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Introduction
Leukotrienes are, as the name indicates, mainly biosynthe-
sized by leukocytes from the myeloblastic (neutrophils, eosino-
phils, and mast cells) and monoblastic lineages (monocytes/ 
macrophages). These lipid mediators act in a paracrine manner, 
exerting their functions at nanomolar concentrations and causing 
different responses according to the target cell type (1). There are 
two classes of leukotrienes: the dihydroxy fatty acid leukotriene 
LTB4, and the so-called cysteinyl-leukotrienes (cys-LTs), compris-
ing the lipid-peptide conjugate LTC4 and its metabolites LTD4 and 
LTE4, which are formed by sequential peptidolytic cleavage. Leu-
kotrienes signal through two sets of GPCRs: BLT1 and BLT2 for 
LTB4, and CysLT1, CysLT2, and CysLTE, also known as gpr99, for 
cys-LTs (2). Classical bioactions of LTB4 include chemotaxis, endo-
thelial adherence, and activation of leukocytes, while cys-LTs —  
in particular, LTD4 — contract smooth muscles in the microcircu-
lation and respiratory tract. In addition, a spectrum of other bio-
actions exerted by leukotrienes have been reported, all of which  
support proinflammatory and immune-regulating functions 
of these mediators, and which have qualified the biosynthetic 
enzymes as potential drug targets (1, 3, 4).

Leukotrienes are synthesized from the omega-6 polyunsatu-
rated fatty acid arachidonic acid (AA), which is liberated intracel-
lularly from membrane phospholipids by several phospholipase 
A2 enzymes (PLA2s), especially cytosolic PLA2α (cPLA2α) (5). The 
central enzyme in cellular leukotriene biosynthesis, 5-lipoxygenase 
(5-LOX), requires a set of stimulatory factors for full activity and is 
supported by two accessory proteins, 5-lipoxygenase–activating pro-
tein (FLAP) and coactosin-like protein (CLP) (6). The catalytic iron 
center of activated 5-LOX converts AA in a two-step concerted reac-
tion: first a dioxygenation into 5(S)-hydroperoxy-6-trans-8,11,14-

cis-eicosatetraenoic acid [5(S)-HpETE], followed by dehydration to 
yield the transient epoxide intermediate LTA4, a step that is referred 
to as the enzyme’s LTA4 synthase activity (7). Depending on the pres-
ence and functional coupling of 5-LOX to downstream enzymes, 
LTA4 is further converted into the dihydroxy acid LTB4 by LTA4 
hydrolase (LTA4H), while LTC4 synthase (LTC4S) conjugates LTA4 
with glutathione (GSH) to form LTC4, the parent compound of the 
cys-LTs LTC4, LTD4, and LTE4. 5-LOX subcellular localization and 
association with FLAP and CLP play a central role in the regulation 
of leukotriene production (Figure 1). Before activation, 5-LOX can 
be located either in the cytosol or in the nucleus of the cells, depend-
ing on the cell type and the cellular environment (reviewed in ref. 
8). Both cytosolic and nucleoplasmic 5-LOX moves to the nuclear 
envelope upon cell stimulation by various agonists, and this process 
is accompanied by leukotriene generation (9).

The enzymes in leukotriene biosynthesis are biochemically 
diverse; some are cytosolic monomeric enzymes (cPLA2α, 5-LOX, 
and LTA4H), while others are trimeric integral membrane proteins 
(FLAP, LTC4S, and MGST2). Together they encompass three dis-
tinct enzyme classes: hydrolases (cPLA2α and LTA4H), oxidore-
ductases (5-LOX), and transferases (LTC4S and MGST2). In this 
Review, work deciphering the molecular mechanisms of leuko
triene biosynthesis will be described along with recent reports on 
new potential therapeutic applications of drugs interfering with the 
production of these lipid mediators. Moreover, benefits and draw-
backs with various pharmacological strategies will be discussed.

5-LOX at the center stage  
of leukotriene biosynthesis
5-LOX is primarily found in various myeloid cells, including  
polymorphonuclear leukocytes (PMNs), monocytes/macrophages,  
dendritic cells, mast cells, and B lymphocytes (6). Aberrant expres-
sion of 5-LOX has been detected in many tumor cells of nonmyeloid  
origin (10–13). Moreover, CMV infection can induce 5-LOX expres-
sion and LTB4 production in vascular smooth muscle cells (14).

Leukotrienes are powerful immune-regulating lipid mediators with established pathogenic roles in inflammatory allergic 
diseases of the respiratory tract — in particular, asthma and hay fever. More recent work indicates that these lipids also 
contribute to low-grade inflammation, a hallmark of cardiovascular, neurodegenerative, and metabolic diseases as well as 
cancer. Biosynthesis of leukotrienes involves oxidative metabolism of arachidonic acid and proceeds via a set of soluble 
and membrane enzymes that are primarily expressed by cells of myeloid origin. In activated immune cells, these enzymes 
assemble at the endoplasmic and perinuclear membrane, constituting a biosynthetic complex. This Review describes 
recent advances in our understanding of the components of the leukotriene-synthesizing enzyme machinery, emerging 
opportunities for pharmacological intervention, and the development of new medicines exploiting both antiinflammatory and 
pro-resolving mechanisms.
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5-LOX is also subjected to posttrans-
lational modification. Thus, the enzyme is 
phosphorylated in vitro at three sites: Ser271 
by MAPKAP kinase 2, Ser663 by ERK2, and 
Ser523 by PKA (23–25). Phosphorylation at 
Ser271 and Ser663 is facilitated by the pres-
ence of unsaturated fatty acids, including 
AA, but seems to influence enzyme activity 
indirectly via 5-LOX compartmentalization 
(26, 27). On the other hand, phosphorylation 
at Ser523 by PKA directly suppresses 5-LOX 
activity and its trafficking to the nucleus 
(25, 28), which may explain the inhibitory 
actions of adenosine and increased cAMP 
on cellular leukotriene synthesis (29). Inter-
estingly, neutrophils and monocytes from 
males seem to have a significantly lower 
capacity to synthesize leukotrienes (30, 31). 
This effect is due to androgen-induced ERK 
activation, which paradoxically results in 
reduced leukotriene synthesis.

The 5-LOX protein and crystal structure. 
Human 5-LOX is a 78-kDa soluble enzyme 
that is generally regarded as monomeric, 
although recent data suggest that it can also 
exist as a homodimer (32). The enzyme is 
notoriously unstable and sensitive to oxida-
tive damage, which made its initial purifica-
tion from isolated human leukocytes a formi-
dable challenge, finally overcome by Rouzer 

and Samuelsson in 1985 (33). For the same reasons, it took another 
25 years until an engineered, stable variant of 5-LOX could be suc-
cessfully crystallized and structurally characterized at 2.4 Å resolu-
tion (34). 5-LOX consists of an N-terminal β-sandwich and an iron-
containing C-terminal catalytic domain (Figure 2). The N-terminal 
domain is composed of two 4-stranded antiparallel β-sheets and is 
one of the defining members of the PLAT (polycystin-1, lipoxygen-
ase, α-toxin) domain family (35). The 5-LOX N-terminal domain 
has been shown to bind several regulatory factors, such as Ca2+, 
PC, and CLP, suggesting that this domain facilitates 5-LOX’s asso-
ciation with membranes during catalysis (6). The catalytic domain 
is composed of several α-helices, and iron is coordinated by three 
conserved His residues (367, 372, 550) and the carboxylate moiety of  
the C-terminal Ile673. Unexpectedly, the structure of stable 5-LOX 
revealed a fully encapsulated catalytic machinery, i.e., the side 
chains of two aromatic amino acids at the active center (Phe177 and 
Tyr181) form a cork (termed “FY cork”) that seals off the active site 
and closes the cavity for substrate entry (34). Further studies sug-
gest that the “corking” amino acid Phe177 plays an important role 
for a fully functional active site, and His600 appears to be required 
to position the substrate for catalysis (36). Apparently, the concealed 
FY cork also plays a role in 5-LOX association with the nuclear  
membrane and its scaffold protein FLAP (37).

FLAP, a critical 5-LOX accessory protein
In activated immune cells, 5-LOX translocates to the ER and 
perinuclear membranes in response to Ca2+, a process accompa-

Regulation of 5-LOX expression. The human 5-LOX gene is 
located on chromosome 10 and consists of 14 exons (15). The 
promoter region lacks a typical TATA or CCAT box but contains 
eight GC boxes, five of which are arranged in tandem and bind 
the transcription factors SP1 and EGR-1 (16, 17). Several natural 
mutations occur within the functional promoter regions, which 
have been suggested to play a role in asthma (17, 18). TGF-β and 
vitamin D3 strongly increase 5-LOX expression and enzyme 
activity during differentiation of HL-60 and MonoMac6 human 
myeloid cells (19). In addition, granulocyte-macrophage CSF 
(GM-CSF) augments 5-LOX expression in mature human neu-
trophils, monocytes, and monocytic THP-1 cells (19). 5-LOX 
expression is also regulated by miR-19a-3p and miR-125b-5p in 
a cell type– and stimulus-specific manner (20).

A multicomponent system regulates 5-LOX enzyme activity. 
5-LOX is a non-heme dioxygenase whose activity is regulated 
by several soluble and membrane-associated factors acting 
as allosteric regulators or enzyme scaffolds. Thus, Ca2+, ATP, 
phosphatidylcholine (PC), cell membrane and diacylglycerols, 
lipid hydroperoxides, and CLP have all been shown to impact 
the turnover of the substrate (6).

The functional role of Ca2+ is not fully understood but requires 
the presence of PC or CLP, a 16-kDa F-actin–binding protein that 
promotes the LTA4 synthase activity of 5-LOX (21). 5-LOX is also 
stimulated by ATP, which binds to the protein without any appar-
ent hydrolysis of phosphodiester bonds, apparently acting as an 
allosteric activator (22).

Figure 1. Translocation and assembly of the leukotriene biosynthetic complex. Schematic model 
for translocation of cPLA2 and 5-LOX, together with CLP, to the ER and perinuclear membrane, where 
they meet up with FLAP and LTC4S. LTA4H stays in the cytosolic compartment. Ser phosphorylations 
of cPLA2 and 5-LOX are indicated. GGT, γ glutamyltransferase; MBD, membrane-bound dipeptidase.
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Regulation of FLAP expression. The FLAP gene is located on 
chromosome 13 and comprises five exons (47). The promoter 
contains a possible TATA box, AP-2, NF-κB, and glucocorticoid 
response elements. The 5′-UTR region contains a polymorphism 
that is associated with asthma (48). Transcription of FLAP appears 
to be induced in inflammatory cells by IL-3 as well as GM-CSF, 
dexamethasone, IL-5, LPS, and TNF-α (49). Another study showed 
that hypoxia induces FLAP expression in endothelial cells via 
enhancement of HIF-1α and NF-κB binding to the FLAP promoter, 
while expression is downregulated by miR-135a and miR-199a-5p 
targeting the 3′-UTR of FLAP mRNA (50).

FLAP protein and structure. Human FLAP is a 161–amino acid 
integral membrane protein (51). Notably, FLAP displays no enzyme 
activity (39). A low-resolution (4 Å) structure of FLAP in complex 
with inhibitors revealed a trimeric structure with four transmem-
brane helices in each monomer connected by two cytosolic loops 
and one lumenal loop (52). The inhibitors bind to membrane-
embedded pockets in FLAP, suggesting how they might prevent 
binding of AA (Figure 2).

nied by enzyme catalysis followed by enzyme inactivation. At the 
membrane, 5-LOX associates with FLAP, which was originally 
discovered through the inhibitory action of a drug, MK-886, on 
leukotriene biosynthesis in intact cells (38, 39). MK-886 binds 
to FLAP, interferes with 5-LOX/FLAP interactions, and inhibits 
5-LOX activity.

Role of FLAP in cellular leukotriene biosynthesis. Association 
between FLAP and 5-LOX has been demonstrated in vitro and 
in whole cells (40–43), involving four cysteines (159, 300, 416, 
and 418) in 5-LOX (42). The role of FLAP is to present AA to 
5-LOX (39, 44), and it is assumed that FLAP acts as a scaffold 
that governs the distribution of 5-LOX to the perinuclear region, 
stimulates AA utilization by 5-LOX, and increases the efficiency  
with which 5-LOX converts 5-HpETE into LTA4 (45, 46). A 
recent study indicates that FLAP regulates 5-LOX activity in 
two ways: by inducing an initial flexible and loose association 
with 5-LOX for efficient 5-LOX product synthesis, and by sub-
sequent formation of a tight 5-LOX/FLAP complex that termi-
nates 5-LOX activity (43).

Figure 2. Crystal structure of the key enzymes 
and proteins in leukotriene biosynthesis. (A) 
Structure of 5-LOX at 2.4 Å resolution depicting 
the N-terminal β-barrel domain (yellow) and the 
catalytic domain (magenta). (B) Structure of 
FLAP at 4 Å resolution. It is a trimer with each 
monomer (yellow, green, and magenta) com-
posed of four transmembrane α-helices. FLAP 
inhibitors are bound in the intermonomeric 
cleft. (C) Structure of LTA4H at 1.9 Å resolu-
tion. The protein is folded into three domains, 
an N-terminal (yellow), a catalytic (green), and 
a C-terminal (magenta), between which the 
catalytic center is located. A molecule of LTA4 
is indicated in the center of the interdomain 
cavity. (D) Structure of LTC4S. It is a trimer with 
each monomer (yellow, green, and magenta) 
composed of 4 transmembrane α-helices. Three 
molecules of the cosubstrate GSH are bound 
between two monomers toward the cytosolic 
side of the protein. Figures were derived from 
the following Protein Data Bank IDs: 5-LOX 
3O8Y; FLAP 2Q7R; LTA4H 5NI6; LTC4S 2UUH.
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characterized SRS-A and identified it as a mixture of LTC4, LTD4, 
and LTE4, i.e., the cys-LTs (65). LTC4S is a specialized membrane 
GSH S-transferase, which catalyzes conjugation of LTA4 with GSH 
(Figure 1). High levels of enzyme expression and capacity to syn-
thesize LTC4 are observed in immune cells such as eosinophils, 
mast cells, and monocytes (66). Platelets also contain LTC4S, 
although these corpuscles cannot produce the substrate LTA4 (67).

LTC4S is a notoriously unstable 18-kDa enzyme that is stimu-
lated by divalent cations and PC and stabilized by GSH. The pri-
mary structure contains consensus sequences for PKC phosphory-
lation, which reduces LTC4S activity (68). Recently, the ribosomal 
protein S6 kinase (p70S6K) was shown to play a key role in phos-
phoregulation of LTC4S in human macrophages, and Ser36 was 
identified as the major phosphorylation site (69, 70).

LTC4S is a member of the MAPEG superfamily. Molecular clon-
ing of LTC4S revealed a surprising 33% identity with FLAP (71, 
72), and further work at Merck Frosst identified two additional 
homologous microsomal GSH transferases: MGST2 and MGST3 
(73, 74). MGST2 is 44% identical with LTC4S and accounts for 
LTC4 synthesis in nonhematopoietic cells such as endothelium 
and testis (75–77). Recently, MGST2 was identified as a key 
enzyme involved in oxidative DNA damage induced by ER stress 
and anticancer agents (78). Yet another homolog was subsequent-
ly found to catalyze isomerization of prostaglandin H2 (PGH2) into 
prostaglandin E2 (PGE2) and was denoted microsomal prostaglan-
din E synthase type 1 (mPGES-1). This enzyme is induced by LPS 
and cytokines in tandem with COX-2 and appears to be the origin 
of PGE2 synthesized during inflammation (79–81). LTC4S, FLAP, 
MGST1, MGST2, MGST3, and mPGES-1 are now recognized as 
members of a common superfamily of integral membrane proteins 
denoted MAPEG (membrane-associated proteins in eicosanoid 
and glutathione metabolism) (82). The human LTC4S gene is 
located on chromosome 5q35 and has a structure similar to that of 
the FLAP gene (83). Promoter characterization has shown that an 
SP1 site and a putative initiator element (Inr) are involved in non– 
cell-specific expression, whereas a Krüppel-like transcription factor  
and SP1 are implied in cell-specific regulation of LTC4S (84). 
LTC4S expression is induced by cytokines and phorbol-12- 
myristate-13-acetate (PMA) in human erythroleukemia cells as 
well as in human eosinophils developed from IL-3– and IL-5– 
treated cord blood progenitors (67, 85). The enzyme is also upreg-
ulated in the monocytic cell line THP-1 after TGF-β treatment, 
apparently via SP1 and SP3 (86, 87). In addition, IL-4 strongly 
induces expression of LTC4S in cord blood–derived human mast 
cells and bone marrow–derived mouse mast cells, a response that 
may be signaled via STAT-6 (88). Finally, intraperitoneal injection 
of LPS in the rat caused in vivo induction of the enzyme in liver, 
heart, adrenal gland, and brain (89).

Crystal structure of LTC4S. The crystal structure of human 
LTC4S has been solved at high resolution (90, 91). The enzyme 
is a trimer, and each monomer is composed of 5 α-helices, four of 
which traverse the membrane (Figure 2). The lipid (LTA4) binding 
site is believed to be located in a hydrophobic crevice formed at 
the interface between two adjacent monomers. The GSH bound 
deeper in the protein below the hydrophobic cleft adopts a pecu-
liar horseshoe-shaped conformation. Residues from two mono-
mers are involved in GSH binding, and mutagenetic analysis 

LTA4H, an epoxide hydrolase dedicated  
to LTB4 synthesis
LTA4H catalyzes the final critical step in the biosynthesis of the 
proinflammatory compound LTB4, recently identified as a key 
signal-relay molecule during neutrophil chemotaxis and swarming 
(53, 54). Unlike other epoxide hydrolases, LTA4H is highly selec-
tive for its substrate, LTA4, and undergoes suicide inactivation dur-
ing catalysis with covalent binding of LTA4 to the protein (55). It is 
presently unclear how LTA4, a labile and chemically reactive allylic 
epoxide, is transferred between 5-LOX and LTA4H and how the 
product LTB4 is transported through cytosol to the plasma mem-
brane for export (Figure 1).

LTA4H is ubiquitously expressed. Unlike 5-LOX, LTA4H is 
widely expressed in almost all mammalian cells, organs, and tis-
sues, albeit at different levels (56). Human LTA4H exists as a  
single copy on chromosome 12q22 divided into 19 exons (57). 
LTA4H expression is believed to be stable, although it has been 
reported that IL-4 and IL-13 may upregulate its expression in 
human PMNs (56). High levels of LTA4H have been observed in 
several human tumors of the gastrointestinal tract, lung, and thy-
roid, suggesting a role in cancer (58).

LTA4H is a bifunctional zinc aminopeptidase. LTA4H is a 69-kDa 
cytosolic protein that converts LTA4 into LTB4, a reaction referred 
to as the enzyme’s epoxide hydrolase activity (Figure 1). LTA4H is 
also a tripeptidase with high affinity for N-terminal arginine (55, 
59). Both enzyme activities of LTA4H depend on a catalytic zinc 
ion that is bound within the signature HEXXH-(X)18-E, typical of 
M1 metallopeptidases (60). LTA4H’s crystal structure has been 
determined (61). The enzyme folds into an N-terminal domain, a 
catalytic domain, and a C-terminal domain (Figure 2). The inter-
face of the domains forms an active site cavity, which narrows at 
the zinc-binding site, forming a tunnel into the catalytic domain. 
The opening and wider parts of the cavity are highly polar; the 
tunnel is more hydrophobic. LTA4H’s two enzyme activities are 
exerted via distinct yet overlapping active sites. Thus, Glu296 and 
Tyr383 are specifically required for the aminopeptidase activity, 
whereas Asp375 is critical only for the epoxide hydrolase reaction. 
Glu271, Arg563, and the zinc ion are necessary for both catalyses. 
Interestingly, LTA4H utilizes a single water molecule that is differ-
entially activated by Glu296 or Glu271 to take part in the amino-
peptidase or epoxide hydrolase reaction, respectively (62).

LTA4H cleaves and inactivates the chemotactic Pro-Gly-Pro. 
Snelgrove and coworkers serendipitously discovered that the 
tripeptide Pro-Gly-Pro (PGP) is an endogenous substrate for 
extracellular LTA4H (63). PGP is generated from the extracel-
lular matrix and is chemotactic for neutrophils, suggesting that 
LTA4H exhibits dual and opposite functions during an inflamma-
tory response. In the initial phase, the enzyme’s epoxide hydrolase 
activity will generate proinflammatory LTB4, while the aminopep-
tidase activity will inactivate the chemotactic PGP during the res-
olution phase. Notably, conflicting results regarding the properties 
of PGP were recently reported (64).

LTC4S, a specialized GSH transferase  
producing asthma mediators
Slow-reacting substance of anaphylaxis (SRS-A) is a classical 
mediator of asthma. Work awarded the Nobel Prize chemically 
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plaques and reduced total amyloid burden in the brain, apparently 
through elevation of all components of the γ-secretase complex 
(102). Furthermore, 5-LOX contributes to tau hyperphosphory-
lation, compromised synaptic function, and memory deficits. 
Notably, pharmacological or genetic inhibition of 5-LOX counter-
acts all these effects and can even restore learning and memory 
impairments (103–107). A recent study suggests that cys-LTs may 
play a role in AD, as a selective CysLT1 antagonist reduced neuro-
inflammation, elevated hippocampal neurogenesis, and improved 
learning and memory in rats (108).

Leukotrienes have long been linked to cardiovascular diseases, 
and major efforts have been invested into development of antileu-
kotrienes for prevention of atherosclerosis and treatment of myocar-
dial infarction (49, 109, 110). Here, I would like to highlight two other 
pathologies of the cardiovascular system, namely, pulmonary hyper-
tension (PH) and abdominal aortic aneurysm (AAA), both of which 
appear to be associated with leukotrienes and thus possibly amena-
ble to antileukotriene treatments targeting the enzyme machinery.

Early work in rats and mice linked the 5-LOX pathway to 
hypoxia-induced PH, and 5-LOX expression was increased in 
pulmonary macrophages and pulmonary artery endothelial cells 
in patients with idiopathic pulmonary arterial hypertension (111, 
112). These findings were specious, because a prominent patho-
logical feature of PH is accumulation of macrophages near the 
arterioles of the lung. Further investigations pointed to a critical 
role of LTB4 in the disease process. Thus, studies in several rat 
models of PH as well as cells and tissue samples from patients 
with PH revealed elevated levels of LTB4, both systemically and 
locally in lung tissue, and high levels of LTA4H were observed 
in accumulated macrophages (113–115). At a functional level,  
macrophage-derived LTB4 was shown to induce apoptosis of pul-
monary artery endothelial cells as well as proliferation and hyper-
trophy of pulmonary smooth muscle cells (113). Furthermore, 
LTB4 can activate pulmonary artery fibroblasts (116).

Leukotrienes are also involved in AAA disease. In early work 
on mouse models of atherosclerosis, 5-LOX deficiency protected 
against AAA, results that could not be reproduced in the angioten-
sin II–induced model of AAA (117, 118). Based on work with human 
tissue samples, it was proposed that LTB4 plays a role in AAA as a 
chemotactic factor released from neutrophils within the intralumi-
nal thrombus; cys-LTs were identified as main 5-LOX products in 
human AAA wall and could be linked to release of matrix metal-
loproteinases (119, 120). In agreement with these data, inhibition 
of 5-LOX by pharmacological or genetic approaches attenuated 
aneurysm formation in two different AAA mouse models (121). 
Only very recently, we showed that cys-LTs are involved in AAA 
and that the common asthma drug montelukast, a selective CysLT1 
antagonist, afforded protection in three different mouse models of 
AAA (122). The therapeutic significance of this study lies in the 
fact that montelukast is a well-tolerated and safe drug that can be 
directly tested in a human clinical trial. However, it is possible that 
an inhibitor of LTC4S, alone or in combination with an inhibitor of 
LTA4H, could prove more effective (see below).

5-LOX and FLAP bridge proinflammatory and pro-resolving 
pathways. 5-LOX inhibitors are divided into three classes depend-
ing on their mode of action: (a) redox inhibitors, (b) iron-binding 
inhibitors, and (c) active site–directed inhibitors. The early com-

has demonstrated that Arg104 is catalytic and rapidly activates  
the GSH thiol (92, 93).

Leukotriene biosynthetic complexes  
at ER and perinuclear membranes
The superordinate enzymes in leukotriene biosynthesis, cPLA2α 
(which provides AA) and 5-LOX (which converts AA into LTA4), 
traffic from cytosol to the ER and perinuclear membranes in 
response to cell activation (Figure 1). In the target compartment, 
FLAP and LTC4S are embedded in the membrane, ready to sup-
port biosynthesis of LTA4 and its further conversion into LTC4 (94, 
95). In fact, biophysical evidence indicates that FLAP and LTC4S 
form functional heterodimers and trimers within the membrane 
and that FLAP can act as a scaffold protein for association of 
5-LOX, thus creating a multiprotein biosynthetic complex on both 
the outer and inner nuclear membranes (40, 96). It is not clear how 
AA, liberated by cPLA2α, can first reach its binding site in FLAP, 
travel further to the active site of 5-LOX, and, after conversion into 
LTA4, reach the terminal LTA4H and LTC4S. To synchronize this 
machinery, it seems necessary that both cPLA2α and 5-LOX are 
juxtaposed in direct contact with the nuclear membrane and that 
all biosynthetic components are spatially interconnected. Since 
LTA4H is soluble and does not translocate to the nuclear mem-
brane, transfer of LTA4 from 5-LOX to LTA4H seems to require 
a carrier, and recent data indicate that this process involves sub-
stantial conformational changes within LTA4H, accompanied by 
gated entry of LTA4 (62).

Therapeutic and pharmacological opportunities 
and pitfalls
It is not within the scope of this Review to give a comprehensive 
description of all pathologies potentially involving leukotrienes. 
Here, I would like to mention four disease areas that are currently 
attracting considerable attention. Firstly, leukotrienes are strongly 
implicated in immunometabolic disorders ranging from obesity to 
type 2 diabetes. It has been demonstrated that enzymes and recep-
tors of the 5-LOX pathway are upregulated in adipose tissue and 
that mouse and human adipocytes can secrete leukotrienes (97, 
98). Importantly, LTB4 appears to play a critical role in adipose  
tissue inflammation, and a FLAP antagonist reduced 5-LOX  
products and macrophage accumulation in adipose tissue in mice 
with dietary obesity (97). In addition, pharmacological or genetic 
ablation of the 5-LOX pathway in WT mice on a high-fat diet 
resulted in a reduction of adipose tissue macrophage and insulin 
resistance (98). Recent data demonstrate a similar role for LTB4 in 
promoting liver steatosis and insulin resistance in muscle and adi-
pose tissue, reinforcing the role of the LTB4/BLT1 signaling axis as 
a main driver for the inflammation–insulin resistance syndrome in 
obesity (99). Similar work on the BLT1 receptor corroborates the 
notion that inhibition of LTB4 signaling can be a useful therapeutic 
strategy in diseases related to insulin resistance (100).

An increasing body of evidence also suggests that 5-LOX 
and leukotrienes are involved in neurodegenerative disorders 
such as Alzheimer’s disease (AD). The 5-LOX pathway seems to 
modulate AD pathology at multiple levels (101). Using transgenic 
mouse models of AD, it was demonstrated that 5-LOX deficiency 
decreases amyloid β peptides, which translates to fewer amyloid β 
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pounds suffered from lack of selectivity, structure-activity rela-
tionships, and enantioselectivity; moreover, they elevated met-
hemoglobin levels and displayed poor efficiency and oral 
availability (1). Nonetheless, in clinical trials, zileuton showed 
beneficial effects in many inflammatory diseases, and today 
zileuton is marketed in the United States for treatment of asthma.  
With the crystal structure of 5-LOX at hand, structure-based 
approaches have become possible, although a complex between 
enzyme and an inhibitor has not yet been presented. Nonetheless, 
a stream of new 5-LOX inhibitors, either synthesized or naturally 
occurring, have been presented in recent years, but their clinical 
utility has not been tested (123, 124).

Several inhibitors of FLAP have also been developed over the 
years: the classical prototype MK-886, the follow-up MK-0591, 
and Bay-X1005 (1). A second generation of FLAP inhibitors was 
also developed from the lead molecule denoted AM103, primarily 
intended for use as an anti-asthma medication (125, 126). Crystal 
structures of FLAP in complex with inhibitors have been reported 
(52), but the resolution was rather low, limiting its use in structure-
based approaches to drug design (Figure 2).

5-LOX converts AA into LTA4, which can be lipoxygenated 
into lipoxin A4 (LXA4) and also appears to be involved in the bio-
synthesis of pro-resolving molecules originating from eicosapen-
taenoic and docosahexaenoic acids (Figure 3 and ref. 127). This 
dual role of 5-LOX at the crossroads of both proinflammatory leu-
kotrienes and pro-resolving mediators may weaken the prospects 
of developing antiphlogistic drugs targeting 5-LOX. However, the 
roles of 5-LOX and FLAP in biosynthesis of pro-resolving media-
tors are complex. In one study, lipoxin and resolvin biosynthesis 
was shown to depend on the presence of FLAP, suggesting that 
a selective FLAP inhibitor will not allow continued 5-LOX activ-
ity for production of pro-resolving mediators (128), while another 
recent study showed that FLAP inhibition does not affect synthe-
sis of pro-resolving mediators from endogenous docosahexae
noic acid (129). Moreover, it appears that cytosolic 5-LOX, uncou-
pled to FLAP, favors synthesis of pro-resolving mediators over 
LTB4 (130). Interestingly, FLAP and certain 5-LOX inhibitors are 
more effective in females, and apparently these sex differences 
are caused by androgens impeding assembly of the leukotriene-
biosynthetic 5-LOX/FLAP complex (131).

Figure 3. Metabolism of polyunsaturated fatty acids 
into leukotrienes and resolvins. The scheme illustrates 
the interconnections between the pathways for synthe-
sis of proinflammatory leukotrienes and antiinflamma-
tory lipoxins and resolvins from arachidonic, eicosapen-
taenoic, and docosahexaenoic acids. For D- and E-series 
resolvins, the respective fatty acid substrate is first 
oxygenated by 15-LOX or cytochrome P450. Inhibition of 
5-LOX attenuates leukotriene formation and may inter-
fere with synthesis of pro-resolving molecules. Inhibition 
of LTA4H and/or LTC4S will block leukotrienes, shunt 
LTA4 into lipoxin synthesis, and spare 5-LOX activity for 
generation of other pro-resolving molecules. 
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LTA4H, target for development of resolution-promoting molecules. 
Development of inhibitors targeting LTA4H began when its zinc 
content and aminopeptidase activity were discovered, offering 
a simple model of the active site (55). Thus, academicians identi-
fied bestatin and captopril as LTA4H inhibitors (132), which were 
followed by various transition state mimics (133, 134). Searle/ 
Pharmacia developed the clinical candidate SC-57461A, which 
is today’s benchmark for a potent and selective inhibitor (135). 
With the crystal structure of LTA4H, programs on rational inhibi-
tor design began within industry. Thus, deCode Genetics devel-
oped DG-51 for treatment of myocardial infarction and stroke, 
while Johnson & Johnson developed JNJ-26993135 for treatment 
of inflammatory bowel disease and allergic airway inflammation 
(136–139). Similarly, work at Berlex/Schering led to the develop-
ment of acebilustat, which is currently in clinical trial for treatment 
of cystic fibrosis (140). Two additional LTA4H inhibitors, bestatin 
and tosedostat, are presently entering clinical trials (141). Bestatin 
is intended for use in pulmonary arterial hypertension and lymph-
oedema, while tosedostat is an antineoplastic agent for treatment 
of a variety of severe cancers. However, both bestatin and tosedo-
stat are general aminopeptidase inhibitors, and their pharmaco-
logical actions may well be off-target effects (141).

Inhibitors of LTA4H not only block LTB4 synthesis, they 
also spare 5-LOX–derived LTA4 to allow shunting into lipoxin 
synthesis (Figure 3 and refs. 138, 139). In addition, we recently 
developed a new class of LTA4H inhibitors, typified by the lead 
molecule ARM1, that selectively block synthesis of LTB4 while 
preserving the peptidolytic inactivation of chemotactic PGP 
(142). Hence, this type of inhibitor will inhibit LTB4 synthe-
sis, enhance lipoxin generation, and salvage PGP inactivation, 
offering a greater therapeutic potential as compared with previ-
ously developed small molecules.

LTC4S inhibitors are lukast alternatives with resolution-
promoting properties. In spite of its central role in allergic 
inflammation, very few specific inhibitors of LTC4S have been 
developed thus far (143–145). This may reflect the success of 
CysLT1 antagonists, collectively referred to as “lukasts,” that 
are currently used in clinical management of asthma. However, 
a new generation of lukasts is needed, because a significant 
proportion of asthma patients (~40%) do not respond to these 
drugs. In addition, new receptors for cys-LTs have been discov-
ered that are functionally interconnected and cross-regulated 
(146–149). Hence, the upstream biosynthetic enzyme LTC4S 
may well prove to be an effective target for pharmacological 
inhibition of cys-LT signaling, not only for asthma but also for 
other diseases involving cys-LTs such as AAA, celiac disease, 
and neurodegenerative disorders (108, 122, 150). It is clear 
that inhibitors of LTC4S can be made selective among other 
MAPEG enzymes and effective in vivo, and permit shunting of 
LTA4 into LXA4 synthesis (145).

Antileukotrienes target a metabolic system with multiple levels 
of complexity. According to the current dogma, leukotrienes are 
formed within a time frame of seconds to a few minutes follow-
ing an acute cell stimulus, causing calcium mobilization and acti-
vation of 5-LOX. However, synthesis of leukotrienes can occur in 
response to cell stress without calcium mobilization, and in some 
instances biosynthesis can proceed over longer periods of time, 

even hours, in a cell type– and stimulus-dependent manner (27, 
129, 151). Moreover, resting monocytes cultured with GM-CSF pro-
duce significant amounts of LXA4, which normally involves 5-LOX 
activity, without concomitant synthesis of appreciable quantities 
of leukotrienes (152). Apparently, the activity of 5-LOX and down-
stream enzymes depends on a multitude of factors leading to dif-
ferential profiles of mediators in any given cellular context.

It is also important to keep in mind that enzymes of leukotriene 
biosynthesis interact with other proteins and/or possess secondary 
catalytic activities, adding additional levels of complexity to the bio-
synthetic machinery. For instance, 5-LOX is present in the nucleus 
and interacts with Dicer, suggesting that it may exert effects on 
micro-RNAs and regulation of other genes (153). 5-LOX also inter-
acts with cytosolic CLP, the functional consequences of which are 
only beginning to be described (46). Furthermore, LTA4H carries 
an aminopeptidase activity, and although PGP has been identi-
fied as one endogenous substrate, there are probably other sub-
strates and more to learn about this enzyme activity. Similarly, most 
MAPEG members possess a peroxidase activity toward lipid hydro-
peroxides and may thus help control the redox milieu at the nuclear 
membrane with potential consequences for a variety of cellular 
processes. Hence, caution is warranted in evaluating the effects of 
pharmacological intervention within the leukotriene cascade, since 
enzyme inhibitors may give rise to unanticipated effects that may, 
or may not, be related to attenuated leukotriene synthesis.

Concluding remarks
The powerful bioactivities of leukotrienes have motivated academia 
and the pharmaceutical industry to develop antileukotriene drugs 
to treat a range of inflammatory diseases (1, 124). To date, CysLT1 
antagonists and one 5-LOX inhibitor have reached the clinic and 
are used for medical treatment of asthma and allergic rhinitis. The 
pharmaceutical industry prefers to develop drugs as a single mole-
cule against a single target. However, this classical type of approach 
has not provided satisfying results when targeting the leukotriene 
cascade, which may have several explanations. Thus, results from 
preclinical research on leukotrienes may sometimes poorly reflect 
the human pathology, and therefore its predictive value for success-
ful drug development may be limited. In addition, leukotrienes are 
generated by activated leukocytes, and the impact of these media-
tors will depend on temporal accumulation and composition of 
immune cells at various stages of the disease process.

Most likely, disappointing outcomes also originate from the 
fact that branches of the metabolic pathways are interconnected 
in a complex manner, and a targeted blockade may cause shunting 
of metabolites to other families of lipid mediators with opposing 
bioactions, mitigating the effects of the primary intervention.

With increasing knowledge about the flux of metabolites, new 
“smart” combinations of drugs can be designed. For instance, rather 
than blocking 5-LOX to eliminate all leukotrienes, one could com-
bine inhibitors of the downstream LTA4H and LTC4S to shunt LTA4 
into lipoxins and to preserve 5-LOX–dependent biosynthesis of other 
pro-resolving mediators (Figure 3). The spectrum of opportunities 
increases even further if receptor antagonists and inhibitors of the 
COX cascade are taken into consideration. Since there is a significant 
interindividual variation in leukotriene and lipid mediator biosyn-
thesis, it may be necessary and possible in the future to assess lipid 
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profiles in individual patients to guide tailor-made personalized drug 
combinations to achieve effective clinical results. We are now expe-
riencing the uncovering of new leukotriene-dependent pathologies, 
and as the details of the mechanisms regulating the biosynthetic 
pathways become better understood and controlled, opportunities 
for development of new drugs, as well as repurposing of already  
existing drugs, are clearly emerging.
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