
The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

2 3 1 0 jci.org   Volume 128   Number 6   June 2018

Introduction
Increasing application of next-generation sequencing in can-
cer genome research is illuminating the genetics underlying 
the molecular mechanism of tumorigenesis and primary tumor 
growth. However, comprehensive understanding of the evolu-
tionary progress and molecular mechanism of tumor metastasis, 
the primary cause of death, remains unclear (1, 2). Insight into 
the molecular mechanism of tumor spread and metastasis is cru-
cial to clinical efforts to prevent metastasis. Several theories and 
hypotheses as to how and why tumors metastasize have been put 
forth. Some studies have shown that the probability of metasta-
ses correlates with primary tumor size (3), while other studies 
focused on functional features of the primary tumor, such as 
epithelial-mesenchymal transition (EMT) (4, 5), tumor microen-
vironment (6), and physical factors (7, 8). More recent genomic 
studies of paired primary tumors and metastasis have shown that 
internal factors and intrinsic mechanisms, especially genomic 
variation, likely trigger and promote tumor metastasis (9), but 
only a few genes have been identified in these comparisons (10). 
A shift in mutational rates of cancer genes in metastasis has 
been observed, but only TP53 showed a significantly increased 
mutational rate when analyzing pair samples of multiple cancer 

types, including breast cancer (11). Yates et al. recently reported 
that most distant metastases acquired additional mutations in 
a wider repertoire of cancer genes, while only a few additional 
mutated driver genes were found in lymph node metastasis of 
breast cancers (12). Moreover, other studies have shown that 
metastasis-related aberrations originate from the primary tumor 
or certain subclones thereof (13–15), suggesting that metastasis-
related genes are altered in both primary tumors and metastasis, 
thus hindering identification by genomic comparison of paired 
primary tumor and metastasis.

Single-cell sequencing is one of the most promising and valu-
able techniques in cancer research and medical science (16, 17). 
Single-cell sequencing has successfully illuminated intratumoral 
heterogeneity as well as clonal and tumor evolution analysis (18, 
19). However, these studies have not provided detailed insight of 
the morphologic spatial localization of specific cells within the 
tumor, nor revealed the relationship between clonal evolution and 
spatial location of intratumor cells. We used laser-capture micro-
dissection (LCM) of single cells from H&E-stained tissue sec-
tions followed by single-cell sequencing and targeted duplex deep 
sequencing of pools of thousands of cells from different spatial 
locations of breast tumors to define the microheterogeneity and 
spatial distribution of intratumoral subclones and in primary tumor 
and synchronous lymph node metastasis (Supplemental Figure 1; 
supplemental material available online with this article; https://
doi.org/10.1172/JCI97449DS1). Furthermore, we explored the 
molecular mechanisms of lymph node metastasis in 4 sequencing 

Single cancer cell–sequencing studies currently use randomly selected cells, limiting correlations among genomic 
aberrations, morphology, and spatial localization. We laser-captured microdissected single cells from morphologically 
distinct areas of primary breast cancer and corresponding lymph node metastasis and performed whole-exome or deep-
target sequencing of more than 100 such cells. Two major subclones coexisted in different areas of the primary tumor, and 
the lymph node metastasis originated from a minor subclone in the invasive front of the primary tumor, with additional copy 
number changes, including chr8q gain, but no additional point mutations in driver genes. Lack of metastasis-specific driver 
events led us to assess whether other clonal and subclonal genomic aberrations preexisting in primary tumors contribute to 
lymph node metastasis. Gene mutations and copy number variations analyzed in 5 breast cancer tissue sample sets revealed 
that copy number variations in several genomic regions, including areas within chr1p, chr8q, chr9p, chr12q, and chr20q, 
harboring several metastasis-associated genes, were consistently associated with lymph node metastasis. Moreover, clonal 
expansion was observed in an area of morphologically normal breast epithelia, likely driven by a driver mutation and a 
subsequent amplification in chr1q. Our study illuminates the molecular evolution of breast cancer and genomic aberrations 
contributing to metastases.
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phologically normal breast tissue (BN-T) (>20 mm from any 
pathological detectable tumor cell) were also sequenced. To 
determine the patient’s germline, we also sequenced pieces  
of normal skin (Skin-T) and normal lymphocytes from the 
axillary nodes (Ly-T).

A total of 97 single cells from 9 morphologically distinct areas 
were whole-genome amplified and whole-exome sequenced, 
including the invasive front (InvF, defined as malignant cells 
embedded in the border of solid tumor growth and fatty tissue) 
(Figure 1, A, F, I and J), 3 distinct areas within the solid invasive 
growth (PT1, PT2, and PT3) (Figure 1, A and F–H), an area of duc-
tal carcinoma in situ (DCIS), and invasive cancer cells localized in 
close proximity to the selected DCIS (Figure 1, A and K–N), MeC 
and MeP, normal lymphocytes from the same lymph node (Ly) 
(Figure 1, A–C), and normal breast epithelial cells (BN) (Figure 1, 
A, D and E) using Illumina’s HiSeq 2000 and HiSeq 2500 (Supple-
mental Figure 2A and Supplemental Table 1). The mean depth of 
single-cell exome sequencing was 45× with a median 10× cover-
age up to 53%. For whole-exome sequencing (WES) of the small 
tissue pieces, the depths of the primary tumor (PT4), lymph node 

data sets of primary breast tumors from patients with or without 
lymph node metastasis and copy number variation (CNV) analysis 
of selected genes in another 170 breast cancers.

Results
LCM isolation and sequencing of single cells from primary tumor 
and lymph node metastases of an ER+ breast cancer patient. 
Tissues from a woman undergoing mastectomy for a 32 mm 
primary estrogen receptor–positive (ER+) breast cancer were 
obtained, including tissue blocks from the primary tumor and 
from adjacent morphologically normal ductal tissue (>20 mm 
from any pathological detectable tumor cell) as well as the 
sentinel axillary lymph node. Single cells and cell pools were 
isolated by LCM of H&E-stained sections from distinct mor-
phological areas of the primary tumor, the periphery (MeP) 
and central (MeC) areas of the tumor-infiltrated lymph node, 
a morphologically normal area of the tumor-infiltrated lymph 
node (MeD), and the morphologically normal ductal tissue, and 
sequenced. Small macroscopically dissected pieces (2 × 2 mm)  
of the primary tumor (PT4), lymph node metastasis, and mor-

Figure 1. Subclone distribution 
within different tissues of the 
analyzed breast cancer patient. 
(A) Schematic representation 
of the tissues analyzed by WES 
of single cells and cell pools and 
the distribution of the different 
subclones within these areas. 
MT, metastasis. (B) Axillary 
lymph node containing large MT 
stained for estrogen receptor. (C) 
Magnification of an area of the 
lymph node exhibiting normal 
architecture and morphology, 
but also containing dissemi-
nated single cancer cells. (D) 
H&E-stained section of the BN-T 
including normal breast ducts. 
(E) Magnification of an area of D 
showing normal breast epithelia. 
(F) H&E-stained section of the 
primary tumor biopsy provides 
a spatial overview of the 3 solid 
growth tumor areas selected for 
LCM in addition to the InvF. (G 
and H) Solid growth area 2 (PT2). 
(I and J) Border of solid growth 
area 1 (PT1) including the InvF. H 
and J are stained for Ki-67, while 
G and I are stained for ER. Origi-
nal magnification: ×12.5 (D, E, F); 
×100 (B, C, K, L, M, N); ×50 (G, H, 
I, J). Section containing area of 
DCIS stained with H&E (K), and 
for ER (L), CK14 (M), and Ki-67 
(N). (M) The intact myoepithelial 
layer is visualized by staining 
for CK14.

https://www.jci.org
https://www.jci.org
https://www.jci.org/128/6
https://www.jci.org/articles/view/97449#sd
https://www.jci.org/articles/view/97449#sd
https://www.jci.org/articles/view/97449#sd


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

2 3 1 2 jci.org   Volume 128   Number 6   June 2018

tissues (1.47% by mean), while for some subset 3 SNVs, allele fre-
quencies were relatively higher in Ly-T (Supplemental Table 5). 
Interestingly, a truncating mutation of TET2, a gene related to 
clonal expansion of lymphocytes usually present in the blood of 
normal elderly persons, was identified in subset 3 (22). Thus, the 
mutations in subset 3 are likely a result of age-related lymphocyte 
genetic aberrations in this 92-year-old patient.

Focusing on the 78 breast cancer cell–specific mutations of 
subset 1, we identified a number of clonal mutations and 4 distinct 
subgroups of mutations that differed from the clonal mutations by 
integrating their distribution in single cells (Figure 2C) and data 
from cluster analysis of their allele frequencies in 6 cancer cell 
pools (Figure 2A). One subgroup consisting of 3 SNVs (GATAD2A, 
MYH6, MAGEC3) was specific to lymph node metastasis single 
cells, consistent with their presentation of DCSs, which were 
only identified in the lymph node metastasis cell pool, except for  
GATAD2A, which was also present in DCSs of the InvF cell pool. 
Another subgroup consisting of 3 SNVs (ARHGEF28, UBR5, 
KIF3C) was specific to DCIS single cells and present at relatively  
low allele frequencies in DCSs of the cell pools PT3 and PT4, 
which were the only 2 cell pools containing cells from the DCIS 
areas. The third subgroup, consisting of 3 SNVs (OR10K2, CHIC1, 
PDE1C), was specifically present in 7 single cells isolated from the 
InvF; however, DCSs for these SNVs were not only identified in 
the InvF cell pool, but also in cell pools from other invasive tumor 
areas, including PT1 and PT2, suggesting a genetic relationship 
between InvF and PT1/PT2. Moreover, the fourth subgroup of 9 
SNVs exhibited the opposite distribution compared with the third 
mutation subgroup, being present in single cells from all tumor 
areas except the InvF. This subgroup of mutations formed a sepa-
rate class in the principal component analysis (PCA) of allele fre-
quencies in the cancer cell pools (Figure 2D). The combined data 
indicated that single cells from the InvF belonged to a distinct sub-
clone (defined as subclone 2) as opposed to single cancer cells in 
the other areas (defined as subclone 1). These 9 SNVs were also 
identified in cell pools of PT1 and PT2, with allele frequencies sig-
nificantly lower than those of clonal SNVs (P < 1 × 10–8, 2-tailed  
t test), similar to the cell pool of InvF. However, the fourth group 
of SNVs did not exhibit allele frequencies (P > 0.05) lower than 
clonal SNVs in PT3, PT4, and metastasis cell pools, while the third 
group of SNVs was absent in both single cells and cell pools of 
these 4 areas. Our results indicated that the tumors in this patient 
comprised 2 dominant subclones, subclone 1 and subclone 2, that 
coexisted in InvF, PT1, and PT2 in different proportions. The other 
morphological areas, including PT3, PT4, DCIS, and metastasis, 
consisted only of subclone 1 cancer cells (Figure 2B).

CNVs in morphologically distinct areas. CNV analysis was 
performed on the cell pools and the macroscopically dissected 
tissue pieces. Gains of chr1q, chr7p, chr7q, and chr16p and losses  
of chr16q and chr17p were identified in all the breast cancer 
areas, consistent with the subsequent FISH result (Supplemen-
tal Figures 6 and 7; Supplemental Table 6), suggesting that they 
were early clonal events. In addition, chr3q and chr8q gains and 
chr8p loss were detected in all the breast cancer areas with the 
exception of InvF and PT2, which mainly comprised subclone 2 
cells, indicating that copy number changes of these 3 chromo-
some arms were specific to subclone 1. In contrast, chr22 loss 

metastasis, BN-T, Ly-T, and Skin-T were 87.25×, 71.65×, 99.33×, 
105.32×, and 123.77×, respectively.

Typically, the allele dropout (ADO) (20) rate is used to 
assess whole-genome amplification (WGA) uniformity of single- 
cell–sequencing data. However, we defined and used the K value,  
which is less affected by sequencing depth of single cells, as a mea-
sure of single-cell data quality (see Methods for further details; 
Supplemental Figure 2, B–E). For mutation calling of single cells, 
we developed a pipeline optimized to avoid false positives and 
focused on mutations identified in at least 2 separate single cells 
(see Methods for further details). As a result, the predominant 
C→A signature of substitution in single cells, presumably caused 
by oxidized guanine bases (8-oxo-guanine) in the raw cellular 
DNA or in early cycles of WGA, was significantly reduced (Sup-
plemental Figure 3, A and B). After filtering the putative germline 
mutations using normal skin tissue as a reference, a total of 218 
single nucleotide variants (SNVs) and 4 indels from the 97 single 
cells remained. To validate the SNVs identified by single-cell 
exome sequencing as well as achieve a deeper sequencing depth 
and determine the mutational frequencies in the bulk tumor, we 
designed a targeted sequencing panel that covered the 218 iden-
tified SNVs together with the top 20 breast cancer genes and 
performed targeted deep sequencing on 78 selected single cells 
(median depth of 157×) (Supplemental Figure 2, A and C). In 
addition, 7 cell pools (see Methods for details), including 4 dis-
tinct areas within the invasive tumor (PT1, PT2, PT3, and PT4), 
InvF, lymph node metastasis, and BN (total depth of 4177× for cell 
pools), also underwent targeted duplex sequencing. The duplex 
method (21) was used to analyze the 7 cell pools, achieving a total 
duplex consensus sequence (DCS) depth of 1500× (see Methods 
for further details).

Sequencing of single cells and cell pools delineated the structure of 
subclones in the breast tumors. In total, 127 of the 218 SNVs were veri-
fied by DCSs of cell pools. In addition, we found additional SNVs 
that, although not supported by DCSs, were only present in nor-
mal breast epithelia samples, including 22 detected in at least 2 BN 
cells and at least 1 of the 3 whole-genome amplified normal breast 
epithelial cell pools (BNM) (see Methods for further details), which 
were included in further analysis (Supplemental Table 2). The 69 
candidate mutations that failed validation (94% were C>T and 
C>A) showed trinucleotide mutation signatures that significantly 
correlated with amplified errors (R = 0.85), but not true mutations 
(R = 0.17), and thus were excluded from further analysis (Supple-
mental Figure 4). The 149 SNVs showed 3 distinct patterns of allele 
frequencies in 7 cell pools and the small tissue pieces (Supple-
mental Figure 3C and Supplemental Figure 5) and thus could be  
divided into 3 subsets: 78 SNVs were only present in the breast can-
cer samples (subset 1, Supplemental Table 3); 49 SNVs were only 
found in morphologically normal breast epithelial cells (subset 2, 
Supplemental Table 4); and a minor fraction (22 SNVs) were identi-
fied in some cells from several areas that were thus not restricted 
to a single specific area from this patient (subset 3; Supplemental 
Table 5). Subset 1 SNVs were found only in bulk tissue, cell pools, 
and single cells isolated from tumor tissues. Subset 2 SNVs were 
found only in bulk tissue, cell pools, and single cells isolated from 
the normal breast epithelial tissue. For subset 3 SNVs, the allele fre-
quencies were low in almost all of the cancer cell pools and bulk 
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that the AF of some SNVs located on chr1q and chr3q exceeded  
50%, including PIK3CA (E545K), implying that these SNVs 
were presented in the amplified allele and therefore occurred 
before gains of the 2 chromosomal regions.

Sequencing of single cells and cell pools identified the evolution-
ary tree of metastasis and micrometastasis within a sentinel axillary 

was found to be specific to subclone 2, as it was mainly present 
in the InvF and PT2 and not in the metastasis, PT3, and PT4. 
PT1 showed a mixed pattern of CNVs corresponding to the 2 
subclones, in agreement with the mixed SNV characteristics 
corresponding to 2 subclones observed in the SNV allele fre-
quency (AF) analysis (Supplemental Figure 6). It is worth noting 

Figure 2. SNV analysis of breast cancer single cells and cell pools identified 2 dominant subclones and additional spatial location–specific subclones. 
(A) AF of breast cancer–specific SNVs in 6 cell pools of distinct morphologically defined breast tumor areas (lymph node metastasis, InvF, and 4 distinct 
areas within the solid invasive growth [PT1, PT2, PT3, PT4]). Presumed clonal SNVs located in CNV regions were not shown for distorted VAF. Blue, clonal 
SNVs; red, subclone 1–specific SNVs; green, subclone 2–specific SNVs; purple, metastases-specific SNVs; black, DCIS-specific SNVs. (B) Fraction of the 2 
dominant subclones in each cell pool estimated by least square fit (red, subclone 1; green, subclone 2). (C) Heatmap of breast cancer–specific SNVs identi-
fied in breast cancer single cells (dark blue, mutated; sky blue, WT; white, WT and sequencing depth of less than ×8). Clonal SNVs predicted not to change 
protein structure and clonal SNVs with median sequencing depths of less than ×50 in the 57 single cells are not shown, while all subclonal SNVs are 
shown. Colored boxes encapsulate the group-specific SNVs (the same color code for each group as in A is used), except for the orange box, which denotes 
clonal SNVs located in CNV regions. (D) PCA of SNVs based on allele frequencies in breast cancer cell pools (the same color code for each group as in A is 
used). Two dimensions were shown (d = 2). (E) The evolutionary tree of the single cell–sequenced breast cancer. Accumulation of chromosome gains and 
losses as well as somatic mutations are represented by red, blue, and purple, respectively.
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lymph node. The SNV of GATAD2A (E110K) was present in most 
single cancer cells (12/16) from the lymph node metastasis (MeC, 
MeP, and MeD), but not from single cells in other areas (Figure 
2C). The AF of this mutation in cell pools of MeC and MeP was 
similar to that of the clonal SNVs (P > 0.05, 2-tailed t test) (Figure 
2A), indicating it is a clonal mutation in the lymph node metasta-
sis. As mentioned above, this mutation was also found at low fre-
quency in the cell pool of the InvF (AF of 4.9%) (Figure 2A and 
Supplemental Table 3), implying that the GATAD2A mutation 
was not exclusively restricted to metastases, but also existed in 
the subclone 1 lineage of the InvF, which indicates that the lymph 
node metastasis likely originated from subclone 1 of the InvF, 
even though subclone 1 constituted a small fraction thereof (Fig-
ure 1A). Furthermore, single cells from the lymph node metasta-
sis obtained an additional SNV (R696H) in MYH6 compared with 
their ancestor in the primary tumor.

Eight single cells were isolated from a morphologically normal 
area of the tumor-infiltrated lymph node, as determined by H&E 
staining. Three were normal lymphocytes, and 5 were dispersed 
cancer cells according to analysis of the sequencing data. An addi-
tional SNV in MAGEC3 (P33Q) was identified to be common to 2 
of the 5 single cancer cells and not present in other lymph node 
metastasis single cells (MeC and MeP), nor in any cell pools except 
for lymph node metastasis with a relatively low AF (2.4%) (Figure 
2, A and C, and Supplemental Table 3). This suggests, based on the 
genomic evolution within these cells, that they likely disseminated 
from the lymph node metastasis, according to a linear model of 
metastasis (10). To further address the low frequency of cancer cells 
within the morphologically normal area of the tumor-infiltrated 
lymph node, we performed immunohistochemical analysis of the 
lymph node using a pan-cytokeratin antibody, which demonstrated 
the presence of single dispersed cancer cells within the apparently 
normal area that were not detected by H&E staining (Figure 1, B 
and C). Overall, these data suggest that the lymph node metastasis 
resulted from clonal expansion of a single cell derived from the InvF 
of the primary tumor and that single cancer cells may have dissoci-
ated from the lymph node metastasis, acquiring additional genetic 
aberrations and potentially giving rise to distant tumor spread. 
Moreover, single cells of DCIS were homologous with subclone 1, 
with several new SNVs developed in some of the single cells, indi-
cating a separate branch of the phylogenetic tree. In summary, our 
data support the classical theory of breast cancer development: pri-
mary tumor develops into the InvF, which then metastasizes to the 
lymph node. But our data also suggest that DCIS may arise in paral-
lel with the infiltrating carcinoma (Figure 1 A and Figure 2E).

Early events of carcinogenesis in normal breast cells. Interestingly, 
49 SNVs were exclusively identified in single cells and small, mac-
roscopically dissected pieces of morphologically normal breast 
epithelial cells obtained well distant from the resected tumor bor-
der (>20 mm) (Figure 1, A, D and E), including another hot-spot 
mutation of PIK3CA (H1047R) located in the kinase domain (Fig-
ure 3A). This PIK3CA mutation differed from the hot-spot, helix 
domain PIK3CA (E545K) mutation identified in single cancer cells 
from the patient. The 49 mutations were not common to SNVs in 
single cancer cells or cancer cell pools, indicating that the adjacent 
morphologically normal breast epithelial cells exhibited genetic 
aberrations nonhomologous to breast cancer tissue.

Additionally, both normal breast epithelial tissue and cell 
pools exhibited amplification of chr1q, as confirmed by loss of 
heterozygosity (LOH) of chr1q in normal breast epithelial tissue 
(Figure 3B). However, the chr1q LOH was only identified in 2  
(BN-3 and BN-11) of the 4 normal breast epithelial single cells  
(BN-1, BN-3, BN-11, and BN-12) that exhibited a PIK3CA muta-
tion (P < 1 × 10–15, Wilcoxon’s rank sum test), and not in the other 2  
(P > 0.05), implying that the chr1q amplification took place after 
the occurrence of some SNVs, including the PIK3CA mutation 
(Figure 3C). Interestingly, the duplicated haploid copy of chr1q in 
BN-T was not identical to that observed in the breast cancer sam-
ples (Figure 3B). Although another study observed that oncogene 
amplification was a major factor in clonal expansion of premalig-
nant cells (23) in the breast, this seems not to be the trigger event 
of premalignant cells in our study, but suggests that point muta-
tions might be drivers of clonal expansion of premalignant cells.

Somatic alterations associated with lymph node metastasis in a 
Chinese sample set of primary breast cancer. Our single-cell anal-
ysis revealed that only 3 additional mutations were present in 
the lymph node metastasis compared with the cells they likely 
originated from within the primary tumor (subclone 1), and none 
seemed to be associated with breast cancer according to the 
Catalogue of Somatic Mutations in Cancer (COSMIC) database 
(https://cancer.sanger.ac.uk/cosmic) and previous large sample 
set studies (24). Several studies have found that the genomic 
aberrations that predispose tumor cells to metastasize may simul-
taneously be crucial for their selection advantage and may occur 
in the early stage of carcinogenesis, which makes it difficult to 
distinguish them from other driver genes (13, 14, 25). We there-
fore hypothesized that the lymph node metastasis in this patient 
may have been prompted by whole-tumor clonal events or sub-
clonal events in subclone 1, which gave rise to lymph node metas-
tasis. Among the 50 driver genes of breast cancer reported by 
Stephens et al. and The Cancer Genome Atlas Network (TCGA; 
http://www.cbioportal.org/study?id=brca_tcga_ pub#summary) 
(24, 26), only 2 were mutated (PIK3CA, RUNX1) in the primary 
breast cancer, as determined by single-cell sequencing, and both 
were clonal mutations. In addition, several large fragment copy 
number aberrations were identified in our patient (chr1q, chr3q, 
chr7p, chr7q, chr8q, and chr16p gains and chr8p and chr17p  
losses) in which chr3q and chr8q gains and chr8p loss were spe-
cific to subclone 1. To assess which aberrations may contribute 
to breast cancer lymph node metastasis, we performed targeted 
sequencing on a Chinese sample set of 54 primary breast tumors, 
28 from patients with and 26 without lymph node metastasis 
(Supplemental Table 7), using a target panel including 48 of the 
50 breast cancer driver genes referred to above (Supplemen-
tal Tables 8, 9, and 10). We compared the mutation frequencies 
between samples with and without lymph node metastasis for 
each driver gene, and none were found to exhibit significance, 
with the exception of myeloid cell leukemia sequence 1 (MCL1), 
which was high-level amplified (≥5 copies) in 12 samples, 11 of 
which were from patients with lymph node metastasis (Figure 
4, A and B, and Supplemental Figures 8 and 9). When only con-
sidering ER+ samples, a significant difference in the number of 
samples exhibiting highly amplified MCL1 between patients with 
and without lymph node metastasis remained (Supplemental 
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Figure 3. Mutations and CNV of chr1q in normal breast epithelial single cells and cell pools. (A) Heatmap depicting BN-T–specific SNVs identified by sequenc-
ing of 11 normal single breast epithelial cells and 3 normal cell pools (brown, mutated; pink, WT; white, WT and sequencing depth of less than 8×). (B) Two 
distinct haplotypes of chr1q in 4 samples, including Ly-T, lymph node metastasis tissue, BN-T, and a population of macroscopically dissected normal breast 
epithelial cells (BNM-3). The left panels show the distribution of SNP allele frequencies of haplotypes 1 (red) and 2 (blue) in the amplified genome region chr1q, 
while the horizontal axis shows VAF and the vertical axis the number of SNPs within the corresponding VAF. The right panels plot SNP allele frequencies of 
haplotypes 1 (red) and 2 (blue) across chr1q, while the horizontal axis shows coordinate of SNPs in chr1q and the vertical axis shows the AF. Haplotype 1 was 
amplified in MT, while haplotype 2 was amplified in BN-T and BNM. (C) LOH of chr1q in BN single cells. Variant allele frequencies of SNPs in 2 haplotypes of 
chr1q are shown as blue and red points (the same color code for each haplotype as in B). P values of LOH in each cell were calculated using Wilcoxon’s rank sum 
test. Error bars represent the values of median, upper, and lower quartiles and maximum and minimum.
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Figure 10). The copy numbers of MCL1 were also significantly 
higher in patients with versus without lymph node metastasis  
(P = 0.01, Wilcoxon’s rank sum test), suggesting that MCL1 high-
level amplifications, which were clonal events in our single-cell 
sample, may promote invasive and lymph node metastasis of 
breast cancer. High levels of MYC (chr8q) amplification were also 

more frequently found in patients with lymph node metastasis, 
but the difference did not reach statistical significance (Figure 4B 
and Supplemental Figure 11). We then performed whole-genome 
association analysis of CNV and identified 2 genome regions that 
exhibited significantly higher frequencies of amplification in the 
metastasis group, including chr1q and chr20q (Figure 5A).

Figure 4. Comparison of mutations and CNVs in the Chinese sample set of 54 primary breast cancers between patients with and without lymph node 
metastasis revealed MCL1 is more frequently altered in primary cancers of patients with lymph node metastases. (A) Heatmaps of CNVs of primary 
tumors from a Chinese sample set of 54 breast cancer patients with (upper panel) and without (lower panel) lymph node metastasis. Gain and loss are 
displayed by red and blue, respectively. (B) Mutational spectrum of 54 primary breast cancers with (left panel) and without (right panel) lymph node metas-
tasis. The left panel (yellow bar plot) shows P values (Fisher’s exact test) for aberrant samples in the 2 subgroups for each gene. The middle panel (bar plot) 
shows the proportion of aberrant samples in each subgroup.
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Whole-genome association analysis of CNV frequency of genes 
reveals genome regions associated with lymph node metastasis. To 
extend the findings from the Chinese breast cancer sample set 
and focus on ER+ breast cancer, the most frequent subtype, we 
interrogated the mutational status of each gene in the genome 
in ER+ breast tumors from 3 large data sets, including TCGA, 

Figure 5. Genome regions associated with lymph node metastasis in breast cancers identified by whole-genome association analysis of frequencies of 
copy number gains and losses. (A) Frequency of CNAs in the 54 Chinese primary breast cancer patients with (brown line) or without lymph node metastasis 
(green line) across the whole genome. chr1q (MCL1) and chr20 (BCL2L1, AURKA) gains were more frequent in primary tumors of patients with lymph node 
metastasis. The top panel shows the P values (Fisher’s exact test) of gain/loss frequency between the 2 subgroups. (B) Comparison of gain and loss fre-
quencies between ER+ patients without lymph node metastasis (N0) and with high burden of lymph node metastasis (N2–N3) in the data sets of METABRIC 
(n = 403 vs. 78), TCGA (n = 265 vs. 106), and Nik-Zainal et al. (n = 131 vs. 63; ref. 28). The different genome regions are indicated by different colors.

Molecular Taxonomy of Breast Cancer International Consor-
tium (METABRIC) (http://www.cbioportal.org/study?id=brca_
metabric#summary; ref. 27), and that published by Nik-Zainal 
et al. (28). For each data set, genome aberrations in tumors of 
patients with no lymph node metastasis (N0) were compared 
with those with high lymph node metastasis (N2 and N3 com-
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ples (>60% tumor cells purity) were analyzed using, as the refer-
ence, TANC1, which is located on chr2q and is minimally affected  
by CNVs according to the TCGA and the Chinese sample set anal-
ysis (Supplemental Table 15). In patients with primary breast can-
cer samples exhibiting high MCL1 copy number (copy ratios ≥ 3), 
80% (47/59) had at least 1 positive lymph node, while only 63% 
(69/110) of the remaining samples had lymph node metastasis  
(P = 0.037, Fisher’s exact test). We divided the samples into 3 
groups based on the number of positive lymph nodes (n = 0, 3 > 
n > 0 and n ≥ 3). The median logRs for MYC were highest in the n 
≥ 3 group (logR = 1.51) and lowest in the n = 0 group (logR = 1.28). 
A similar distribution was observed for BCL2L1 in 3 groups (logR 
= 1.08 and 1.16 for n = 0 and n ≥ 3, respectively). However, the 
difference in logR of both MYC (P = 0.10) and BCL2L1 (P = 0.13) 
between samples with n = 0 and n > 0 did not reach significance, 
likely due to the limited sample size. We then compared the logR 
for these 3 genes between samples with and without recurrence 
of disease and identified a higher logR of MYC (P = 0.028) and 
BCL2L1 (P = 0.0081) in the recurrence group.

Discussion
Deciphering the molecular evolution of cancer is central to 
understanding cancer heterogeneity and its role in malignant 
progression. Although the evolution of multiregion breast tumors 
in patients has been described (25), the genetic architecture of 
morphologically distinct areas of breast tumors, so-called micro-
heterogeneity, has not been detailed. We sequenced single cells 
and multi-cell pools isolated using LCM in multiple morphologi-
cally distinct regions of primary tumor and corresponding senti-
nel lymph node metastasis of a breast cancer patient and demon-
strated that different subclones coexisted in multiregions in the 
primary tumor, including the InvF. This approach could be applied 
in the clinic to identify the malignant state of single cells at a dis-
tinct location, e.g., within an area of DCIS. Our data showed that 
the lymph node metastasis likely was derived from a minor sub-
clone of the InvF. Our data also suggest that the sequenced DCIS 
cells arose from a subclone and were not a precursor or a sepa-
rate entity, an observation in line with another recent study (29). 
Further, single cancer cells located in areas of morphologically 
normal lymph nodes distant from the lymph node metastasis had 
gained additional mutations compared with single cells in the 
solid lymph node metastasis, indicating a case of a linear model 
of metastasis. Interestingly, our analysis also showed that clonal 
expansion due to mutation of cancer driver genes was also pres-
ent in adjacent BN-T and hematopoietic cells of this 92-year-old 
patient, supporting the view that clonal expansion due to mutated 
cancer-associated genes are prevalent in aged individuals and 
greatly increase the risk of cancer (30). Genome profiles of pre-
cancerous lesions could illuminate how cancer is initiated and 
help define the divergent events between “normal” and malig-
nant, which are critical to early detection and treatment of can-
cer as well as possible prevention. Recent studies have revealed 
driver mutations in the normal skin and hematopoietic system 
by bulk sequencing (31, 32). However, genomic analysis, to our 
knowledge, has not been widely applied to studying of precancer-
ous lesions of other tissues, as such areas are small and difficult to 
identify. Single-cell sequencing has the potential to overcome the 

bined) according to the tumor-node metastasis (TNM) lymph 
node–staging system (described in Methods). Examining SNVs 
and indels surprisingly revealed no gene significantly associated 
with lymph node metastasis except TP53 in the METABRIC data 
set (Supplemental Figure 12 and Supplemental Figure 13, A and 
B). We then compared the frequencies of gain and loss for each 
gene in the whole genome between the 2 groups in each data 
set. For gains, 170 genes showed higher frequencies (P < 0.1, 
Fisher’s exact test) in N2–N3 versus N0 groups in all 3 data sets. 
These genes were located in chr8q (n = 2, including MYC), chr11q  
(n = 43, mostly around CCND1), chr12q (n = 112, mostly around 
CDK2/4), and chr20q (n = 13, mostly around AURKA; Supple-
mental Table 11). For losses, 631 genes showed higher frequen-
cies (P < 0.1) in N2–N3 versus N0 groups in all 3 data sets, 431 
located in chr1p and the others in chr3p (n = 20), chr9p (n = 109, 
mostly around CDKN2A), chr11q (n = 59), chr12p (n = 1), chr13q 
(n = 1), and chr18q (n = 2) (Figure 5B and Supplemental Table 12). 
The significance level of these genome regions remained largely 
unaffected after normalization for the prognostic factors of age, 
progesterone receptor (PR), and TP53 mutation status using a 
logistic regression model (Supplemental Table 13; Supplemental 
Figures 14 and 15). However, after being normalized for tumor 
size, which significantly correlated with lymph node metastasis 
status (P < 1 × 10–10 in TCGA sample set, Fisher’s exact test), genes 
in chr3p, and chr11q and CDKN2A at chr9p were no longer signifi-
cant (P > 0.05), while genes in chr1p36.32-33 (the most significant 
region in chr1p), chr12q13.3 (including CDK2 and CDK4), parts of 
chr12q21.1-21.31 and chr20q13.3, and MYC at chr8q remained sig-
nificant (P < 0.05) (Supplemental Figures 14 and 15), suggesting 
that CNVs of some genome regions contribute independently to 
lymph node metastasis, while others may contribute primarily by 
promoting increased tumor size.

Whole-genome association analysis of gene copy numbers con-
firms genome regions associated with lymph node metastasis. For 
the TCGA samples with available detailed copy ratios, we subse-
quently compared logarithmic copy ratios (logR) for every gene 
between patients with N0 (265 samples) and N2–N3 (109 samples) 
for ER+ samples. While similar copy ratios (P ≥ 0.05, Wilcoxon’s 
rank sum test) were identified across most of the genome, several 
chromosome regions showed higher (including chr8q24.13-24.3, 
chr12q15, chr20q11.22, and chr20q13.2-13.33) or lower (including 
chr1p13-36, chr9p21, and chr18q12-23) copy ratios in the N2–N3 
versus N0 groups (P < 0.02) (Figure 6A and Supplemental Table 
14), including several known metastasis-related genes (Figure 6B), 
which significantly correlated with the gain/loss frequency analy-
sis. After normalization for age, tumor size, PR, and TP53 mutation 
status, genes located in genome regions including chr1p, chr8q, and 
chr12q remained at significant correlation with lymph node stages 
(P < 0.05), indicating that these genome regions were mostly unaf-
fected by the normalization, confirming that CNVs in chr1p, chr8q, 
and chr12q contributed to lymph node metastasis independently of 
tumor size (Supplemental Figure 16).

Finally, to confirm the findings using the 3 data sets and the 
Chinese sample set, we performed CNV analysis of 3 genes by 
real-time quantitative PCR (qPCR), including MCL1 (located in 
chr1q), MYC (located in chr8q), and BCL2L1 (located in chr20q) 
(Figure 6C). A total of 170 Danish primary ER+ breast cancer sam-
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Figure 6. Genome regions associated with lymph node metastasis in breast cancers identified by whole-genome association analysis of detailed copy ratios. 
(A) Differences in the average logR (outer circle) across the whole genome between primary ER+ breast cancers of patients with N0 (265 samples) and N2–N3 
(106 samples) lymph node metastasis status (data from TCGA). P value of each gene (inner circle) was calculated for the logRs between the 2 groups (Wilcoxon’s 
rank sum test); red bars denote genes with P < 0.02. (B) Comparison of copy ratios of AURKA (chr20q), CDKN2A (chr9p), MYC (chr8q), MDM2 (chr12q), SMAD2 
(chr18q), and SMC3 (chr10q) in the TCGA ER+ breast cancers grouped according to patient lymph node status (N0, N1, and N2–N3,). Significance of difference 
between N0 and N2–N3 groups was tested by Wilcoxon’s rank sum test. Each point represents the copy ratio of 1 sample. (C) Comparison of copy ratios of MCL1, 
MYC, and BCL2L1 in 170 Danish primary ER+ breast cancers grouped according to the number of positive lymph nodes of the patient (of n = 0, 0 < n < 3, and n ≥ 3) 
and recurrence status (recurrence [Recur] vs. without recurrence [Free]). Significance of difference between n = 0 and n ≥ 3 groups and between recurrence and 
without recurrence groups was tested by Wilcoxon’s rank sum test. Each point represents the copy ratio of 1 sample. Error bars in B and C represent the values of 
median and upper and lower quartiles.
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prognosis decreases as the number of tumor-positive lymph nodes 
increases. Metastasis in the axillary lymph nodes is not only a sign 
of later-stage breast cancer, but also a marker of an aggressive 
phenotype. Improving our understanding of the molecular mech-
anisms of the metastatic process, including the genetic basis, will 
improve clinical management of the disease.

In our study, the mutation burden (1.62 mutations per mega-
base) of our LCM sample was modest among breast cancers, and 
unique mutations of each distinct area were rare, suggesting that 
most of the mutations occurred before detectable neoplasia for-
mation, consistent with another study on hepatocellular carci-
noma (HCC) (50). Thus, WES has a limited power of detecting 
microheterogeneity in patients with a limited mutation burden, 
since only a few mutations could be used as identifiers of different 
clones. It is also worth noting that a high rate of false positive C>T 
mutations was identified in single cells, likely due to damage of the 
cellular DNA during tissue preparation, H&E staining, and WGA. 
Furthermore, we were unable to identify specific driver genes in 
genomic regions that seemed to increase the ability of cancer cells 
to metastasize to lymph nodes, since most of the genes showing 
enrichment of CNV in tumors with lymph node metastasis should 
be passenger genes, such as for chr1p and chr11q loss and chr12q 
gain. The size of the sample data sets used in our analysis (54–481 
samples) is insufficient to precisely locate the true driver genes, 
which may be identified at the “peak” of significance in a data 
set with thousands of samples, as in the GWAS studies. Although 
larger sample sets are needed to address the molecular profile of 
metastasis, our results provide an initial basis from which to fur-
ther examine metastasis-associated genetic aberrations.

Methods

Patient material and clinical information
Tumor tissue blocks of approximately 4 × 4 × 10 mm obtained from a 
92-year-old female mastectomized for primary breast cancer, includ-
ing removal of axillary lymph nodes (3/18 were tumor infiltrated), and 
having received no preoperative treatment, were embedded in OCT 
(Sakura Finetek), snap-frozen in isopentane, and stored at –80 °C. The 
tissue blocks were histologically verified using H&E-stained sections 
by a highly experienced breast cancer pathologist to contain normal 
mammary ductal tissue, primary breast tumor (invasive ductal carci-
noma [IDC]), DCIS, lymph node metastasis, normal skin, and normal 
lymph nodes, respectively. The primary tumor was 32 mm IDC, grade 
2. The following routine markers were investigated by immunohis-
tochemistry: ER = 100%, Ki-67 = 5%, and HER2 = 2+. The patient 
received adjuvant Letrozol that was discontinued due to side effects 
and age-related morbidity after 6 months, and she is recurrence-
free 5 years after primary surgery (April 2017). DNA from a Danish 
sample set of 170 ER+ primary tumors from postmenopausal breast 
cancer patients was analyzed for qPCR CNV. Primary breast cancers 
of a sample set of 54 Chinese patients (31 ER+, 22 ER–, 1 unknown) 
were analyzed by targeted sequencing. Mutation and CNV data from 
a sample set of 572 primary ER+ breast cancers from patients with 
known lymph node status were obtained from TCGA. Mutation and 
CNV data from another sample set of 255 primary ER+ breast cancers 
along with lymph node status was published by Nik-Zainal et al. (28). 
CNV data from the fifth sample set of 1,194 primary ER+ breast can-

problem of low cellularity and determine the heterogeneity and 
evolution of precancerous lesions.

We used single-cell sequencing to identify driver mutations 
and CNVs in the subclone giving rise to lymph node metasta-
sis, and some similar features were also observed in additional 
primary breast tumors of patients with lymph node metastasis 
in 5 breast cancer sample sets. Importantly, high-level gain of 
MCL1 and amplification of chr8q were identified as candidates 
contributing to tumor spread to lymph nodes. In our single-
cell–sequenced patient, high-level MCL1 (copy number ≥5) 
amplification was a clonal event, while chr8q amplification was 
present in a subclone of the primary tumor, giving rise to lymph 
node metastasis and indicating that CNVs, rarely considered in 
genomic analysis of metastasis, may be crucial drivers of lymph 
node metastasis. MCL1 is a prosurvival gene and a member of the 
BCL2 family, which governs the intrinsic apoptotic pathway (33) 
and has been shown to be highly expressed in some breast can-
cers, playing an important role in patient response to antitubulin 
chemotherapeutics (34). MCL1 expression has been associated 
with metastasis in colorectal (35), gastric (36, 37), and breast can-
cers (38–40). Our study also identified aberrations of several oth-
er genes or chromosome regions that were enriched in ER+ breast 
cancer patients with versus those without lymph node metasta-
sis, including gains of chr12q and chr20q and losses of chr1p and 
chr9p, most of whose copy number alteration (CNA) have not 
previously been associated with breast cancer metastasis (Figure 
6B). Several oncogenes on chr20q, such as BCL2L1 (41, 42) and 
AURKA (43), have been reported to have a function in breast can-
cer lymph node metastasis. CDKN2A, located in chr9p, has been 
proven to promote cancer metastasis (44) and has been identi-
fied as one of several metastasis-associated genes in a CRISPER 
mouse model (45). MYC overexpression has been reported to 
induce EMT (46), which was believed to be one of the mecha-
nism of metastasis (5), though with some controversy (47, 48). In 
the 5 sample sets we studied, higher copy numbers of MYC were 
observed in lymph node–positive breast cancer patients, sug-
gesting that MYC may contribute to, but is not a requirement for, 
metastases to the lymph nodes. Some presumably metastasis- 
related genes, including MYC, MCL1, AURKA, and TP53, regu-
lated apoptosis and enhanced cell survival in new environments, 
which may be crucial for disease progression and metastasis. 
Although the significance level of the correlation between lymph 
node metastasis and some genes decreased when normalized 
for tumor size, there may still be an association either directly 
or indirectly, since these genes may promote tumor cell prolif-
eration, invasion, and apoptosis resistance, which, in addition 
to influencing tumor size, may also stimulate metastatic spread 
to lymph nodes. Our results suggest that metastasis may partly 
result from molecular processes closely related to genetic aber-
rations, and we show, for what we believe is the first time, that 
the copy number status of genes is associated with breast cancer 
spread and lymph node metastasis.

Axillary lymph node status is the single most important prog-
nostic indicator in the management of primary breast cancer 
patients. Of patients diagnosed without lymph node metastasis, 
75% survive beyond 10 years, while only 40% of patients with 
lymph node metastasis survive after this period (49). Further, 
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used according to the manufacturer’s instructions. For the additional 
sample set of 54 primary breast cancer samples, DNA extracted from 
tumor tissue, lymph nodes, and peripheral blood was used for library 
construction, followed by enrichment using a custom sequence cap-
ture probe (Nimblegen, Roche) targeting 508 cancer-related genes 
(Supplemental Table 8).

qPCR of Danish sample set
TaqMan Copy Number Assays (Applied Biosystems) were used for all 
reactions as described by the manufacturer using 20 μl reactions run 
for 2 minutes at 50°C and 10 minutes at 95°C, followed by 50 cycles 
of 15 seconds at 95°C and 1 minute at 60°C. All samples were run in 
quadruple on the ABI QuantStudioTM 12K Flex System using soft-
ware v1.2 (Applied Biosystems). The individual copy number assays 
investigated were MYC (Hs02758348_cn), BCL2L1 (Hs07178628_cn), 
MCL1 (Hs02097917_cn), and TANC1 (Hs00436935_cn), all labeled 
with 5′-FAM and 3′-MGB. These were duplexed with a company-
provided reference assay targeting RNase P, labeled with 5′-VIC and 
3′-TAMRA. For each real-time plate, we included a nontemplate con-
trol (water) and a technical control consisting of DNA from a human 
cancer cell line, CL16, with known altered copy numbers for the inves-
tigated genes to ensure contamination-free assays and interplate con-
sistency, respectively. The raw data were analyzed using CopyCaller 
v2.0 (Applied Biosystems), which calculated a predicted copy number 
based on RNase P as an internal reference and a calibrator sample con-
taining 2 copies per gene. Finally, the predicted copy numbers were 
recalculated to TANC1 as a reference gene and correlated with lymph 
node status using Wilcoxon’s rank sum test.

Bioinformatic analysis
Mutation calling of single-cell WES data. All sequencing data were 
aligned to hg19 (UCSC) by Burrows-Wheeler Aligner (BWA) 
(http://bio-bwa.sourceforge.net/), followed by removal of dupli-
cation using PICARD (https://broadinstitute.github.io/picard/). 
Genome Analysis Toolkit (GATK) (https://software.broadinstitute.
org/gatk/) was employed for local realignment around indels. For 
WES data, we used GATK UnifiedGenotyper to detect SNVs in 
each of the 97 single-cell samples with a quality threshold of 20. To 
avoid false-positive calling due to MDA and sequence errors, only 
mutations identified in at least 2 samples were selected as candi-
date mutations. Data suggesting a mutation of low quality in more 
than 50% of the samples were discarded. A mutation was consid-
ered low quality under the following conditions: (i) the average 
position of the mutation in the reads was less than 10 bp away from 
one of the ends; (ii) more than 30% of mutation-supporting reads 
had a map quality of less than 20; (iii) the difference of average 
mapping quality between reference-supporting reads and variant- 
supporting reads was 30 or more; (iv) the average mismatch num-
ber of mutation-supporting reads was 7 or more or the difference 
of average mismatch numbers between reference-supporting reads 
and variant-supporting reads was more than 3; (v) more than 30% 
of mutation-supporting reads were soft clipped; (vi) the difference 
of average indel length between reference-supporting reads and 
variant-supporting reads was more than 1; and (vii) more than 30% 
of mutation-supporting reads had multi-alignment. The SNVs with 
more than 3 supporting reads in Ly-T and Skin-T were considered 
to be germline mutations and filtered out.

cers from patients with known lymph node status were obtained from 
METABRIC. Since information on lymph node stage was not directly 
available for the METABRIC data set, tumor stages of 1 and 3 to 4 were 
used instead, as 97% of samples with stage 1 were also N0, and 96% of 
samples with stage 3 to 4 were with N ≥ 1 according to clinical informa-
tion from the TCGA data set.

LCM of single cells and cell pools
LCM of single cells was performed using the Arcturus PixCell IIe micro-
scope (Life Technologies). Fresh-cut frozen tissue sections (7 μm) were 
placed on uncharged glass slides (Sigma-Aldrich) and briefly stained 
with H&E. Each section was thawed for 15 seconds and fixed in 70% 
EtOH for 30 seconds. After fixation, sections were dipped in DEPC-
water for 15 seconds, followed by staining with hematoxylin for 30 sec-
onds. Stained sections were dipped in DEPC-water until surplus dye was 
washed off and then put into autoclaved water for 30 seconds, DEPC-
water for 30 seconds, 70% EtOH for 30 seconds, and 96% EtOH for 
30 seconds. A droplet of eosin was added to each section by pipette and 
incubated for 5 seconds followed by 96% EtOH for 30 seconds, 100% 
EtOH for 30 seconds,100% EtOH for 30 seconds, and finally xylene for 
4 minutes. Finally, the section was dried in a fume hood for 5 minutes. 
None of the reagents were reused during the protocol. The reagents used 
were as follows: DEPC-water (Sigma-Aldrich), EtOH (Sigma-Aldrich), 
hematoxylin (Sigma-Aldrich), and eosin (Sigma-Aldrich). Tissue sec-
tions were used for LCM for a maximum of 30 minutes to ensure good 
quality DNA, and multiple sequential sections were used per category of 
the various morphologically distinct areas. Single-cell isolation settings 
for the LCM, spot size 7.5 μm, were as follows: power, 25 mW; duration, 
0.8; and target, 196 mV. For isolation of cell pools, the settings were as 
follows: power, 65–88 mW; duration, 2.3; and target, 259 mV. CapSure 
Macro LCM Caps (Applied Biosystems) were used, and immediately 
after capture, the cell or cells were transferred to 3 μl lysis buffer. The 
isolation was verified by viewing the tissue section after LCM and the 
cap. Following addition of precooled lysis buffer, the cells were immedi-
ately placed on dry ice and stored at –80 °C until DNA was amplified. A 
physiological saline blank was included as a negative control.

Multiple displacement amplification
WGA of single cells and normal breast epithelial cell pools was achieved 
using the REPLI-g Single Cell Kit according to the manufacturer’s 
manual (QIAGEN GmbH). Reactions in a total volume of 50 μl were 
performed at 30°C for 8 hours and terminated at 65°C for 3 minutes. 
Amplified DNA products were stored at –20°C.

Concentration measurement, amplification coverage estimation, 
and sequencing
The Qubit Quantitation Platform (Life Technologies) was used to 
measure the concentration of multiple displacement amplifica-
tion (MDA) products to verify that the MDA was successful. Subse-
quently, all amplified DNA products yielding more than 30 ng/μl 
were examined using a panel of 10 housekeeping genes for PCR to 
estimate amplification coverage. The MDA products with success-
ful amplification of at least 8 housekeeping genes were selected for 
further WES using the SureSelect Human All Exon 50Mb Kit (Agi-
lent Technologies). All libraries were sequenced on either an Illu-
mina HiSeq 2000 or HiSeq 2500. For target sequencing of single 
cells and cell pools, an Agilent custom sequence capture probe was 
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tion clusters of 1 template, and reads in each duplication cluster were 
compared with each other to correct errors and then degenerated into 
a DCS. A valid DCS required at least 3 reads in the duplicated cluster 
in which reads from both sense and antisense strands were necessary. 
The different order of 2 paired end reads was used to identify the sense 
and antisense strands of the template. For each duplicated cluster, the 
reads were compared with each other to obtain the DCS based on the 
following criteria: in each position of the template, a base x (x = A/T/
C/G) present in no less than 80% reads in both sense and antisense 
strand reads denoted that the base of this position in the DCS was x. If 
no x satisfied this condition, the base of this position in the DCS was 
denoted as N. The error rate of DCS was estimated to be 10–7 for each 
type of substitution according to our analysis.

CNV analysis of laser-capture microdissected cell pools and the 
Chinese sample set
Whole-genome shotgun (WGS) sequence data of metastasis, PT4, 
and BN-T and targeted sequencing data of cell pools were used for 
somatic CNV calling. The whole genome was segmented into 50 kb 
bins, each calculated with a read-depth copy ratio of case and control. 
For CNV calling of target sequencing, reads on or near the targeted 
region (within less than 500 bp) in both case and control data were fil-
tered out and only the off-target reads were used to calculate the copy 
ratio. Correlation between GC content and copy ratio was fitted and 
normalized by the generalized least squares (GLS) model and the fluc-
tuation was generally reduced (Supplemental Figure 17, A–D) after GC 
normalization. Subsequently, CLimAT (51) was used for segmentation 
and CNV detection using copy ratio as input. CNV analysis of metas-
tasis was performed both by WGS and target sequencing based on the 
method described above, and the results showed very high correla-
tion. Similar CNV analysis was used for the Chinese primary breast 
cancer sample set and the cell pools.

Tumor purity and copy number assessment of the Chinese sample set
As homozygous deletion of greater than 10 M base in cancer genomes 
is unlikely, we estimated the fraction of tumor cells based on the copy 
ratio of large deleted segments (>10 M). Note that a is the lowest copy 
ratio of all the large deleted segments, and consequently, the fraction 
of tumor cells was estimated to be (1 – a) × 2. For a few samples that 
did not contain large-segment deletions, the peaks in copy ratio dis-
tribution were used to calculate tumor purity. For each gene, the copy 
ratio was adjusted by tumor purity to obtain the copy number. Copy 
numbers of genes were not assigned to integers because mixtures of 
different subclones were prevalent, making definition of integral copy 
numbers difficult.

Mutation calling in primary breast cancers of patients in the Chinese 
sample set
A MuTect algorithm (52) with default parameters was employed to 
generate candidate somatic base substitution in 54 primary breast 
cancer samples. The candidate SNVs were further selected based 
on a sequence depth of more than 30 in both cancers and controls. 
dbSNP137 variations with AF records were filtered out. For short 
indels, we used Varscan2 to generate candidates (53), and a local align-
ment filter was used to filter out the suspected artificial indels by the 
following criteria: (i) more than 80% of indel supporting reads with 
map quality of less than 30; (ii) indel adjacent to any homopolymer 

K value and QC of single cell. As ADO is affected by sequence depth 
and the criterion for mutation identification, we defined and utilized 
the K value (the sample excess kurtosis of allele frequencies of SNPs) 
to quantify amplification uniformity, and samples with K values of 
more than 0.2 were retained for analysis.

For example, in cases in which n equals the number of SNPs 
and xi equals the AF of ith SNP, the K value was defined as follows:

 
 (Equation 1)

x  ̄is the mean value of xi. We also calculated ADO of each sample and 
found significant negative correlation between K values and ADO 
(Supplemental Figure 2B). For 97 WES-sequenced single cells, we 
selected 67 single cells accompanied by another 11 new cells for deep-
target sequencing based on the K values of each (Supplemental Figure 
2, A, C, D, and E). The cutoff of K values was set at 0.2. However, if the 
WES sequencing of 1 cell supported the presumed rare subclonal muta-
tions, it was also included in further analysis, although the cell did not 
pass the cutoff.

Target deep sequencing of single cells and regenotyping of mutations. 
A target panel was designed to cover the candidate mutations and 
top 20 breast cancer genes, including PIK3CA, TP53, MED12, CDH1, 
GATA3, MLL2, MLL3, PTEN, RB1, ARID1A, NF1, NCOR1, AKT1, 
ATM, FLT3, CREBBP, MAP2K4, BRCA1, RUNX1, and KIT. For the tar-
get deep sequencing of single cells, loci of candidate mutations in the 
target sequencing data were regenotyped by a likelihood ratio test to 
reveal mutational spectrums and reduce mutation loss rate. A sequenc-
ing error rate was estimated for each mismatch type. A test based on 
Poisson distribution was used to judge whether the supporting reads 
of an SNV were significantly higher than those generated by random 
sequencing errors. To avoid crossover contamination, only mutations 
with allele frequencies of no less than 1% were considered positive.

Identification of multinucleated cells and normal cells
Data analysis suggested that a few laser-captured single-cell samples 
contained both normal and cancerous nuclear material based on the 
fact that the allele frequencies of the validated tumorous SNVs were 
generally low in these samples. Data from such single-cell samples as 
might be contaminated by normal nuclei may distort the SNV spec-
trum because normal DNA simultaneously amplified with cancerous 
DNA dilutes the allelic frequencies of the tumor SNVs and possibly 
results in a high missing rate of SNVs despite these cells still being con-
sidered “good quality” according to K value or ADO with high genome 
coverage. Therefore, the single-cell samples with median AF of SNVs 
of less than 0.1 were eliminated from the downstream analysis.

Duplex analysis
For the duplex-sequencing data with a certain amount of DNA tem-
plates, paired reads were clustered by the “endogenous molecular bar-
codes” consisting of the first 12 bp in each end of the DNA templates. 
Initially, all the sequenced reads were sorted by alphabetical order of 
the barcode, and thus reads belonging to the same duplication clusters 
were ranked at adjacent positions. Reads with identical barcodes and 
similar sequences (with consistency >80%) were considered duplica-
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Data availability
Single-cell sequencing data and the sequencing data of the Chinese 
cohort are deposited in the NCBI Sequence Read Archive (SRA) 
under Bioproject (SRP103895; https://www.ncbi.nlm.nih.gov/ 
bioproject/). The CNV data of the Danish cohort are provided in 
Supplemental Table 16.
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(5 bp) or short tandem duplications (≥3 copies); and (iii) more than 
30% of reads that covered the query indel supported other indels (no 
further than 40 bp away from the query indel). Somatic SNVs and 
indels were annotated by ANNOVAR (http://annovar.openbioinfor-
matics.org/en/latest/), and only mutations that changed protein were 
retained for further analysis.

Whole-genome association analysis of CNV frequency of each gene
For each gene in the whole genome, we calculated the frequency of 
amplification in patients with low or high lymph node stages and com-
pared the frequencies between the 2 subgroups using Fisher’s exact 
test. The same method was applied for the frequency of deletions.

Whole-genome association analysis of gene copy numbers in TCGA data
For each gene, we compared the copy ratios between tumors of 
patients with N0 (265 samples) and N2–N3 (106 samples) lymph node 
stages using Wilcoxon’s rank sum test. Genome regions consisting of 
more than 5 genes exhibiting P values of less than 0.02 were reported 
in Supplemental Table 14.

Statistics
Associations between the CNV and lymph node status of each gene 
were assessed using Fisher’s exact test, and P values of less than 0.05 
were considered statistically significant. A logistic regression model 
(assigned 0 for N0/stage 1, and 1 for N2–N3/stages 3–4) was used to 
adjust for age, tumor size, PR, HER2, and TP53 mutation status, and 
the significance of coefficients was tested separately (t test, 2 tailed) for 
each gene in 2 relatively large data sets (METABRIC and TCGA) using 
a glm function in R. P values of less than 0.05 were considered statisti-
cally significant. The correlation between logR of each gene and lymph 
node status in the TCGA data set was assessed using Wilcoxon’s rank 
sum test, and P values of less than 0.05 were considered statistically 
significant. Results in Figure 3C and Figure 6, B and C, were reported 
by box plot, indicating the values of median and upper and lower quar-
tiles. Exact numbers of samples in each data set are indicated in the 
corresponding figure legend. A 2-tailed t test was also used to compare 
mutation variant allele frequency (VAF) in cell pools. P < 0.05 was con-
sidered statistically significant, as indicated in Results.

Study approval
For the Danish sample set of 171 ER+ primary tumors from postmeno-
pausal breast cancer patients, approval from the Ethical Committee of 
Southern Denmark (Odense, Denmark) and the Danish Data Protec-
tion Agency (Copenhagen, Denmark) was granted. For the primary 
breast cancers of a sample set of 54 Chinese patients, approval from 
the Ethical Committee of Xijing Hospital was granted. All tissue sam-
ples were collected in compliance with informed consent policy.
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