Selective, novel spleen tyrosine kinase (Syk) inhibitors suppress chronic lymphocytic leukemia B-cell activation and migration

J Hoellenriegel, GP Coffey, U Sinha, A Pandey… - Leukemia, 2012 - nature.com
J Hoellenriegel, GP Coffey, U Sinha, A Pandey, M Sivina, A Ferrajoli, F Ravandi, WG Wierda…
Leukemia, 2012nature.com
Syk is a protein tyrosine kinase that couples B-cell receptor (BCR) activation with
downstream signaling pathways, affecting cell survival and proliferation. Moreover, Syk is
involved in BCR-independent functions, such as B-cell migration and adhesion. In chronic
lymphocytic leukemia (CLL), Syk becomes activated by external signals from the tissue
microenvironment, and was targeted in a first clinical trial with R788 (fostamatinib), a
relatively nonspecific Syk inhibitor. Here, we characterize the activity of two novel, highly …
Abstract
Syk is a protein tyrosine kinase that couples B-cell receptor (BCR) activation with downstream signaling pathways, affecting cell survival and proliferation. Moreover, Syk is involved in BCR-independent functions, such as B-cell migration and adhesion. In chronic lymphocytic leukemia (CLL), Syk becomes activated by external signals from the tissue microenvironment, and was targeted in a first clinical trial with R788 (fostamatinib), a relatively nonspecific Syk inhibitor. Here, we characterize the activity of two novel, highly selective Syk inhibitors, PRT318 and P505-15, in assays that model CLL interactions with the microenvironment. PRT318 and P505-15 effectively antagonize CLL cell survival after BCR triggering and in nurse-like cell-co-cultures. Moreover, they inhibit BCR-dependent secretion of the chemokines CCL3 and CCL4 by CLL cells, and leukemia cell migration toward the tissue homing chemokines CXCL12, CXCL13, and beneath stromal cells. PRT318 and P505-15 furthermore inhibit Syk and extracellular signal-regulated kinase phosphorylation after BCR triggering. These findings demonstrate that the selective Syk inhibitors PRT318 and P505-15 are highly effective for inhibition of CLL survival and tissue homing circuits, and support the therapeutic development of these agents in patients with CLL, other B-cell malignancies and autoimmune disorders.
nature.com