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Introduction
Alzheimer’s disease (AD) is the most prevalent form of demen-
tia, affecting approximately 5.5 million Americans. With an aging 
population worldwide, it is predicted to be a public health crisis in 
the coming decades. In spite of extensive preclinical and clinical 
efforts, little progress has been made in preventing or reversing 
this disease. A better understanding of AD requires reconceptual-
izing the disorder as an amalgam of dysfunctions rather than one 
pathology. An analogous evolution has occurred in cancer biol-
ogy; decades ago, the search for a “magic bullet” for cancer treat-
ment suggested that cancer was one disease and that it would be 
possible to identify a single drug to cure all forms. With today’s 
advanced knowledge of the many mechanisms that lead to cancer, 
that original concept is very dated. Yet, researchers today still dis-
cuss “a” cure for AD, implying that a single pathological pathway is 
responsible for all cases. For example, the tag line on a 2016 cover 
of Time magazine read, “The Alzheimer’s Pill.”

It is becoming obvious that AD, like cancer, is a complex dis-
ease with multiple pathogenic mechanisms. One pathway that has 
been largely overlooked is vascular dysregulation. For example, a 
relatively recent and highly cited hypothetical temporal ordering of 
AD pathologies did not include vascular pathology in the possible 
contributors to the disease (1). Accumulating evidence, detailed in 
this review, indicates that vascular dysregulation plays a major role 
in cognitive decline. Undoubtedly, attacking the disease success-
fully will involve identifying and targeting various mechanisms, as 
has been done in the revolution in cancer treatment.

Multiple mechanisms can contribute to  
AD pathology
In cancer, the fundamental pathology is unregulated cell divi-
sion. However, this aspect by itself is not necessarily lethal. 
Other mechanisms — for example, immune system evasion and 
metastasis — can compound too much cell division and exacer-

bate the morbidity of the disease. Cancer treatments have been 
developed to counteract these ancillary pathways, and these 
treatments can improve patient outcome. One can envisage 
a similar situation for AD. The fundamental pathology is neu-
ronal dysfunction causing cognitive decline, and this pathway 
can be accelerated by many other abnormalities such as defects 
in autophagy (2), synaptic toxicity (3), and oxidative stress/ 
mitochondrial dysfunction (4). Of all the many possible contrib-
utors, inflammation (5) and vascular abnormalities (6, 7) appear 
to be especially significant (Figure 1 and see below).

Could vascular mechanisms benefit AD diagnosis 
or treatment?
If ancillary mechanisms can contribute to AD, one consideration 
is how to determine the relevance of these pathways in individ-
ual patients, especially if the mechanisms are not specific to AD. 
Again, cancer provides a useful analogy. Estrogen and proges-
terone receptor expression is not specific to breast cancer, and 
also occurs in normal tissues and other cancers. Nevertheless, in 
patients with breast cancer, hormone receptor expression predicts 
response to antiestrogen therapy such as tamoxifen and such ther-
apy improves patient outcome. Likewise, patients with cognitive 
impairment could be tested for vascular abnormalities and inflam-
mation. Those that exhibit these ancillary pathologies could then 
be treated for those conditions. As with cancer, it seems likely that 
this approach would benefit this subset of patients.

Is there a connection between vascular 
pathology and AD?
The classical pathological hallmarks of AD are amyloid-β pep-
tide (Aβ) plaques, tau tangles, neuroinflammation, and neuronal 
loss (8). The Aβ deposition can be in the brain parenchyma or in 
and around cerebral blood vessels, a condition known as cerebral 
amyloid angiopathy (CAA), discussed below (9). Less discussed is 
that AD is very often associated with cerebrovascular abnormali-
ties (6, 10–13). These cerebral pathologies include microinfarcts, 
hemorrhage, decreased cerebral blood flow, small vessel disease, 
and white matter abnormalities (14, 15). Three recent studies of 
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always independent comorbidities, as they are both more preva-
lent in the aged population. If so, there could be synergistic effects 
on brain function. Alternatively, there could be a mechanistic link 
between AD and vascular pathology (29, 30).

Early vascular pathologies in late-onset  
AD patients
A recent study used a multifactorial, data-driven analysis to exam-
ine various pathologies in 1,171 healthy and late-onset AD (LOAD) 
subjects and assign a temporal ordering of disease progression (31). 
The conclusion of this study was that vascular dysregulation, mea-
sured by arterial spin labeling of cerebral blood flow (CBF), is the 
earliest and strongest brain pathology associated with LOAD. A 
tentative ordering of abnormalities was (a) initial vascular dysregu-
lation, (b) Aβ deposition, (c) metabolic dysfunction, (d) functional 
impairment, and (e) gray matter atrophy. Given thresholds for 
detection, the exact order of the pathologies is not certain, but these 
analyses strongly “suggest that intra-brain vascular dysregulation is 
an early pathological event during disease development” (31).

Vascular pathologies appear early in early-onset 
AD patients
An analysis of early-onset AD (EOAD) patients who harbor 
autosomal-dominant mutations provides strong evidence for a 
connection between AD and vascular pathology (32). EOAD-
associated mutations occur in amyloid precursor protein (APP), 
from which the Aβ peptide is derived, or in γ-secretase, which 
helps excise Aβ from APP (33). These mutations are virtually 
fully penetrant, and by analyzing DNA sequences, one can iden-

vascular disease in AD autopsy samples showed that concurrent 
vascular disease is very common in AD and strongly correlates 
with cognitive dysfunction (16–18).

Reinforcing the concept that the vascular system influ-
ences AD, multiple studies have reported that exercise, which 
improves cerebrovascular health, can decrease the risk and/or 
delay progression of dementia. Benefits of increased physical 
activity include improved memory performance and reduced 
hippocampal atrophy (19–21), increased gray matter volume and 
production of neurotrophic factors (22), lower risk of mortality 
(23, 24), and reduced risk of AD (25). However, this association is 
complex (26), as exercise could also have nonvascular benefits, 
and other studies have found no improvement in risk of demen-
tia with exercise (27). Mechanisms by which exercise could influ-
ence AD are discussed below.

Another link between AD and the vascular system is CAA, 
the deposition of Aβ in and around blood vessels of the brain (9), 
which affects 80% to 95% of AD patients (15, 16). CAA can cause 
blood vessel occlusion, microinfarcts, ischemia, microbleeds, 
and inflammation, conditions that can weaken the blood ves-
sel wall and cause life-threatening hemorrhage (8, 15, 28). All of 
these conditions could contribute to neuronal death that is associ-
ated with AD progression.

AD and vascular dysfunction: independent or 
causal pathologies?
It is clear that vascular dysfunction can itself lead to cognitive 
decline. However, the coexistence of AD and cerebrovascular 
pathology prompts questions of whether these conditions are 

Figure 1. Multiple pathogenic pathways contribute to and provide therapeutic targets for AD. While neuronal dysfunction is the defining pathology 
underlying cognitive decline in AD, this disease is likely the product of multiple pathogenic mechanisms and might benefit from combination therapy (128–
130). Increasing evidence implicates vascular dysfunction in AD pathogenesis. Aβ plaques and tau tangles drive neuronal dysfunction and neuroinflamma-
tion through mechanisms that are not fully established. Aβ is also implicated in vascular pathology, having been shown to interact with fibrin(ogen) and 
the contact system. The prevalence of vascular dysfunction in patients exhibiting cognitive decline suggests that combining existing treatment strategies 
targeting neuronal dysfunction (e.g., cholinesterase inhibitors) and vascular dysfunction (e.g., antiinflammatory, antihypertensive, or anticoagulant medi-
cations) may advance AD treatment efficacy.
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or more reliably than established markers such as hippocampal 
volume and atrophy (39, 40). In the EOAD study (32), mutation 
carriers and noncarriers were relatively young, virtually identical 
demographically, and at equal risk for inheriting an autosomal-
dominant mutation. Thus, these findings provide strong evidence 
that vascular dysfunction does not reflect comorbidity or an inde-
pendent pathophysiology, but rather that vascular dysfunction and 
Aβ pathology are causally related (32). In recent years, there has 
been evidence that WMHs are also associated with LOAD (41–43). 
In particular, WMH volume and amyloid pathology are linked in 
LOAD (42–44). However, it should be noted that one study found 
no association between WMHs and AD pathology (45).

Another link between AD and cerebrovascular disease stems 
from pathological outcomes in patients with autosomal-dominant 
mutations. Mutations in the Aβ sequence at residues 21–23 (for 
example, Flemish, Dutch, Iowa, and Italian mutations) are associ-
ated with massive CAA, leading to weakening of the vessel wall and 
frequent infarcts and hemorrhage (46, 47). Mutations in presenilin-1, 
a protein component of γ-secretase that helps release Aβ from APP, 
can also show severe cerebrovascular effects (48). All of this evi-
dence indicates a connection between vascular pathology and AD.

Mechanistic links between AD and  
vascular pathology
Aβ interaction with fibrin. Fibrin is the major protein component 
of blood clots and is critical for normal hemostasis (49). It is well 
established that in addition to its beneficial functions, persistent 
fibrin can lead to or exacerbate many pathological conditions, 
including atherosclerosis, rheumatoid arthritis, stroke, spinal cord 
injury, multiple sclerosis, muscular dystrophy, peripheral nerve 
regeneration, and even bacterial infection (50–52).

Postmortem AD patient brains have been analyzed with anti-
bodies that do not distinguish between soluble fibrinogen and 
insoluble fibrin. These studies showed extensive fibrinogen/ 
fibrin deposition in the brain (53–60), which in some cases was 
attributed to a leaky BBB. Further studies using extraction pro-
cedures that remove all soluble fibrinogen and staining with 
fibrin-specific antibodies showed that insoluble fibrin is greatly 
increased in AD patient brains compared with nondemented con-
trols, with differences in some regions reaching 100-fold (61). The 
fibrin deposition often colocalized with parenchymal Aβ deposits 
and lysosome-associated membrane protein 1 (LAMP-1), which is 
upregulated in the human AD brain (62) and cerebrospinal fluid 
(CSF) (63) and enriched in dystrophic areas surrounding amyloid 
plaques in AD mice (64, 65) and human AD patient brains (62, 66). 
Fibrin is also found codeposited with Aβ in areas of CAA (53, 67).

High levels of fibrinogen in plasma increase the risk for 
dementia (68, 69), and fibrinogen in CSF (70–72) and plasma (73, 
74) can serve as a useful biomarker to identify AD progression. In 
addition, fibrinogen has been proposed to be one of the few blood-
based biomarkers that is specific for AD and does not apply to 
other brain disorders (75).

The association of brain fibrin and AD prompts the question of 
whether this deposition is a result of AD, or whether it contributes 
to the pathology. AD has been linked to the APP-derived Aβ pep-
tide, a known driver of AD pathology (76–78). Aβ binds to fibrino-
gen and fibrin (79, 80), leading to blood clots that are structurally 

tify at the time of birth which patients will develop EOAD at a 
predictable age decades later. A comparison of mutation carri-
ers and noncarriers reveals that the first abnormalities detected 
in these EOAD patients are alterations in Aβ levels, which occur 
approximately 30 years before the onset of symptoms (esti-
mated year of onset, EYO). The next pathology to emerge is 
white matter hyperintensities (WMHs), which are abnormalities 
observed during brain imaging. In carrier brains, WMH abnor-
malities were evident in general 6.6 years before EYO and in the 
occipital lobes as early as 22 years before EYO (32). This study 
did not measure CBF, so it cannot be compared to the results for 
LOAD patients discussed above.

WMHs are part of the spectrum of small vessel cerebrovascu-
lar disease (34, 35), including ischemic and hemorrhagic stroke, 
microbleeds, brain atrophy (36), chronic hypoperfusion (37), and 
an increase in blood-brain barrier (BBB) permeability, which causes 
fluid to leak into the surrounding brain tissue (38). What is notable 
is that these lesions predict the clinical outcome of AD as well as 

Figure 2. Possible influence of Aβ on fibrin deposition and AD pathology.  
The interaction of Aβ with fibrinogen leads to increased formation of struc-
turally abnormal fibrin clots that are resistant to degradation. This persis-
tent fibrin and resulting predisposition towards blood vessel occlusion and 
inflammation could contribute to the neurodegeneration observed in AD. 
Images reproduced with permission from Cortes-Canteli et al. (53).
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mation, it could therefore contribute to the initiation of the inflam-
mation observed in AD (88).

The contact system, intrinsic blood coagulation, and Aβ. The 
contact system is initiated by activation of the serine protease fac-
tor XII (FXII). Once converted to its active serine protease form,  
FXIIa can launch both prothrombotic and proinflammatory  
pathways (92). Regarding the prothrombotic arm, FXIIa can 
activate factor XI (FXI), which leads to thrombin generation and 
fibrin formation via the intrinsic blood coagulation pathway (93). 
In the proinflammatory arm, FXII can activate plasma prekalli-
krein (PPK), which leads to the release of bradykinin via cleavage 
of high molecular weight kininogen (HK). Bradykinin is a potent 
nonapeptide vasodilator that can activate inflammatory processes 
(Figure 3 and ref. 94). Thus, the contact system can initiate vascu-
lar pathology and inflammation (92, 95), both of which have been 
implicated in AD, and could contribute to disease pathology.

Many connections between FXII and AD have been reported, 
suggesting that this system may play a role in disease develop-
ment. Aβ plaques contain FXII (96), the AD brain parenchyma 
exhibits higher plasma kallikrein (PK) activity (97), and AD 
patients have increased HK cleavage in their CSF (98). Consistent 
with a role for the contact system, AD patients have higher plasma 
levels of FXIIa and increased HK cleavage compared with nonde-
mented individuals (99). Experiments with a mouse model of AD 
also show increased contact system activation (99, 100).

The contact system can be triggered by Aβ, which can activate 
FXII (101–104). This increase in FXIIa leads to elevated throm-
bin generation, kallikrein activity, and HK cleavage in AD patient  
plasma (100). Increased contact system activation is also observed 
in AD mouse model plasma and in plasma from wild-type mice 
injected intravenously with Aβ42. These results demonstrate that 
Aβ42-mediated contact system activation can occur in the AD 
circulation and suggest new pathogenic mechanisms, diagnostic 
tests, and therapies for AD.

Experiments in mice suggest that the contact system is a direct 
effector of AD pathology. Depletion of FXII using antisense oligo-
nucleotide treatment ameliorates pathology in AD mice in early-
stage disease (100). These results indicate that dysregulated con-
tact system activation contributes to AD pathology.

Contact system activation could be used in conjunction 
with other diagnostic procedures such as PET and MRI imag-
ing, CSF analysis, and/or cognitive testing to help stratify 
patients by their pathological profile and help guide therapy. 
Furthermore, a link between FXII activation and the patho-
genesis of AD provides a possible novel approach to treatment 
since the contact system is an attractive target for therapy (105). 
Humans deficient in FXII and mice with knockout of the FXII, 
FXI, or Kng1 (encoding HK) gene all have normal hemostasis 
(95). However, deficiencies in the contact system protect mice 
from clotting after arterial injury and experimental cerebral 
ischemia (92, 106).

Based on these considerations, a promising therapeutic 
approach to slow disease progression without affecting normal 
hemostasis would be to block activation of the contact system. 
This approach would also block bradykinin release from HK and 
reduce inflammation. Thus, the contact system may reveal new 
targets to suppress both thrombotic and inflammatory contribu-

abnormal and harder to degrade in vitro and in vivo than normal 
clots (53, 80). Thus, fibrin clots formed in AD patients and mice 
might be persistent and cause vessel occlusion and neuroinflam-
mation, which could contribute to neuronal death and other dis-
ease pathologies (Figure 2).

Data in humans and mice indicate that fibrin deposition in AD 
brains is not simply a comorbidity due to the aging population at 
risk, but is instead a driving factor of the disease. Studies in atrial 
fibrillation patients with and without warfarin treatment showed 
that anticoagulants can protect against dementia (81). Earlier 
work with dementia patients reached the same conclusion (82). In 
AD mice, anticoagulant treatment is protective (83–85) and injec-
tion of fibrinogen into the brain induces demyelination (86), remi-
niscent of the white matter abnormalities observed in AD patients 
discussed above. More specifically, in AD mice treatment with a 
small molecule that blocks the Aβ-fibrin(ogen) interaction signifi-
cantly improves the course of disease (87) and reducing fibrinogen 
levels results in reduced pathology and better cognitive ability (53, 
60, 61). Both of these studies substantiate a role for fibrin.

The mechanism by which fibrin accelerates neuronal degen-
eration remains unknown. There are two likely possibilities: (a) 
occlusion — fibrin clots are deposited in the vascular and peri-
vascular space, resulting in reduced blood flow, increased Aβ 
accumulation due to binding to clots, and neuronal damage due 
to deprivation of oxygen and nutrients; and (b) inflammation — 
fibrin deposits drive a chronic inflammatory state that leads to cel-
lular damage (50).

AD is associated with inflammation, which in some cases can 
be a beneficial response but in other cases can be toxic to cells 
(88, 89). AD patient brains have increased inflammation, muta-
tions in immune-related molecules lead to an increased risk of 
AD, and nonsteroidal antiinflammatory drugs show some effects 
at reducing AD risk (5). Furthermore, AD mice that are incapable 
of mounting a proinflammatory response show improvement in 
pathology and cognition (90, 91). Since fibrin is a driver of inflam-

Figure 3. The contact activation system. Aβ-mediated dysregulation or 
overactivation of the contact system could contribute to the coagulopathy 
and inflammation observed in AD. Aβ can trigger activation of factor XII 
(FXII) into FXIIa. FXIIa’s activation of FXI initiates the intrinsic coagulation 
system and fibrin formation, whereas its activation of plasma prekallikrein 
leads to inflammation. PPK, plasma prekallikrein; PK, plasma kallikrein; 
HK, high molecular weight kininogen; HKc, cleaved HK. a = activated form.
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ulation, plasma preparation, sample storage, and analytical proce-
dures (119). Nevertheless, it is possible to standardize procedures 
to maximize reproducibility. Having a biomarker in blood as an 
early diagnostic to help guide treatment could lead to a significant 
benefit for some patients.

Genetics of vascular involvement in AD
This review has concentrated on vascular and inflammatory driv-
ers of AD. In genetic studies, inflammatory genes have emerged as 
risk factors for AD (120, 121). If vascular dysfunction is also a con-
tributing factor in AD pathogenesis, why haven’t genes associated 
with clotting and hemostasis turned up in screens for risk factors? 
One possible reason is that genes that inhibit clotting might prevent 
or delay AD, so they would not be observed in significant numbers 
in AD populations, but rather, in individuals at low risk for AD. One 
would need to look for protective genes; such a study has been done, 
and it uncovered an APP mutation that confers protection against 
AD (122). However, mutations that induce changes in clotting may 
also carry a risk of bleeding, so these patients might be present in low 
numbers in the aged population. It is clear that several genes identi-
fied as risk factors for AD, including Apo E4 (123) and PICALM (124, 
125), can affect cerebrovascular function via the BBB (126, 127).

Conclusions
Multiple contributing pathologies affect the risk of developing AD. 
Just as treating multiple pathways in cancer has improved outcomes, 
a similar evolution of therapy can be envisaged for AD. The develop-
ment of assays to classify patients and treat their specific constella-
tion of pathologies will be required to make progress in treatment. 
Although reversal of cognitive decline would be the ideal treatment, 
and next to that a complete inhibition of progression, simply slow-
ing the rate of progression of symptoms by 50% would be a very 
significant advance. Accomplishing this goal is going to require, in 
general, a wider range of analysis and treatment options than are 
currently employed, and specifically, more thorough investigations 
into correlations between AD and vascular dysfunction.
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tions to AD progression. Positive results could be applied to AD 
patients rapidly; a small molecule inhibitor of PK, ecallantide, is 
already FDA approved for treatment of hereditary angioedema, 
a condition that results from excess contact system activation 
(107). Furthermore, an antibody inhibitor of PK (108) is slated for 
a phase 3 trial and possible FDA approval by 2018. Some of these 
reagents might be useful for the treatment of AD in the future.

Could vascular pathology trigger AD?
The above discussion concentrates on mechanisms by which Aβ 
can drive vascular pathology. The reverse scenario is also a pos-
sibility, i.e., that vascular pathology could accelerate AD.

AD ⇄ Vascular Dysfunction

Clearance of Aβ is critical to keep its concentration low in the 
brain and the cerebrovascular circulation, and decreased clear-
ance may be a major cause of increased Aβ deposition in the AD 
brain (109, 110). Mechanisms that remove Aβ from the brain 
include BBB transport and movement from the CSF and paren-
chyma into the blood (111–114). If the cerebrovascular system 
were compromised, it could impede removal of Aβ and lead to 
increased concentration in the brain. Thus, one could envisage a 
vicious cycle whereby Aβ negatively affects the circulation, which 
in turn reduces clearance of Aβ and increases its toxic effects.

Another possible contribution of vascular pathology lead-
ing to AD could be BBB breakdown. Patients with mild cognitive 
impairment have been shown to have a compromised BBB (115). 
This condition could allow plasma proteins, including fibrinogen, 
to gain access to the brain parenchyma (116) where they could con-
tribute to inflammation and promote neurodegeneration.

Finally, decreases in blood flow can lead to hypoxic tissues 
and the induction of the hypoxia-inducible factor HIF-1α. This 
transcription factor can activate γ-secretase, which could lead 
to increased Aβ production (117, 118). Thus, one can envisage a 
vicious cycle whereby Aβ causes vascular insufficiency, which in 
turn leads to increased Aβ.

Diagnostic possibilities stemming from vascular 
contributions to AD
As mentioned, if vascular dysregulation is a significant factor in 
some AD cases, it opens a therapeutic window to treat one aspect 
of the pathology. In addition, vascular involvement offers a possi-
bility of blood-based biomarkers that could help identify contrib-
uting pathologies. Analysis of plasma has shown that AD patients 
and AD mice have increased contact system activation, as evi-
denced by increased FXII activation and HK cleavage (99, 100). 
To accurately assess contact activation in blood requires careful 
attention to many variables, including blood collection, anticoag-
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