Human neutrophil Fc gamma RIIIB and formyl peptide receptors are functionally linked during formyl-methionyl-leucyl-phenylalanine-induced chemotaxis.

RR Kew, CM Grimaldi, MB Furie… - Journal of immunology …, 1992 - journals.aai.org
RR Kew, CM Grimaldi, MB Furie, HB Fleit
Journal of immunology (Baltimore, Md.: 1950), 1992journals.aai.org
The formyl peptide receptor (FPR) and the glycosyl-phosphatidylinositol-linked type III
receptor for the Fc portion of IgG (Fc gamma RIIIB; CD16) play important roles in various
inflammatory responses in human neutrophils. The mechanisms of signaling by the glycosyl
phosphatidylinositol-anchored Fc gamma RIIIB are not known. Therefore, we investigated
the possibility that Fc gamma RIIIB and FPR may act in concert to mediate neutrophil
functions. We observed that pretreatment of normal human neutrophils with Fab fragments of …
Abstract
The formyl peptide receptor (FPR) and the glycosyl-phosphatidylinositol-linked type III receptor for the Fc portion of IgG (Fc gamma RIIIB; CD16) play important roles in various inflammatory responses in human neutrophils. The mechanisms of signaling by the glycosyl phosphatidylinositol-anchored Fc gamma RIIIB are not known. Therefore, we investigated the possibility that Fc gamma RIIIB and FPR may act in concert to mediate neutrophil functions. We observed that pretreatment of normal human neutrophils with Fab fragments of a mAb to the Fc gamma RIII (3G8) specifically inhibited their chemotaxis into micropore filters in response to the formylated peptides FMLP or formyl-norleucyl-leucyl-phenylalanine. Pretreatment of neutrophils with a saturating concentration of 3G8 Fab (100 nM or 5 micrograms/ml) followed by exposure to FMLP (0.5 to 500 nM) indicated that significant inhibition of chemotaxis was observed at peptide concentrations greater than 5 nM. However, 3G8 Fab had no effect on the neutrophil response to a wide range (0.05 to 500 nM) of other chemotactic factors, including C5a, leukotriene B4, IL-8 (neutrophil-activating peptide-1), and platelet-activating factor. Moreover, pretreatment of neutrophils with mAb to other cell surface molecules (decay-accelerating factor, Fc gamma RII, and HLA class I) did not affect chemotaxis to FMLP. Inhibition of movement was not due to degradation of FMLP by the cell surface endopeptidase 24.11 (CD10), because neutrophils pretreated with the CD10 inhibitor phosphoramidone and 3G8 Fab displayed the same altered response to FMLP as cells pretreated with 3G8 Fab alone. Ligation of the Fc binding site of Fc gamma RIIIB appears to be essential for altering the FMLP-induced response, since soluble aggregated IgG and other anti-Fc gamma RIII antibodies, all of which recognize the ligand binding site, mimic the inhibitory effect of the 3G8 Fab on FMLP-induced chemotaxis. In contrast, a mAb (214.1) that does not recognize the Fc binding site of Fc gamma RIIIB had no effect on FMLP-induced chemotaxis. Not only did anti-Fc gamma RIII inhibit neutrophil chemotaxis to FMLP in a filter-based migration assay, but 3G8 Fab also inhibited FMLP-induced neutrophil transendothelial migration. Scatchard plot analysis of radioligand binding experiments indicated that 3G8 Fab did not significantly alter the number of FMLP binding sites on neutrophils but significantly increased the affinity of the FPR for [3H]FMLP. Removal of greater than 80% of cell surface Fc gamma RIIIB by phospholipase C abolished the neutrophil chemotactic response to FMLP but did not affect movement toward C5a, IL-8, or leukotriene B4.(ABSTRACT TRUNCATED AT 400 WORDS)
journals.aai.org