Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis

T Wang, DM Gilkes, N Takano… - Proceedings of the …, 2014 - National Acad Sciences
T Wang, DM Gilkes, N Takano, L Xiang, W Luo, CJ Bishop, P Chaturvedi, JJ Green
Proceedings of the National Academy of Sciences, 2014National Acad Sciences
Extracellular vesicles such as exosomes and microvesicles (MVs) are shed by cancer cells,
are detected in the plasma of cancer patients, and promote cancer progression, but the
molecular mechanisms regulating their production are not well understood. Intratumoral
hypoxia is common in advanced breast cancers and is associated with an increased risk of
metastasis and patient mortality that is mediated in part by the activation of hypoxia-
inducible factors (HIFs). In this paper, we report that exposure of human breast cancer cells …
Extracellular vesicles such as exosomes and microvesicles (MVs) are shed by cancer cells, are detected in the plasma of cancer patients, and promote cancer progression, but the molecular mechanisms regulating their production are not well understood. Intratumoral hypoxia is common in advanced breast cancers and is associated with an increased risk of metastasis and patient mortality that is mediated in part by the activation of hypoxia-inducible factors (HIFs). In this paper, we report that exposure of human breast cancer cells to hypoxia augments MV shedding that is mediated by the HIF-dependent expression of the small GTPase RAB22A, which colocalizes with budding MVs at the cell surface. Incubation of naïve breast cancer cells with MVs shed by hypoxic breast cancer cells promotes focal adhesion formation, invasion, and metastasis. In breast cancer patients, RAB22A mRNA overexpression in the primary tumor is associated with decreased overall and metastasis-free survival and, in an orthotopic mouse model, RAB22A knockdown impairs breast cancer metastasis.
National Acad Sciences