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Introduction
Cancer cells have the ability to adapt to and avoid host immune 
checkpoints and surveillance as a means to promote their con-
tinued survival (1, 2). Although the exact molecular mecha-
nisms of this adaptation are poorly understood, one of the key 
signaling pathways involves programmed death-1 (PD-1) and its 
ligands PD-L1 and PD-L2 (3–5). Results of recent clinical stud-
ies with anti–PD-1 monoclonal antibodies in patients with can-
cer have validated the concept that targeting the host immune 
checkpoint mechanism via PD-1 receptor blockade produces 
durable antitumor responses, resulting in improved progres-
sion-free survival (PFS) and overall survival (OS) (6). However, 
only a subset of patients benefit from PD-1 blockade. Elucida-
tion of the underlying immunologic characteristics of the tumor 

microenvironment associated with response and resistance will 
improve the identification of patients who will derive the most 
benefit from anti–PD-1 monotherapy and might reveal addition-
al immunologic determinants that could be targeted in combi-
nation with PD-1 checkpoint blockade.

The mechanism by which the host immune system is capable 
of recognizing and eliminating dysplastic and neoplastic cells is 
the subject of ongoing investigation. Certain factors, such as expo-
sure to ultraviolet radiation, smoking, and chronic viral infection, 
can damage critical genes involved in DNA replication and repair, 
resulting in abnormal cellular growth (7–9). In response, an orches-
trated innate and adaptive antitumor immune response is initiated 
that may lead to the production of IFN-γ. IFN-γ is a key cytokine 
produced by activated T cells, as well as natural killer (NK) and NK 
T cells, in the tumor microenvironment, and it plays an important 
role in coordinating this process (10). However, the same IFN-γ 
signaling processes can ultimately induce feedback inhibition that 
compromises antitumor immunity (11). As part of this feedback 
loop, IFN-γ signaling enables the PD-1 signaling axis to become 
activated through direct upregulation of the ligands PD-L1 and 
PD-L2 in tumor, immune infiltrate, and stromal cells, which interact 
with PD-1 on tumor-infiltrating T cells to downregulate the cytotox-
ic response (12–14). In addition, IFN-γ can upregulate expression of 
other key immune suppressive molecules such as IDO1 within the 
tumor microenvironment (15). Tumor adaptation takes advantage 
of this delicate balance of positive and negative immune signaling 
factors, allowing the cancer to survive and progress.

Programmed death-1–directed (PD-1–directed) immune checkpoint blockade results in durable antitumor activity in 
many advanced malignancies. Recent studies suggest that IFN-γ is a critical driver of programmed death ligand-1 (PD-L1) 
expression in cancer and host cells, and baseline intratumoral T cell infiltration may improve response likelihood to anti–
PD-1 therapies, including pembrolizumab. However, whether quantifying T cell–inflamed microenvironment is a useful 
pan-tumor determinant of PD-1–directed therapy response has not been rigorously evaluated. Here, we analyzed gene 
expression profiles (GEPs) using RNA from baseline tumor samples of pembrolizumab-treated patients. We identified 
immune-related signatures correlating with clinical benefit using a learn-and-confirm paradigm based on data from different 
clinical studies of pembrolizumab, starting with a small pilot of 19 melanoma patients and eventually defining a pan-tumor 
T cell–inflamed GEP in 220 patients with 9 cancers. Predictive value was independently confirmed and compared with that of 
PD-L1 immunohistochemistry in 96 patients with head and neck squamous cell carcinoma. The T cell–inflamed GEP contained 
IFN-γ–responsive genes related to antigen presentation, chemokine expression, cytotoxic activity, and adaptive immune 
resistance, and these features were necessary, but not always sufficient, for clinical benefit. The T cell–inflamed GEP has been 
developed into a clinical-grade assay that is currently being evaluated in ongoing pembrolizumab trials.
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can be useful to predict clinical response to PD-1 checkpoint block-
ade, it offers only limited insight into the biology of the tumor- 
immune interface. In particular, PD-L1 expression might repre-
sent only a component of T cell–related biology that is relevant to 
a favorable tumor immune microenvironment. Newer genomic 
technologies can be used to evaluate complexities of tumor and 

Recently, increased PD-L1 expression on the surface of tumor 
cells has been identified as an important determinant of response 
to immune therapies targeting the PD-1 axis (16). PD-L1 expression 
on immune cells in the tumor microenvironment has also been 
associated with treatment responses to such agents (17). Although 
the assessment of PD-L1 expression on tumor and immune cells 

Figure 1. Gene signature development in melanoma 
samples. (A) Overall workflow for the development of 
immune-related gene signatures that predict response to 
anti–PD-1 therapy. (B) IFN-γ 10-gene signature evaluated  
in 19 patients with melanoma and association with 
response. (C) “Preliminary expanded immune” 28-gene 
signature with tight correlation to the IFN-γ 10-gene sig-
nature, validated in 62 patients with melanoma.
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Results
IFN-γ–related gene expression signatures predict response to PD-1 
checkpoint blockade in melanoma. To define immune-related gene 
expression signatures associated with response to pembrolizumab, 
a set of baseline biopsies from 19 patients with metastatic melano-
ma enrolled in the KEYNOTE-001 study (NCT01295827, Clinical-
Trials.gov) was used as a pilot data set. Pembrolizumab responders 
(n = 8) and nonresponders (n = 11) were identified using Response 
Evaluation Criteria In Solid Tumors, version 1.1 (RECIST v1.1) by 
central radiographic imaging vendor. A 1-sided t test was applied 
to rank top genes associated with responders and nonresponders, 
using a custom panel of 680 tumor- and immune-related genes 
on the NanoString nCounter platform (NanoString Technologies 
Inc.) (Figure 1A and data not shown). It was apparent that many of 
the top-ranked genes were directly linked to IFN-γ signaling and 
showed correlation with the expression of IFN-γ. A 10-gene “pre-
liminary IFN-γ” signature (IFNG, STAT1, CCR5, CXCL9, CXCL10, 
CXCL11, IDO1, PRF1, GZMA, and MHCII HLA-DRA) was con-
structed that was able to separate responders and nonresponders 
to anti–PD-1 therapy (pembrolizumab) among the 19 pilot data 
patients with melanoma (Figure 1B).

These findings were confirmed using expression data from an 
additional cohort of 62 patients with metastatic melanoma treat-
ed with pembrolizumab in KEYNOTE-001, of whom 51 were con-
sidered evaluable for objective response. Before unblinding of the 
clinical outcome information for these patients, genes from the 
preliminary IFN-γ signature were correlated with other genes on 
the custom 680-gene NanoString panel that had a nominal P value 
less than 0.05 for positive association with objective response and/
or PFS on the initial set of 19 melanoma tumors. From these data, a 
larger expanded set of genes showing correlation with the prelim-
inary IFN-γ signature was evident, and a 28-gene set, referred to 
as the “preliminary expanded immune” signature, was generated 
(Figure 1C). This 28-gene set encompassed genes related to cyto-
lytic activity (e.g., granzyme A/B/K, PRF1), cytokines/chemokines 
for initiation of inflammation (CXCR6, CXCL9, CCL5, and CCR5), 
T cell markers (CD3D, CD3E, CD2, IL2RG [encoding IL-2Rγ]), NK 
cell activity (NKG7, HLA-E), antigen presentation (CIITA, HLA-
DRA), and additional immunomodulatory factors (LAG3, IDO1, 
SLAMF6) (Figure 2 and Table 1). These 2 preliminary signatures 
were then tested using prespecified hypotheses for their associa-
tion with clinical outcome following treatment with pembrolizum-
ab. Nominal 1-sided P values less than 0.05 were observed for both 

host immune cell interactions within the tumor microenvironment, 
going beyond the measurement of single analytes such as PD-L1.

We specifically examined gene expression in the tumor 
microenvironment, using RNA isolated from formalin-fixed 
paraffin-embedded (FFPE) tumor tissue samples. Samples were 
obtained at baseline from patients undergoing treatment with 
pembrolizumab in clinical trials using multiple distinct tumor 
types. We report the rigorous, stepwise validation of the hypoth-
esis that immune-related gene signatures can predict clinical 
response to PD-1 checkpoint blockade. Signatures related to 
IFN-γ signaling and activated T cell biology were initially delin-
eated in a small pilot melanoma cohort, then confirmed and 
refined in a larger independent cohort of patients with melano-
ma. The cross-tumor predictive value of these signatures was 
demonstrated by testing in head and neck squamous cell carci-
noma (HNSCC) and gastric cancer cohorts, followed by a mod-
eling exercise to determine a final T cell–inflamed gene expres-
sion profile (GEP) and scoring algorithm that predicted response 
across 9 different cancer cohorts to arrive at a final signature, 
forming the basis of a clinical-grade assay for evaluation of clin-
ical utility in select ongoing pembrolizumab clinical trials (18). 
The performance of this pan-tumor T cell–inflamed GEP com-
pared favorably with that of immunohistochemistry (IHC) in an 
independent set of PD-L1–unselected patients with HNSCC and 
was shown to be robust despite any improvement using all genes 
on our profiling platform and all available data from the KEY-
NOTE-012 and KEYNOTE-028 clinical 
trials. Our data definitively confirm that 
a T cell–inflamed microenvironment, 
characterized by active IFN-γ signaling, 
cytotoxic effector molecules, antigen 
presentation, and T cell active cyto-
kines, is a common feature of the biolo-
gy of tumors that are responsive to PD-1 
checkpoint blockade. Moreover, these 
data demonstrate that a focused set of 
genes can be used to identify this PD-1 
checkpoint blockade–responsive biolo-
gy and predict clinical response across a 
wide variety of tumor types.

Figure 2. Box plots for the IFN-γ 10-gene and 28-gene expanded immune 
signatures and best overall response in 62 patients with melanoma with 
clinical outcomes under anti–PD-1 therapy.

Table 1. Independent results evaluating correlation between the gene signatures and 
response in the validation set in 62 patients with melanoma with clinical outcomes  
under anti–PD-1 therapyA

Signature BOR by RECIST (n = 51) PFS by RECIST (n = 62) OS (n = 62)
Preliminary IFN-γ signature P = 0.047 P = 0.016 P = 0.090
Preliminary expanded immune signature P = 0.027 P = 0.015 P = 0.105

Nominal 1-sided P values were derived from logistic regression (for BOR per RECIST v1.1) or Cox regression 
(for PFS and OS). ADevelopment of the expanded immune signature was performed in an unsupervised 
manner by individuals blinded to response data. BOR, best overall response; PFS, progression-free 
survival; OS, overall survival.



The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

2 9 3 3jci.org   Volume 127   Number 8   August 2017

HNSCC, the associated positive predictive value (PPV, response 
rate above the cutoff) was 40.0% and the negative predictive val-
ue (NPV, nonresponse rate below the cutoff) was 95.0% (19). For 
gastric cancer, the PPV and NPV were 45% and 92%, respectively. 
The percentage of patients with tumors above these cutoffs was 
50% for HNSCC and 61% for gastric cancer. These results validate 
the observations in the melanoma cohort and point to a common 
gene expression pattern in pretreatment tumor biopsy specimens 
that predicts post-treatment clinical outcomes to anti–PD-1 thera-
py across multiple tumor types. Moreover, these results suggest a 
potential for a high discriminatory value of IFN-γ–related gene sig-
natures, enriching response rates to pembrolizumab (i.e., increas-
ing PPV) while preserving a high NPV. However, we note that any 
formal evaluation of clinical utility depends on cutoffs selected for 
implementation of a clinical-grade diagnostic device in develop-
mental trials and is dependent on the goals of those trials.

Having achieved proof-of-concept that common sets of IFN-γ– 
and T cell–associated inflammatory genes can predict responsive-
ness to PD-1 blockade across different tumor types, we undertook 
a signature selection exercise with a larger and more diverse data 
set spanning 9 cancer types from pembrolizumab-treated patients 
in the KEYNOTE-012 (bladder, gastric, HNSCC, and triple-neg-
ative breast cancer) and KEYNOTE-028 (NCT02054806) (anal 
canal, biliary, colorectal, esophageal, and ovarian cancer) stud-
ies with a goal to identify a final pan-cancer predictive biomark-
er suitable for development as a diagnostic clinical test for use in 
pembrolizumab clinical trials. Penalized logistic regression was 
used to derive a final set of 18 genes, with weighting determined 
by the regression coefficients. Figure 4 shows a heatmap of unsu-
pervised clustering of the data across 9 tumor types for these 18 
genes, revealing the coordinated pattern of expression for many of 
the 18 genes in the T cell–inflamed GEP. All genes in the signature, 
except CD276, are positively associated with improved clinical 
outcome, as can be seen by the increased frequency of respond-
ers (denoted by “R” in Figure 4) in the region with generally larger 
expression levels of the genes. Across the set of patients in Fig-
ure 4, the Pearson correlation between the 18-gene score and the 
IFN-γ 6-gene signature score was 0.89. Within each cancer type, 

signatures for best overall response (BOR) and PFS (Table 1), con-
firming their predictive value in metastatic melanoma. These data 
indicate that IFN-γ signaling and the associated biology of T cell 
cytolytic activity, antigen presentation, and chemokine production 
are important components of a PD-1 checkpoint blockade–respon-
sive immune microenvironment in melanoma.

Confirmatory testing and signature refinement across multiple 
cancer types demonstrates a common biology of responsiveness to PD-1 
checkpoint blockade. Because activated Th1 and cytotoxic T cells 
are the likely direct effectors of checkpoint blockade–mediated 
tumor regression, we hypothesized that measures of this common 
biology would predict response to anti–PD-1 therapy regardless of 
tissue of origin. We therefore asked whether the biology of respon-
siveness to PD-1 checkpoint blockade that was observed in mel-
anoma would extend to unrelated tumor types. After confirming 
that the 2 preliminary signatures in melanoma showed statistical-
ly significant associations with clinical outcome, both signatures 
were refined by removal of genes that did not reach a nominal 
1-sided P value less than 0.05 for positive association with either 
objective response or PFS in the confirmatory set of 62 melano-
ma tumors, yielding refined “IFN-γ (6-gene)” and “expanded 
immune (18-gene)” signatures. Subsequently, as data from the 
KEYNOTE-012 (NCT01848834) study became available, these 
signatures were tested in biopsy specimens from pembrolizum-
ab-treated patients with HNSCC or gastric cancer. RNA expres-
sion profiling data were available for tumors from 40 patients with 
HNSCC and were evaluable for objective response, with an objec-
tive response rate of 22.5%. There were 33 such patients with gas-
tric cancer, with 22.2% responding. The refined signatures (Table 
2) both showed statistically significant associations with improved 
clinical outcome at P < 0.05 for objective response and PFS for 
HNSCC (19) and at P < 0.10 and P < 0.05 for objective response 
and PFS, respectively, in gastric cancer (Figure 3, A and B, and 
Table 3). Receiver operating characteristics (ROCs) for response 
status over the range of the signature scores demonstrated the high 
discriminatory ability of the signatures (Figure 3, C and D). Areas 
under the ROC curves and their 95% CIs were 0.80 (0.61–0.95) 
for HNSCC (19) and 0.66 (0.47–0.83) for gastric cancer. To illus-
trate the potential clinical usefulness of these signatures to predict 
response to pembrolizumab, the Youden index–based cutoff val-
ues (20) for the IFN-γ 6-gene signature were determined and were 
similar for the 2 cancer types (1.882 HNSCC; 1.856 gastric). For 

Table 2. IFN-γ and expanded immune gene signatures

IFN-γ Expanded immune gene signature
IDO1 CD3D IL2RG

CXCL10 IDO1 NKG7
CXCL9 CIITA HLA-E

HLA-DRA CD3E CXCR6
STAT1 CCL5 LAG3
IFNG GZMK TAGAP

CD2 CXCL10
HLA-DRA STAT1

CXCL13 GZMB

Table 3. Correlation of signatures with BOR and PFS for HNSCC 
(43 total patients) and gastric cancer (33 patients) cohorts of 
KEYNOTE-012

Nominal 1-sided P valueA

Signature BORB PFS
Head and neck cohort n = 40 n = 43
 IFN-γ signature (6 genes) 0.005C <0.001C

 Expanded immune signature (18 genes) 0.015 <0.001
Gastric cohort n = 33 n = 33
 IFN-γ signature (6-gene) 0.077 0.032
 Expanded immune signature (18-gene) 0.062 0.049
AFrom logistic or Cox regression for overall response and PFS, respectively, 
with signature scores as a continuous variable. BBOR and PFS as assessed 
by investigator. CFrom Seiwert et al. (19). BOR, best overall response; PFS, 
progression-free survival. 
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that a multivariate approach using gene expres-
sion might offer benefits in sensitivity to detect 
responders to anti–PD-1 therapies.

Subsequent to the derivation of the final 
18-gene signature, as a cross-check on the per-
formance of the signature, the original KEY-
NOTE-012 and partial KEYNOTE-028 data 
used to train the signature were augmented 
with data of patients with additional cancers 
from KEYNOTE-028, roughly doubling the size 
of the original training data set, and an addi-
tional cross-validation exercise was conduct-
ed. These pooled data were randomly divided 
multiple times into two-thirds training and one-
third testing, with elastic net predictors trained 
in the two-thirds portion of the data and the 
resultant area under the ROC curve of the new 
predictor compared with that of the 18-gene 
T cell–inflamed GEP in the holdout one-third 
of the data. No evidence of improvement was 
found (data not shown).

GEPs suggest discrete biologies of nonresponse 
to PD-1 blockade. Across multiple tumor types, 
we observed a general pattern of a lack of objec-

tive response in patients whose tumors showed low expression 
levels across the genes, assumed to represent tumors without a 
T cell–inflamed phenotype. However, another category of non-
responders demonstrated clear evidence of IFN-γ and associated 
T cell inflammatory gene expression at baseline (Figure 6, A and 
B). Plotting the T cell–inflamed GEP compared with PFS yielded a 
similar observation (Figure 7). Patients whose tumors had scores 
less than –0.3 generally showed rapid disease progression, where-
as a broad spectrum of progression times was observed for high-
er scores (Figure 7). These data suggest that the presence of a T 
cell–inflamed phenotype is necessary but not sufficient for clinical 
response to PD-1 checkpoint blockade. Moreover, these obser-
vations raise the possibility that distinct resistance mechanisms 
might be in play in tumors that lack T cell inflammation, compared 
with those that show evidence of an activated T cell infiltrate yet 
still show a lack of clinical response.

Discussion
Multigene immune signatures represent a robust means of cap-
turing a complex, T cell–inflamed phenotype necessary for the 
clinical activity of PD-1–/PD-L1–directed monoclonal antibodies. 
In this proof-of-concept study, we assayed pretreatment tumor 
biopsy specimens, capturing broad measures of immune-related 

the area under the ROC curve was greater than 0.5, with an aver-
age area under the ROC curve of 0.75 across the 9 indications used 
to fit the model (data not shown). These data support the tumor 
type–independent applicability of a T cell–inflamed GEP that cap-
tures the biology of a T cell–inflamed microenvironment common 
to PD-1 checkpoint blockade responders.

To further evaluate the predictive usefulness of the 18-gene 
T cell–inflamed GEP, a PD-L1–unselected cohort of 96 patients 
with HNSCC from KEYNOTE-012 who were not involved in pri-
or testing or the training of the signature was used to validate its 
performance in comparison with PD-L1 IHC. The 1-sided P value 
for association between the score and objective response was less 
than 0.001. Figure 5A shows a heatmap of the expression pattern 
for the 18 genes in these 96 patients with HNSCC, and Figure 
5B shows the ROC curve for the T cell–inflamed GEP and PD-L1 
expression by IHC, in which percentage staining using the number 
of PD-L1–positive cells (tumor cells, macrophages, lymphocytes) 
over total tumor cells was used as the scoring system. The area 
under the ROC curve was 0.75 for the T cell–inflamed GEP and 
0.65 for PD-L1 by IHC. Although the all-comers HNSCC cohort 
was not sized/powered for comparisons between areas under the 
ROC curves, a test comparing the areas under the ROC curves 
for equality had a 2-sided P value of 0.119. These results suggest 

Figure 3. Confirmatory testing and signature refine-
ment across multiple cancer types. (A and B) Confir-
matory analyses of the IFN-γ and expanded immune 
signature scores for the HNSCC (43 total patients) 
(A) and gastric cancer (33 patients) (B) cohorts of 
KEYNOTE-012. (C and D) ROC curves of sensitivity and 
specificity for the HNSCC (C) and gastric cancer (D) 
cohorts of KEYNOTE-012.
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gene expression using a straightforward, sensitive, and quantita-
tive method compatible with tissue-limiting FFPE clinical sam-
ples. Through a rigorous, multistep validation process, we derived 
an 18-gene T cell–inflamed GEP that predicted response to pem-
brolizumab across multiple solid tumors. Our results suggest that 
immune GEPs such as the 18-gene profile, when assayed on a 
platform such as the NanoString nCounter platform, can define 
tumor type–independent dimensions of the tumor microenviron-
ment relevant to predicting clinical outcome for agents targeting 
the PD-1/PD-L1 signaling pathway. Moreover, our data showed 
that such signatures might perform favorably compared with 
PD-L1 IHC in PD-L1–unselected populations. The 18-gene profile 
has undergone analytical validation on the NanoString platform 
and is under development as a clinical-grade diagnostic device, 
employed in a set of ongoing pembrolizumab trials (18).

Gene expression signatures that predicted clinical response to 
PD-1 checkpoint blockade were identified and refined in a stepwise 
manner through a number of independent tumor cohorts repre-

senting 10 different tumor types. A set of predictive gene signatures 
was initially defined and evaluated in baseline tumor biopsy speci-
mens in patients with metastatic melanoma undergoing treatment 
with pembrolizumab and was subsequently shown, via rigorous 
independent statistical testing, to be associated with improved clin-
ical outcome for patients with HNSCC or gastric cancer after pem-
brolizumab therapy. Objective response and PFS times were used as 
the focal clinical endpoints in this testing given that the source trials 
were all single-arm studies. The prognostic relationship between 
these signatures and survival under standard of care (chemotherapy)  
is the subject of ongoing investigation, and a full understanding of 
the improvement in overall survival (OS) relative to nonimmuno-
therapies will require randomized studies; however, the association 
between immune signatures and durable objective responses to 
anti–PD-1 treatments, which are responses uncharacteristic of stan-
dard of care, is expected to translate into clear increases in expected 
survival for anti–PD-1 therapy compared with standard of care in 
patients whose tumors exhibit the T cell–inflamed phenotype.

Figure 4. Heatmap for the final 18-gene T cell–
inflamed GEP for 216 tumors from patients in 
KEYNOTE-012 and KEYNOTE-028 considered 
evaluable for objective response. Rows repre-
sent patients and columns genes. Expression 
levels have been standardized (centered and 
scaled) within columns for visualization. The “R” 
on the right side indicates whether the patient 
was a responder (by central imaging vendor in 
KEYNOTE-012 and by investigator assessment 
in KEYNOTE-028). The rows and columns have 
been grouped using unsupervised clustering.
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The final 18-gene profile was derived through a cross-vali-
dated penalized regression modeling strategy in a large cohort of 
pembrolizumab-treated patients across 9 different tumor types. 
Although many of these patient cohorts had undergone enrich-
ment for PD-L1 expression by pre-enrollment IHC screening, the 
predictive value of the signature was prospectively validated in a 

large, independent cohort of PD-L1–unselected 
patients with HNSCC. In this cohort, the area 
under the ROC curve for the T cell–inflamed 
GEP compared favorably with PD-L1 IHC (0.75 
vs. 0.65). Although both PD-L1 and the T cell–
inflamed GEP reflect IFN-γ–inducible biology, 
these results signify the more robust nature of 
an assay that simultaneously measures multi-
ple microenvironmental features, rather than 
a single analyte. Likewise, these data provide a 
much higher level of statistical validation across 
multiple tumor types than has previously been 
reported for single genes associated with the 
IFN-γ signaling pathway and response to PD-1 
blockade (17), indicating that integrated mul-
tigene signatures might represent more robust 
predictive biomarkers than single genes.

For clinical implementation, a cutoff on 
the T cell–inflamed GEP must be selected to 
identify the subgroup in which meaningful 
improvement in response can be demonstrated 
relative to standard of care. The bar for enrich-
ment may be higher in the first-line than in the 
second- and third-line settings. The latter may 
not require extremely high PPV to demonstrate 
convincing activity of the drug in patients with 
advanced metastatic disease who have limited 
or no treatment options.

Inspection of the T cell–inflamed GEP 
suggests that a subset of tumors from diverse 
tissues of origin exhibit at baseline an ongo-
ing adaptive Th1 and cytotoxic CD8+ T cell 
response, including IFN-γ signaling, cytolytic  
activity, antigen presentation, and T cell traf-
ficking, as well as inhibitory mechanisms that 
are evident in T cell homeostasis (Figure 8). 
These data extend the observations of previ-

ous reports showing that CD8+ T lymphocytes and T cell active 
chemokines and T cell counterinhibitory molecules such as 
PD-1/PD-L1 and IDO1 are coregulated within tumors (4, 15, 21, 
22) and confirm that response to anti–PD-1 blockade occurs pri-
marily in patients with such a preexisting, intratumoral T cell 
adaptive immune response. Furthermore, these data indicate 

Figure 5. Validation of the final 18-gene T cell–
inflamed GEP. (A) Heatmap of 18-gene T cell–
inflamed GEP in 96 PD-L1–unselected patients with 
HNSCC from KEYNOTE-012. Expression levels have 
been standardized (centered and scaled) within 
columns for visualization. The “R” on the right side 
indicates whether the patient was a responder (by 
central imaging vendor). The rows and columns have 
been grouped using unsupervised clustering. (B) ROC 
curves comparing final 18-gene score with expression 
of PD-L1 as measured by IHC on tumor and inflamma-
tory cells for a cohort of 96 PD-L1–unselected patients 
with HNSCC from KEYNOTE-012 considered evaluable 
for objective response by central imaging vendor.
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ing antitumor immune response and those in whom an antitumor 
immune response has been generated, with associated infiltration 
of activated T cells into the tumor microenvironment. The reason 
for lack of clinical response in this subset of inflamed tumors is 
not clear, but it might be a result of effects of immunosuppressive 
pathways other than PD-1 within the tumor microenvironment, 
which could be T cell intrinsic or extrinsic. The observation that 
immunosuppressive molecules such as IDO1 and LAG3 are over-
expressed in inflamed tumors suggests that increased anti–PD-1 
efficacy in this class of tumors might be observed when combined 
with immune modulators targeting other suppressive pathways. 
For tumors lacking the inflamed phenotype, distinct strategies 

that the PD-1 pathway likely represents a common mechanism 
for restraining such antitumor responses through the IFN-γ–
mediated induction of PD-L1 and PD-L2 expression. These cor-
relative gene signatures represent a novel method for capturing 
the complexity of the dynamic immune response to a tumor by 
distinguishing between tumors with preexisting inflammatory 
components and noninflamed tumors, a classification that is 
likely to be of high clinical relevance (23, 24).

The spectrum of genes associated with clinical response to PD-1 
checkpoint blockade suggests a complex biology of immune cell 
homeostasis in anti–PD-1–responsive tumors. The production of 
IFN-γ by activated T cells, and perhaps other cells such as NK and 
NK T cells, activates a host of key downstream signaling molecules 
such as STAT1 and CMKLR1 in dendritic cells and macrophages. 
These cells in turn produce chemokines/chemoattractants, includ-
ing CCL5 and CXCL9, which recruit additional CD8+ T cells. T 
cells upregulate activation-induced costimulatory receptors such as 
CD27 and produce an array of effector molecules, including IFN-γ, 
perforin, and granzymes. IFN-γ can induce upregulation of HLA 
molecules and other components of the immunoproteosome and 
antigen-presenting machinery such as PSMB10. However, IFN-γ 
also upregulates a host of checkpoint inhibitors, such as PD-L1 and 
PD-L2, on the surface of macrophages and dendritic and tumor cells. 
Other checkpoint molecules, such as IDO1, TIGIT, and LAG3, might 
also be homeostatically upregulated by T cell activation and IFN-γ 
signaling, and cooperate with PD-1 to restrain the antitumor immune 
response. The association of genes such as HLA-E and NKG7 with 
clinical response suggests that additional aspects of NK cell biology 
or noncanonical T cell antigen recognition might be involved in the T 
cell–inflamed microenvironment. Overall, the genes identified sug-
gest that multiple immune cell types contribute to a T cell–inflamed 
but immune checkpoint–restrained tumor microenvironment that 
can be successfully modulated by PD-1 checkpoint blockade.

Furthermore, our data suggest that nonresponders to anti–
PD-1 therapy fall into 2 broad categories: those who lack a preexist-

Figure 6. Relationship between increases in IFN-γ immune-related signature score and PFS in response to anti–PD-1 therapy for the HNSCC and gastric 
cancer cohorts of KEYNOTE-012. (A) Relationship in the HNSCC cohort (43 total patients). (B) Relationship in the gastric cancer cohort (33 patients). The 
cutoff associated with the Youden index is displayed in each figure.

Figure 7. PFS time versus T cell–inflamed GEP score in 244 patients from 
KEYNOTE-012 and KEYNOTE-028 for the 9 cancer cohorts used to deter-
mine the T cell–inflamed GEP.
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tumors were positive (≥1% of cells) for PD-L1 expression either in 
tumor cells or in inflammatory cells of the surrounding stroma. When 
only an FFPE block was available, sections were cut at 5 μm onto pos-
itively charged slides. One cut section from each tissue sample was 
routinely stained with H&E and coverslipped for assessment of sam-
ple quality. Each H&E-stained slide was reviewed by a pathologist to 
evaluate the adequacy of tumor representation, the quality of tissue 
preservation, and whether significant artifacts relating to fixation, 
processing, or prefixation tissue handling were present. Specimens 
containing no tumor tissue or very minimal tumor tissue were exclud-
ed from analysis. The number of slides needed for RNA isolation from 
any given tissue sample was based on a combination of sample size 
on the slide and the proportion of the sample that consisted of tumor 
tissue; typically, RNA was isolated from 2–4 slides per case.

A PD-L1 clinical trial assay (PD-L1 IHC 22C3 pharmDx assay; 
Agilent Technologies) was subsequently developed and approved as a 
PD-L1 IHC companion diagnostic for use in non–small cell lung can-
cer in the United States (28, 29). The approved assay was used to stain 
the 96 patient HNSCC samples under the staining protocol described 
in the instructions of the commercial assay. Staining was scored using 
the number of PD-L1–positive cells (tumor cells, macrophages, lym-
phocytes) over total tumor cells, expressed as a percentage.

RNA isolation and gene expression analysis. Total RNA was iso-
lated from 5-μm-thick FFPE sections of tumors fixed on positively 
charged slides using the Ambion RecoverAll kit for RNA isolation 
from FFPE tissue (Thermo Fisher Scientific) following the manufac-
turer’s protocols. RNA was quantified using the NanoDrop ND1000 
spectrophotometer (Thermo Fisher Scientific). Gene expression 
analysis was conducted on the NanoString nCounter gene expression 

to stimulate a host immune response against the tumor may be 
necessary. Further work is needed to elucidate the discrete mech-
anisms that inhibit T cell trafficking to T cell–poor tumors, which 
might include tumor cell–intrinsic mechanisms (e.g., WNT/β-cat-
enin pathway activation) (25), failure of T cell priming (amena-
ble to reversal by tumor-specific vaccines, oncolytic viruses, or 
adoptive T cell therapy), or the activity of other cells in the tumor 
microenvironment, such as stromal cells (26) or vascular endo-
thelial cells (27). Further studies using gene expression profiling 
might represent a powerful approach to dissecting the discrete 
biologies of resistance to PD-1 checkpoint blockade, potentially 
revealing new targets for converting anti–PD-1–resistant tumors 
to a state of responsiveness.

Methods
Quality assessment of clinical FFPE tissue specimens. The KEY-
NOTE-001, KEYNOTE-012, and KEYNOTE-028 trials were nonran-
domized, open-label studies characterizing the safety, tolerability, and 
clinical activity of pembrolizumab in patients with locally advanced or 
metastatic cancers (KEYNOTE-001: melanoma, non–small cell lung 
cancer; KEYNOTE-012: HNSCC, gastric cancer, triple-negative breast 
cancer, bladder cancer; KEYNOTE-028: anal canal, biliary, colorectal, 
esophageal, and ovarian cancer). Pretreatment clinical specimens 
were collected as specified in the clinical protocols and consisted of 
FFPE blocks and/or cut tissue on slides. The melanoma cohort from 
KEYNOTE-001 and the HNSCC-expansion cohort of KEYNOTE-012 
were all-comers cohorts (independent of PD-L1 expression), where-
as the remaining cohorts from KEYNOTE-012 and all cohorts from 
KEYNOTE-028 were screened using an IHC assay for patients whose 

Figure 8. The T cell-inflamed gene expres-
sion signature highlights the complex biolo-
gy of the host immune microenvironment.
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by investigator and RNA expression profiling from KEYNOTE-012 (25 
bladder, 40 HNSCC, 30 triple-negative breast cancer, and 33 gastric) 
and KEYNOTE-028 (19 anal canal, 13 biliary tract, 18 colorectal, 18 
esophageal, and 24 ovarian) were available at the time and were used 
in an elastic net penalized regression model (30) for objective response 
to select a final set of genes and their weighting. Fivefold cross-valida-
tion was used to select the penalty parameters, and 10 different ran-
dom partitions of the data into 5-folds were used. The average of the 
estimated penalties from these 10 cross-validation runs was used as 
the final set of penalty parameters to determine the final gene set and 
weights. The penalized regression models adjusted for cancer type, 
performance status, and the interaction between cancer type and per-
formance status. The final values of the regression coefficients on the 
genes that were not zeroed out by the penalty terms were used as the 
weights in the computation of the T cell–inflamed GEP score for the 
resulting 18 genes, not to be confused with the 18 genes of the expand-
ed immune signature. The score was computed as the weighted sum of 
the housekeeping normalized values of the 18 genes.

Study approval. The original studies were conducted in accor-
dance with the Declaration of Helsinki and the International Con-
ference on Harmonization Good Clinical Practice guidelines and 
approved by relevant regulatory and independent ethics committees 
from each study’s institution. All patients provided written informed 
consent before study entry.
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platform (NanoString Technologies). A custom code set consisting 
of a 680-gene panel related to T cell biology, immune regulation, 
and cellular markers of tumor-infiltrating lymphocytes and tumor- 
associated macrophages was used. Per sample, 50 ng of total RNA in 
a final volume of 5 μl was mixed with a 3′ biotinylated capture probe 
and a 5′ reporter probe tagged with a fluorescent barcode from the 
custom gene expression code set. Probes and target transcripts were 
hybridized overnight at 65°C for 12–16 hours per the manufacturer’s 
recommendations. Hybridized samples were run on the NanoString 
nCounter preparation station using the high-sensitivity protocol, in 
which excess capture and reporter probes were removed and tran-
script-specific ternary complexes were immobilized on a streptavi-
din-coated cartridge. The samples were scanned at maximum scan 
resolution on the nCounter Digital Analyzer.

Quantile normalization. Gene expression data for each individu-
al sample were normalized by quantile normalization. Gene counts 
collected from the NanoString scanner were used as input variables 
with a reference distribution generated using a pool of counts from 
all samples and 680 genes (excluding data from positive and negative 
control probes). After performance of quantile normalization, a log10 
transformation was applied, and signature scores were calculated by 
averaging of the included genes for the IFN-γ (6-gene) and expanded 
immune (18-gene) signatures.

Housekeeping normalization. In anticipation of moving to a more 
limited set of genes that could serve as the basis of a focused clinical 
trial assay (a context not amenable to quantile normalization), a set of 
11 genes showing low variance across a set of banked tumor samples 
from a variety of cancer types was identified and used to form a nor-
malizing constant for each patient. The log10 count of each gene on the 
platform was normalized by subtracting of the arithmetic mean of the 
log10 counts of the housekeeping genes.

Statistics. Logistic regression modeling was used to conduct the 
hypothesis testing associated with best overall response (BOR), and 
a Cox model was used for testing of PFS and OS. PFS was defined as 
the time from the start of treatment to documented evidence of pro-
gressive disease or death. OS was defined as time from treatment initi-
ation to death from any cause. For BOR, a responder was defined as a 
patient with “complete response” or “partial response” as determined 
by RECIST v1.1 criteria, assessed by central imaging vendor for mela-
noma and by investigator review for the HNSCC and gastric cohorts 
(centrally reviewed data were not as mature at the time of analysis). 
One-sided P values were calculated according to the hypothesized pos-
itive association between the immune signatures and improved clini-
cal outcome under treatment. Calculation of the area under the ROC 
curve was used as a measure of discriminatory ability for the signa-
ture scores. The Youden index, a summary measure of the ROC curve 
(20), was used as an agnostic method for choosing an “optimal” cutoff 
on the signature scores to illustrate potential clinical usefulness. The 
NanoString platform was used as a discovery research assay rather than 
a clinical trial–grade assay.

Nominal P values were reported for signature testing. The gene 
signatures developed from the melanoma cohort were independently 
confirmed by prespecified hypothesis testing in 2 additional cancer 
types: HNSCC and gastric cancer. Afterward, a larger effort to define 
a focused gene signature and an optimal scoring for that signature was 
undertaken by combining of early versions of data from KEYNOTE-012 
and KEYNOTE-028. A total of 220 patients with measurable disease 
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