cAMP stimulates apical V-ATPase accumulation, microvillar elongation, and proton extrusion in kidney collecting duct A-intercalated cells

TG Păunescu, M Ljubojevic… - American Journal …, 2010 - journals.physiology.org
TG Păunescu, M Ljubojevic, LM Russo, C Winter, MM McLaughlin, CA Wagner, S Breton
American Journal of Physiology-Renal Physiology, 2010journals.physiology.org
Kidney proton-secreting A-intercalated cells (A-IC) respond to systemic acidosis by
accumulating the vacuolar ATPase (V-ATPase) in their apical membrane and by increasing
the length and number of apical microvilli. We show here that the cell-permeant cAMP
analog CPT-cAMP, infused in vivo, results in an almost twofold increase in apical V-ATPase
accumulation in AE1-positive A-IC within 15 min and that these cells develop an extensive
array of apical microvilli compared with controls. In contrast, no significant change in V …
Kidney proton-secreting A-intercalated cells (A-IC) respond to systemic acidosis by accumulating the vacuolar ATPase (V-ATPase) in their apical membrane and by increasing the length and number of apical microvilli. We show here that the cell-permeant cAMP analog CPT-cAMP, infused in vivo, results in an almost twofold increase in apical V-ATPase accumulation in AE1-positive A-IC within 15 min and that these cells develop an extensive array of apical microvilli compared with controls. In contrast, no significant change in V-ATPase distribution could be detected by immunocytochemistry in B-intercalated cells at the acute time point examined. To show a direct effect of cAMP on A-IC, we prepared cell suspensions from the medulla of transgenic mice expressing EGFP in IC (driven by the B1-subunit promoter of the V-ATPase) and exposed them to cAMP analogs in vitro. Three-dimensional reconstructions of confocal images revealed that cAMP induced a time-dependent growth of apical microvilli, starting within minutes after addition. This effect was blocked by the PKA inhibitor myristoylated PKI. These morphological changes were paralleled by increased cAMP-mediated proton extrusion (pHi recovery) by A-IC in outer medullary collecting ducts measured using the ratiometric probe BCECF. These results, and our prior data showing that the bicarbonate-stimulated soluble adenylyl cyclase (sAC) is highly expressed in kidney intercalated cells, support the idea that cAMP generated either by sAC, or by activation of other signaling pathways, is part of the signal transduction mechanism involved in acid-base sensing and V-ATPase membrane trafficking in kidney intercalated cells.
American Physiological Society