Press