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Introduction
Allogeneic stem cell or bone marrow transplantation (hereafter 
referred to as BMT) remains a cornerstone curative therapy for 
high-risk hematological malignancy and severe immune deficien-
cies (1). Chronic graft-versus-host disease (cGVHD) is a multi-
system inflammatory disease characterized by tissue fibrosis and 
mucosal lichenoid plaques that develop late after BMT and now 
represents the major cause of procedural morbidity and nonre-
lapse mortality (2, 3). While cGVHD has been historically defined 
by its time of onset (more than 100 days after BMT), it is now 
classified on the basis of clinical diagnostic features that typical-
ly involve cutaneous and/or pulmonary fibrosis (scleroderma and 
bronchiolitis obliterans [BO], respectively), oral lichenoid lesions, 
and myofascial manifestations, although it can affect virtually any 
organ in the recipient (4, 5). These changes to diagnosis and sever-
ity criteria have been generated in the last decade in an attempt 
to address difficulties with reproducible clinical staging and 
response criteria (6, 7) that have previously hindered the testing of 
therapeutics in appropriate controlled clinical trials.

Our understanding of cGVHD has improved dramatically in 
the last five years and is now conceptualized as a complex immu-
nological process incorporating multiple facets of adaptive and 
innate immunity, including B cells, T cells, and macrophages 
together with their interactions with target tissues. Cytokines can 
be secreted by most cell lineages and orchestrate cellular respons-
es that include migration, activation, and growth. This Review 
focuses on the cytokines that coordinate the cellular and molec-

ular determinants of cGVHD, outlining the pivotal soluble and 
surface-expressed mediators controlling disease at a cellular and 
extracellular level. Given the complexity of cGVHD, we will dis-
cuss cytokine effects in the context of relevant cellular mediators 
of disease and outline potential therapeutic approaches based on 
insights gained in preclinical models.

Since this Review cannot cover all aspects of the pathogenesis 
of GVHD, there are multiple additional reviews, both within this 
series in the JCI and elsewhere, focused on acute (8, 9) and chronic  
GVHD (10–12) that can provide a broad overview of the GVHD 
disease process. It should be noted that most of our recent under-
standing of cGVHD pathogenesis, particularly in relation to cyto-
kine biology, has been developed in murine systems, and recent 
reviews have highlighted the pros and cons of these studies (1, 
13). Where information exists, these broad pathogenic principles 
have been confirmed in patients undergoing BMT, and thus, this 
Review will focus on cytokine-dependent regulation of disease in 
mice and patients.

Modeling cGVHD clinical manifestations in mice
The incidence of moderate to severe cGVHD has increased over 
the last two decades because of the widespread use of granulocyte 
CSF–mobilized peripheral blood stem cells (G-PBSCs) over unma-
nipulated BM grafts. It is now clear that the enhanced and accel-
erated engraftment seen with G-PBSCs versus BM is countered 
by higher levels of cGVHD (14, 15). Other risk factors for cGVHD 
include the use of HLA-mismatched and unrelated donors, recip-
ient age, and absence of antithymocyte globulin in conditioning 
(16). The increasing use of G-PBSC–mismatched donors and the 
routine transplantation of patients over 60 years old have led to a 
dramatic increase in the burden of cGVHD (14).

It is notable that cGVHD may develop in the context of preced-
ing acute GVHD (aGVHD), whether effectively treated or develop-
ing as a continuum from acute disease (17). Indeed, prior aGVHD 
is a powerful and important risk factor for subsequent cGVHD (18). 
Furthermore, it has recently been appreciated that GVHD “break-
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total-body irradiation–based conditioning and BM grafts together 
with purified splenic and/or lymph node–derived T cells to induce 
GVHD (22). More recently, granulocyte CSF–mobilized (G-CSF–
mobilized) splenocytes have been used to model G-PBSCs, which 
generally results in more severe cGVHD compared with models 
using unstimulated splenocytes (23).

While models are characteristically defined as giving rise to 
aGVHD or cGVHD, in practice, it is not always possible to clearly 
distinguish the two pathologies. Indeed, donor T cell dose, donor/
recipient strain combinations, and environmental conditions dic-
tate the extent to which the recipient experiences aGVHD and/or 
cGVHD. Thus, early mortality (in the first 2 weeks) after BMT with 
high T cell doses is typically a result of CD4-dependent aGVHD 
of the gastrointestinal (GI) tract (1), whereas disease features typ-

ing through” prophylaxis (usually immune suppression with calci-
neurin inhibitors) may have distinct immunological features from 
GVHD that develops in the absence of calcineurin inhibitors (19); 
this is an important potential consideration for therapy.

Historically, mouse cGVHD studies were often generated in 
the absence of conditioning therapy by infusion of parental sple-
nocytes into semiallogeneic F1 hosts, resulting in a lupus-like 
reaction (reviewed in refs. 20, 21). However, these models did not 
well simulate the wider spectrum of clinical cGVHD, and, since 
no conditioning or donor hematopoietic cells were infused, host 
immune elements were major contributors to disease pathogen-
esis. The dominant disease manifestations were glomerulone-
phritis with scleroderma that was associated with single-stranded 
DNA autoantibodies. Today, mouse models of BMT typically use 

Figure 1. Cytokines and signaling pathways associated with the effector populations of cGVHD. (A) T effector cells respond to MHC/peptide on antigen 
presenting cells (APC) and, in the context of IL-6–, IL-23–, and IL-21–stimulated STAT3 phosphorylation, transcribe RORC to drive Th17 and Tc17 differ-
entiation with secretion of IL-17 and related cytokines. IL-12 stimulation promotes T cell–specific T-box transcription factor (TBET) transcription and IFN 
secretion that signals in an autocrine fashion to enhance Th1 differentiation. Tbet expression and IFN-γ secretion are also characteristic of Th17/Tc17 
cells after BMT. (B) Tregs respond to antigen within MHC class II and concurrent TGF-β and IL-2 signaling, which promotes STAT5 phosphorylation, SMAD 
signaling, and subsequent FOXP3 transcription. Immune regulation by secreted IL-10 and TGF-β ensues. (C) Tfh, identified by ICOS, CXCR5, and PD-1 
expression, respond to antigen presented within MHC class II in the context of IL-6, IL-27, and IL-21 stimulation to drive STAT3 phosphorylation and BCL6 
transcription, with subsequent secretion of IL-21. (D) BAFF and IL-21 drive GC B cell expansion and, in the context of B cell receptor signaling, subsequent 
SYK and BTK transcription promotes survival and allo- and autoantibody secretion. BLNK, B cell linker; NFAT, nuclear factor of activated T-cells; BCR,  
B cell receptor; PLC, phospholipase C.



The Journal of Clinical Investigation   R E V I E W  S E R I E S :  T R A N S P L A N T A T I O N

2 4 5 4 jci.org   Volume 127   Number 7   July 2017

45–47), it is also now clear that aberrant B cell expansion is a fea-
ture of cGVHD (28, 29). In addition to B cell depletion, the thymus 
is a primary target of aGVHD (48), setting the scene for aberrant T 
cell selection and differentiation later after BMT (30). In cGVHD 
it is therefore possible that donor T cells may be both auto- and 
alloreactive (25); indeed, T cells from animals with cGVHD can 
induce disease in syngeneic recipients (30).

Adaptive immunity: cytokine-dependent T and  
B cell differentiation
IL-6 and Th17/Tc17. T cell differentiation after BMT is character-
ized by a number of pathogenic and protective paradigms. Unlike 
other proinflammatory cytokines, IL-6 dysregulation after BMT 
occurs in response to conditioning and is largely independent of 
immune suppression (37, 44). IL-6 is a pleiotropic cytokine that 
can be produced by most cells; production by monocytes and 
macrophages dominates (49). The cytokine signals through a tri-
mer receptor complex that involves IL-6R and gp130 (50). IL-6R 
expression is relatively limited in distribution to some T cells, 
monocyte-macrophages, and hepatocytes, while gp130 is ubiqui-
tously expressed (49). Classical IL-6 signaling through this recep-
tor complex results in phosphorylation of STAT3, which is critical 
for the generation of cGVHD (51, 52). In T cells, this pathway drives 
expression of the transcription factor (TF) RAR-related orphan 
receptor-γt (RORγt) and the generation of cytokine gene products 
characteristic of Th17/Tc17 differentiation (41, 53). This differen-
tiation pattern appears to be augmented by stem cell mobilization 
with G-CSF, which provides a link between cGVHD predilection 
and G-PBSC grafts (23). Recently, the use of cell fate–reporter sys-
tems has made it clear that Th17/Tc17 differentiation after BMT is 
highly promiscuous and plastic in nature (41). In particular, IL-17 
secretion is transient, and, despite continuously elevated RORγT 
expression, the dominant cytokine signature over time is IFN-γ 
and TNF (Th1 cytokines). Importantly, the Tc17 lineage appears 
to have limited capacity for cytolysis with low levels of granzyme 
B production and minimal capacity to mediate graft-versus-leuke-
mia effects (41, 54). Tc17 also express high levels of T-bet and, over 
time, after both preclinical and clinical BMT (37), exhibit concur-
rent dysregulation of both IFN-γ and IL-17, consistent with a role 
for this lineage in cGVHD. Indeed both scleroderma and BO fail to 
develop in animals in the absence of IL-17A and/or RORC (23, 24), 
consistent with a central role for this pathway in disease.

In the clinic, the nature of cells infiltrating target organs 
remains poorly defined, likely reflecting differences over time and 
within individual organs. Nevertheless, Th1/Tc1, Th17/Tc17, and 
RORγT are all seen at cGVHD sites (55–57), as well as STAT3 phos-
phorylation, which has been suggested to predict GVHD (37, 57, 
58). Recently, nonhuman primate systems demonstrated the dom-
inance of the Th17/Tc17 differentiation pattern in animals devel-
oping GVHD that breaks through immune suppression (19), akin 
to the breakthrough observed in patients. A number of studies 
have demonstrated the importance of IFN-γ in sclerodermatous 
cGVHD, with or without IL-17A (59–62). In contrast, a protective 
role for Th1 cytokines has been described in lung disease, including 
BO (42, 44, 63). Other Th17/Tc17 cytokines include granulocyte- 
macrophage CSF (GM-CSF) and CSF-1, both of which play crit-
ical roles in monocyte-macrophage biology (64, 65) (their role 

ical of cGVHD occur 4–8 weeks after BMT with low T cell doses 
that avoid early mortality and cause chronic T cell stimulation 
and subsequent antibody production (23–28). We believe that 
clinically relevant cGVHD is not unique to models of GVHD in 
response to minor histocompatibility antigens but rather reflects 
the nature of the immune response in the model, e.g., CD4 ver-
sus CD8 T cells and their respective differentiation and cytokine/
chemokine expression patterns. Nevertheless, as in clinical prac-
tice, features of aGVHD in the GI tract and liver and cGVHD in 
skin and lung often coexist, reflected by the current NIH criteria 
(5). Clinical cGVHD can affect almost any target tissue, making 
modeling in preclinical systems challenging. Nevertheless, the 
predominant and diagnostic organ pathologies that develop are 
usually scleroderma or BO, although, for potentially important 
reasons that are yet to be defined, disease seldom coexists in these 
two organs within animal systems. Additional features of cGVHD 
have been described in the tongue, salivary and lacrimal glands, 
and eye; such pathology requires histological confirmation and 
grading in severity (29–31). Pulmonary function tests are also par-
ticularly informative for determining the severity of BO; however, 
these tests are technically challenging and available in a limited 
number of laboratories (27, 28). To date, reliable models and func-
tional determinants of manifestations of cGVHD such as Sjögren’s 
syndrome are generally lacking and represent an important unmet 
need in the field.

aGVHD: setting the stage for cGVHD
As noted, aGVHD is often a portent of cGVHD, suggesting that 
the pathophysiology of the two processes is linked. Recent les-
sons from the translation of preclinical approaches to prevent 
GVHD, predominantly post-transplant cyclophosphamide (32), 
which depletes alloreactive T cells while sparing Tregs, and selec-
tive ex vivo naive T cell depletion (33), have resulted in dramatic 
reductions in cGVHD, but not aGVHD (34, 35). These data indi-
cate that the expansion and differentiation of naive T cells in the 
donor graft are central to cGVHD pathogenesis. The initial stages  
of T cell differentiation occur in an inflammatory and lympho-
penic environment, a result of the chemoradiotherapy used in 
conditioning (36). Thus, elevated levels of proinflammatory cyto-
kines, particularly IL-6 and to a lesser extent IL-1 and TNF (37), 
act in concert with products of luminal damage-associated and 
pathogen-associated molecular patterns to modify and augment 
both alloantigen presentation and T cell differentiation (38, 39). 
While this inflammatory storm favors differentiation of IFN-γ–
secreting CD4+ and CD8+ T cells (Th1 and Tc1, respectively) and 
IL-17–secreting CD4+ and CD8+ T cells (Th17 and Tc17, respective-
ly) (Figure 1), and resultant target organ apoptosis (36, 40–43), 
in the clinic this process is highly modified by pharmacological 
immune suppression (37). Thus, the process is modulated and can 
be delayed relative to that seen in preclinical systems where phar-
macological immune-suppressive agents are seldom given after 
BMT (44). Indeed, the intense early post-BMT TNF/IL-1/IFN-γ 
dysregulation seen in animal systems is not fully recapitulated in 
the clinic; therefore it is possible that murine systems may overes-
timate the Th1/Tc1 dominance of aGVHD.

Although aGVHD and cGVHD impair donor B cell differenti-
ation in the BM and aGVHD causes peripheral B cell depletion (1, 
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of target cell apoptosis (73). Promising clinical data have also sug-
gested an effect in patients, with low incidence of aGVHD seen in 
those receiving IL-6R inhibition for 3–4 weeks after BMT. In this 
setting, protection was associated with modification of myeloid 
and T cell responses (37). Importantly, short-term IL-6 inhibition 
did not seem to influence the development of cGVHD, suggest-
ing that long-term IL-6 inhibition would be required to prevent 
cGVHD. Alternatively, these findings indicate that IL-17 differen-
tiation late after BMT is independent of IL-6 (see below).

IL-21 and Tfh. The differentiation of Tfh is defined by the 
BCL6 TF and surface expression of CXCR5 and programmed 
death-1 (PD1) (74). Tfh cells express high levels of IL-21, which 
drives germinal center (GC) B cell formation and antibody secre-
tion (28, 74). While autoantibodies are widely seen in patients with 
cGVHD, their role (i.e., cause versus effect) in disease remains 
unclear. In contrast, alloantibody generation in conjunction with 

in cGVHD is described below), and IL-22, a cytokine known to 
be important in the protection of the GI tract from GVHD when 
secreted by recipient innate lymphoid cells (ILCs) (66, 67). Wheth-
er IL-22 within the GI tract is from ILCs or from Th17 or a diver-
gent Th22 lineage has yet to be determined. IL-22 also has proin-
flammatory properties (68, 69), and a pathogenic role of donor T 
cell–secreted IL-22 has been described in GVHD. This function is 
related, at least in part, to the suppression of Tregs and host type 
I IFN/STAT1 signaling (70, 71). Ongoing clinical trials of exoge-
nous IL-22 IgG2-Fc fusion protein to treat patients with lower-GI 
aGVHD (NCT02406651, ClinicalTrials.gov) will determine the 
extent to which the intestinal reparative effects might outweigh 
potential pathogenic proinflammatory effects of IL-22.

The inhibition of IL-6 has shown impressive protection from 
aGVHD in preclinical models in association with inhibition of 
Th17 differentiation, Treg expansion (72), and direct inhibition 

Table 1. Open clinical trials for systemic treatment of chronic GVHD (accessed October 30, 2016)

Treatment Mechanism Design Sponsor Country ClinicalTrials.gov 
identifier

Signaling targets
Carfilzomib Proteasome inhibitor MC Fred Hutchinson Cancer Research Center USA NCT02491359
Ixazomib Proteasome inhibitor MC Fred Hutchinson Cancer Research Center USA NCT02513498
Baricitinib JAK1/2 inhibitor SC National Cancer Institute USA NCT02759731
IbrutinibA BTK/ITK inhibitor MC Pharmacyclics USA NCT02195869
Fostamatinib Syk inhibitor SC Duke University USA NCT02611063
Entospletinib Syk inhibitor MC Gilead Sciences International NCT02701634
KD025 Rho-associated coiled-coil kinase 2 

(ROCK2) inhibitor
MC Kadmon Corp. USA NCT02841995

Vismodegib Hedgehog inhibitor MC University of Utah USA NCT02337517
LDE225 Hedgehog inhibitor MC Massachusetts General Hospital USA NCT02086513

Suppressor cell–based therapies
Dose-escalated IL-2 Induction of Tregs SC Dana-Farber Cancer Institute USA NCT02318082
IL-2 + Tregs Induction of Tregs SC Dana-Farber Cancer Institute USA NCT01937468
IL-2 + extracorporeal photopheresis Induction of Tregs SC Dana-Farber Cancer Institute USA NCT02340676
Tregs Infusion of Tregs MC Instituto de Medicina Molecular Portugal NCT02385019

Infusion of Tregs MC University Hospital of Liege Belgium NCT01903473
Infusion of Tregs SC Stanford University USA NCT01911039

Mesenchymal stem cells (MSCs) Suppressive population SC Emory University USA NCT02359929
Suppressive population MC Guangdong General Hospital China NCT02291770

 Suppressive population MC Nanfang Hospital of Southern  
Medical University

China NCT01765660

 Suppressive population MC Chinese Academy of Medical Sciences China NCT01526850
UCB MSCs Suppressive population SC Samsung Medical Center South Korea NCT01549665
DCs Suppressive population SC Washington University USA NCT02611180
Photodynamic ex vivo cell depletion  
and repetitive reinfusion

Depleting alloreactive T cells  
and sparing Tregs

SC Maisonneuve-Rosemont Hospital Canada NCT02519816

Other chronic GVHD targets
Ofatumumab Anti-CD20 antibody MC H. Lee Moffitt Cancer Center USA NCT01680965
Abatacept CTLA4-Ig fusion protein MC Beth Israel Deaconess Medical Center USA NCT01954979
Ponesimod S1P1 receptor modulator MC Actelion USA NCT02461134
Pomalidomide Multiple mechanisms SC National Cancer Institute USA NCT01688466
Brentuximab CD30 antibody-drug conjugate SC Massachusetts General Hospital USA NCT01940796
AZD9668 Neutrophil elastase inhibitor SC National Cancer Institute USA NCT02669251
Hydrogen-rich water Antiinflammatory SC Navy General Hospital China NCT02918188
AActive but not recruiting. SC, single center; MC, multicenter; UCB, umbilical cord blood.
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ulate GVHD (98–100). Whether the regulatory effects of IL-10 
are principally from myeloid cells (101), Tr1 or Treg populations 
(102, 103), or so-called regulatory B cells (104, 105) is unclear and 
deserves further study. IL-10 signals through IL-10R, which is prin-
cipally expressed on immune cells, and can promote Treg differen-
tiation and licensing, regulate TNF secretion, and inhibit effector T 
cell proliferation, most likely owing to inhibitory effects on antigen- 
presenting cells (reviewed in ref. 106). IL-10 is also induced by 
nonhematopoietic cells following G-CSF–mediated stem cell 
mobilization (107, 108) and enhances Treg expansion early after 
BMT (109). Thus, IL-17 induction and IL-10 induction appear to 
be divergent mechanistic pathways by which the transplantation 
of G-PBSCs results in a profound augmentation of cGVHD but has 
relatively little effect on the incidence of aGVHD. Because IL-10R 
is also expressed on Th17 (110) and CD8+ T cells (111), and high-
dose exogenous IL-10 (112), in striking contrast to low doses (113), 
can drive rather than protect mice against aGVHD lethality, it is 
possible that during aGVHD the immunoregulatory properties of 
IL-10 in some patients may be offset by effects on Th17 and CD8+ 
cytotoxic T cells. Although progress has been made on Tr1 charac-
teristic cell surface antigens (114), investigation of Tr1 in this pro-
cess is currently limited by a lack of pivotal TFs required for lineage 
development and/or stable surface phenotypes. These are needed 
to analyze the role of these cells in the BMT setting in order to opti-
mize the potential therapeutic benefits of IL-10 (115, 116).

Cytokine-driven effector pathways in cGVHD
CSF-1 and macrophages. CSF-1 is the master regulator of the cells 
of the mononuclear phagocytic system. CSF-1 signaling controls 
the differentiation (117), proliferation (118), migration and survival 
(119) of tissue-resident macrophages and their precursors (120), 
and contributes to DC homeostasis (121). The CSF-1 receptor (CSF-
1R), a class III RTK  belonging to the PDGF family, is expressed at 
high levels on monocytes and macrophages. CSF-1R is also broadly  
expressed at low levels on multiple lineages, including hemato-
poietic (122) and neural stem cells (123), DCs, microglia (124), 
osteoclasts (125), and Paneth cells (126). As such, CSF-1 signaling 
contributes to embryonic development, homeostasis, innate and 
acquired immunity, and tissue repair. Consistent with these roles, 
impaired CSF-1 signaling is implicated in multiple disease states.

In macrophages, CSF-1R ligation leads to the autophosphory-
lation of the intracellular tyrosine residues and subsequent phos-
phorylation of several kinase signaling systems, including PI3K 
(127), MEK, and the Tek family kinases Tec and Bruton’s tyro-
sine kinase (BTK) (128). Other components of the CSF-1 signal-
ing pathways include SHIP1, ERK1/2, AKT, p38, JNK, and ERK5, 
which together regulate diverse downstream functional decisions, 
including proliferation, differentiation, and survival (reviewed in 
ref. 129 and shown in Figure 2).

Although some studies have shown that the pretransplant con-
ditioning regimen leads to the release of inflammatory cytokines by 
host macrophages (36), others have demonstrated that host mac-
rophages that persist after BMT can reduce GVHD by engulfing 
donor T cells (120, 130, 131) and pre-BMT CSF-1 can expand mac-
rophages, thereby suppressing aGVHD lethality (131). In cGVHD, 
accumulating evidence demonstrates a critical role for CSF-1–
dependent monocytes and macrophages in fibrogenesis. In most 

GC B cell expansion has been observed in cGVHD models (28, 29, 
75). Inhibition of IL-21/IL-21R signaling prevented GC expansion 
and alloantibody formation, as well as disease (23, 28). Further-
more, serum transfer experiments confirmed the ability of alloan-
tibody to induce cGVHD (76), and H-Y alloantibodies correlated 
with disease in clinical sex-mismatched donor/recipient pairs (77, 
78). Whether alloantibody is present in all patients and involved 
in disease universally is currently unclear. Likewise, whether the 
major pathogenic sources of IL-21 are Tfh, Th17, or a recently 
described IL-6–dependent CD8+ T cell lineage also is unclear (79).

B cells. B cell generation is disrupted during GVHD, leading 
to elevations in immature and transitional B cells and defects in 
memory populations, which exhibit enhanced sensitivity to B 
cell activating factor (BAFF) (80, 81). BAFF is produced primarily 
by myeloid cells, stromal cells, and some lymphoid cells and is a 
transmembrane protein that can be cleaved into a soluble form. 
The BAFF receptor (BAFFR) is expressed by B cells and plasma 
cells and determines immature B cell survival and maturation 
(82). BAFF/B cell ratios are elevated in patients with active cGVHD  
(83–85), and this elevation is associated with alterations in GC 
B cells and the presence of plasma cell–like populations, consis-
tent with a state of B cell hyperactivation (84). Given that inhibi-
tors of this pathway are in clinical use, it is important to study this 
pathway in depth in relevant preclinical models. Moreover, since 
plasma blasts and plasma cells produce copious amounts of anti-
bodies, strategies described below to target these cell populations 
may be useful in overcoming BAFF-mediated signaling events.

IL-2 and Tregs. The differentiation of T cell lineages with regu-
latory capacity has been widely described and has focused princi-
pally on FoxP3+ Tregs (86), but also more recently on FoxP3–IL-10+ 
Treg type 1 (Tr1) cells (87). Tregs may be generated centrally in 
the thymus (tTregs) or induced peripherally (iTregs) under the 
influence of TGF-β and antigen presentation within MHC class II. 
FoxP3 expression appears to be much more stable in tTregs, but 
both Treg subtypes are characterized by expression of the high- 
affinity IL-2 receptor CD25 (88). Thymic Treg production (26, 30) 
and peripheral Treg homeostasis are perturbed, and Treg numbers 
are reduced in cGVHD (89, 90). In preclinical BMT models, Treg 
depletion induces cGVHD, and adoptive Treg transfer can ame-
liorate disease (25, 91). Donor DCs are essential for maintaining 
donor Treg homeostasis after BMT (25, 92). Importantly, aGVHD 
profoundly impairs antigen presentation within MHC class II (93), 
providing a causal link between aGVHD and the development of 
Treg deficiency and subsequent cGVHD (25).

A number of elegant studies have demonstrated that exoge-
nous IL-2 administration can enhance Treg numbers and induce 
responses in about half of patients with steroid-refractory cGVHD 
(94–97). It appears that ongoing treatment is necessary to main-
tain responses (96), yet it is currently unclear whether adoptive 
Treg transfer, with or without IL-2, can further improve response 
rates, which will be clarified by several ongoing worldwide clinical 
trials (Table 1). The ability of alternative cytokines (either long- 
acting IL-2 mutants or other common γ chain cytokines) to enhance 
regulatory responses remains a burgeoning area of interest.

IL-10. The role of the Tr1 lineage in cGVHD is presently unclear, 
but these cells are known to regulate immune responses via IL-10, 
which is an important mechanism by which Tregs and B cells mod-
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fibrotic tissues, including clinical cGVHD 
lesions, macrophages are abundant and are 
found in close proximity to collagen-pro-
ducing myofibroblasts (55, 132). In multiple 
preclinical models of cGVHD, macrophage 
sequestration into GVHD target organs has 
been shown to be both IL-17– and CSF-1–
dependent (23, 24). Critically, the disrup-
tion of CSF-1 signaling following BMT using 
an anti–CSF-1R mAb (M279) depleted tissue 
macrophages and attenuated cGVHD-asso-
ciated cutaneous and pulmonary fibrosis. 
Importantly, CSF-1R blockade also specifi-
cally ablated Ly6Clo monocytes, the estab-
lished tissue-resident macrophage precur-
sors (120). The infiltrating macrophages, 
which were of donor origin, exhibited an 
antiinflammatory M2-skewed phenotype, 
and were capable of promoting fibrosis via 
their secretion of TGF-β and possibly other 
profibrogenic proteins (24).

IL-17 may contribute directly to 
myeloid cell sequestration and differentia-
tion, as both monocytes and macrophages 
express high levels of the IL-17A receptor 
(133) and IL-17 signaling in these cells elic-
its multiple functions including chemotaxis 
and activation (134, 135). However, Tc17, 
which are implicated in mediating mac-
rophage sequestration, also express oth-
er proinflammatory cytokines, including 
GM-CSF (41), which may contribute syner-

Figure 2. Overview of the cytokine-driven 
cellular network driving cGVHD. cGVHD is now 
recognized as a Th17/Tc17- and Tfh-mediated 
disease. DC priming of naive allogeneic T cells 
in the setting of elevated IL-6 production after 
BMT drives RORγt expression and Th17/Tc17 
differentiation and accumulation in target 
tissues. Increased Tfh, GC B cells, and antibody, 
which accumulate in target tissues, contribute to 
cGVHD pathology. Tfh express high levels of IL-21, 
which, together with elevated levels of BAFF, 
drive GC B cell formation and antibody secretion. 
CSF-1–dependent macrophages are late-phase 
mediators of cGVHD pathology. Th17/Tc17 are 
polyfunctional and coexpress high levels of mul-
tiple cytokines, including IFN-γ, TNF, IL-22, CSF-1, 
and GM-CSF, which are implicated in promot-
ing the migration and differentiation of Ly6Clo 
monocytes into pathogenic M2 macrophages. 
Plasma cell–derived allo- and autoantibodies can 
bind to Fc receptors on macrophages, potentially 
contributing to their polarization. Through their 
secretion of TGF-β, Ly6Clo-derived macrophages 
promote fibroblast activation and collagen pro-
duction, leading to tissue fibrosis. Adapted with 
permission from Blood (11).
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gistically to macrophage differentiation/polarization at localized 
sites. The factors driving aberrant macrophage differentiation and 
the potential role of alloantibody in this process are unclear but 
require investigation. Notably, Tec and BTK are essential regu-
lators of macrophage CSF-1 signaling (128), contributing to both 
survival and GM-CSFRα expression, thus representing a therapeu-
tically targetable downstream pathway.

TGF-β. The TGF-β family of growth factors controls prolifer-
ation, differentiation, and survival in many cell types. TGF-β is 
secreted by cells of multiple lineages, including cells of mesen-
chymal (136) and hematopoietic (137) origin. The relative contri-
bution of TGF-β isoforms appears to be contextual, with TGF-β1 
as the predominant isoform in the immune system (138). TGF-β is 
secreted in latent form and is unable to engage its receptors (139). 
The proteolytic degradation of the latent peptides renders TGF-β 
biologically active. Once activated, signaling is elicited through 
an oligomeric complex composed of type I and type II serine/
threonine kinase receptors. TGF-β first binds to the constitutively 
phosphorylated TGF-RII, which in turn binds to and phosphory-
lates TGF-RI, leading to the activation of the cytoplasmic signal-
ing molecules Smad2 and Smad3 (140, 141), which translocate to 
the nucleus to regulate target gene expression. Additionally, other 
noncanonical TGF-β–activated pathways, including MAP kinase, 
Rho-like GTPase, and PI3K/AKT pathways, collectively contrib-
ute to signaling outcomes (142). TGF-β signaling mediates diverse 
biological responses and plays a role in tissue regeneration (143) 
and the maintenance of immune tolerance (138). Aberrant TGF-β 
expression and signaling are implicated in the profound immune 
dysregulation that occurs after BMT and in cGVHD-associated 
fibrotic manifestations (144–147).

Following injury, TGF-β signaling promotes both the produc-
tion and degradation of various extracellular matrix proteins and 
is therefore instrumental in tissue repair (143). In all tissues, fibro-
blasts are the primary producers of extracellular matrix. During 
injury, TGF-β signaling promotes fibroblast migration, prolifera-
tion, and differentiation into α-smooth muscle actin–expressing 
(α-SMA–expressing) myofibroblasts, which produce large amounts 
of collagen. Notably, profibrogenic PDGF synergizes with TGF-β, 
resulting in augmented expression of both α-SMA and collagen by 
myofibroblasts (148). In preclinical models and patients, cGVHD 
is associated with elevated TGF-β levels in the serum and target 
organs, and TGF-β is negatively correlated with survival (144, 147, 
149, 150). Furthermore, cGVHD patients harbor elevated levels of 
agonistic PDGFR antibodies, although whether these are involved 
in disease pathogenesis remains contentious (151, 152). Myeloid 
lineages that accumulate within cGVHD target organs are the pri-
mary TGF-β–producing populations (24, 146). Importantly, TGF-β 
neutralization effectively prevents both skin and lung fibrosis in 
murine models (2, 146). Although TGF-β blockade has yet to be 
investigated clinically, dual blockade of TGF-β and PDGFR path-
ways using tyrosine kinase inhibitors has shown promising results 
in patients with steroid-refractory cGVHD (153, 154).

TGF-β is also a key immunoregulatory cytokine that contrib-
utes to the maintenance of peripheral tolerance, as evidenced 
by the multiorgan inflammation and autoimmunity that occur 
in TGF-β cytokine– or receptor–deficient mice (138, 155). TGF-β 
mediates immunosuppression through inhibition of lymphocyte 

proliferation, differentiation, and effector function. T cell–intrin-
sic TGF-β signaling dampens T cell expansion via multiple mech-
anisms, including the suppression of IL-2 production and pro-
motion of apoptosis (156, 157). TGF-β also potently inhibits Th1 
and Th2 differentiation via downregulation of the TFs T-bet and 
GATA3 (158, 159). In concert with IL-2, TGF-β promotes the con-
version of naive CD4+ T cells into FoxP3-expressing iTregs. Con-
sistent with the importance of this cytokine in the generation of 
and regulation by Tregs (160), TGF-β inhibition early after BMT 
promotes aGVHD (146). Thus, following BMT, TGF-β signaling 
elicits both protective antiinflammatory, immunosuppressive, and 
pathogenic profibrogenic responses in a temporal manner, indi-
cating that carefully timed therapeutic targeting of this pathway 
will be required. Alternately, targeting the cellular source of TGF-β 
in inflamed tissues or specific downstream signaling pathways 
may provide a means of selective inhibition of some but not all of 
the cytokine responses; the use of canonical and noncanonical sig-
naling pathways supports the feasibility of the latter approach. For 
example, although TGF-β signaling is critical for tTreg generation, 
Smad2 and Smad3 are not required (161), suggesting that targeting 
these signaling components could preferentially diminish fibro-
genic responses while sparing Tregs.

Pharmacological therapeutics that target 
cytokine signaling pathways
Steroids continue to be the mainstay of first-line cGVHD therapy; 
however, steroids are associated with substantial morbidity and 
mortality, especially when given long-term as is typically required 
for cGVHD patients. Guided by both rodent studies and clinical 
biomarker analyses, new cGVHD-targeting pathways have been 
elucidated, leading to new pharmacological and cellular approach-
es to treat this disease. A particularly successful approach has 
been to reuse drugs known to have validated immunological and 
antiinflammatory properties as well as an acceptable safety pro-
file in inflammatory disease. Similarly, cellular therapies useful in 
aGVHD are currently being tested in cGVHD. A tabular summary 
of active trials in cGVHD is provided in Table 1. Those and related 
completed trials involving pharmacological agents directly regu-
lating cytokine production or responses will be discussed below.

Bortezomib (Velcade) is the first therapeutic proteosomal 
inhibitor to be tested in humans for treatment of multiple myelo-
ma. Studies in murine aGVHD indicated that bortezomib and a 
related compound promoted alloantigen-specific T cell deletion 
and inhibited proinflammatory responses associated with NF-κB 
upregulation (162, 163). In a sclerodermatous minor histocompati-
bility antigen–mismatched model of cGVHD, bortezomib reduced 
serum and skin IL-6 levels and proved efficacious in treating skin 
manifestations of cGVHD in patients in preliminary studies (164). 
A phase II study of bortezomib combined with prednisone result-
ed in organ-specific complete response rates of 73% for skin, 53% 
for liver, 75% for the GI tract, and 33% for diseased joint, muscle, 
or fascia, and permitted a 60% median prednisone dose reduction 
by week 15 (165). Carfilzomib, a peptidylepoxyketone, and ixazo-
mib, a peptide analog, both inhibit the 20S proteosomal subunit β 
type 5 and are being tested for efficacy in cGVHD therapy (Table 
1). Ruxolitinib, which is approved for the treatment of myelofibro-
sis, and baricitinib are selective JAK1/2 inhibitors. JAK1/2 signal-
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activate the SOCS1 promoter. Thus, Smo antagonists mimic hedge-
hog ligand absence and lead to reduced SOCS1 promoter activity 
and increases in IFN-γ and phospho-STAT1. Hedgehog signaling 
is activated in human and murine cGVHD (170). Treatment with 
LDE223, a highly selective small-molecule Smo antagonist, almost 
completely prevented sclerodermatous cGVHD development and 
was useful in cGVHD therapy (170). Vismodegib and LDE225 are 
Smo antagonists being tested in steroid-refractory chronic GVHD 
patients in ongoing studies. The direct targeting of a number of 
cytokines is now possible, and inhibition of IL-21, IL-17A, CSF-1R, 
or TGF-β appears to be a logical therapeutic strategy to move for-
ward into well-designed phase I/II clinical trials.

Summary
Our understanding of the pathophysiology of cGVHD has dramati-
cally improved over the last five years, as has our ability to undertake 
informative clinical trials in this setting. We are now in an exciting 
period in which a number of new and established therapeutics that 
focus on the elimination of the aberrant cytokine responses that 
drive fibrosis can be rapidly tested within the constraints of well- 
designed clinical trials to both prevent and treat cGVHD.
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ing regulates T cell activation and survival through the IL-2 com-
mon chain, a constituent of the receptor complexes for IL-2, IL-4, 
IL-7, IL-9, IL-15, and IL-21; targeting JAK1/2 signaling ameliorat-
ed murine aGVHD and cGVHD (166). In a preclinical antibody- 
mediated, multiorgan system model of cGVHD that includes BO, 
ruxolitinib therapy reversed active cGVHD manifestations (167). 
In 41 patients with steroid-resistant cGVHD, the overall response 
rate to ruxolitinib was 85% (167).

Ibrutinib targets B cell malignancies by inhibiting BTK and 
IL-2–inducible tyrosine kinase (ITK). Ibrutinib has been approved 
to treat various types of lymphoid malignancies and is known to 
inhibit malignant B cell responses to soluble factors in the tumor 
environment, including BAFF, IL-6, IL-4, and TNF-α. In a pre-
clinical sclerodermatous cGVHD model, ibrutinib delayed pro-
gression, improved survival, and ameliorated cGVHD manifesta-
tions. In the antibody-driven cGVHD model, ibrutinib treatment 
restored pulmonary function and reduced GC reactions and tissue 
immunoglobulin deposition; using knockout donor cells, it was 
established that both BTK and ITK were critical for cGVHD devel-
opment (27). Moreover, ibrutinib treatment reduced activation of 
T and B cells from patients with active cGVHD. Based on positive 
phase Ib/II data, ibrutinib is entering phase III trials for treatment 
of steroid-dependent or refractory cGVHD (Table 1).

Spleen tyrosine kinase (Syk) is an enzyme that regulates T 
and B cell signaling pathways and has been implicated in hema-
tological malignancies, including those with ITK translocations. 
Fostamatinib is a prodrug inhibitor and entospletinib is an ATP- 
competitive inhibitor of Syk. In the BO model, Syk was necessary 
in donor B cells but not donor T cells for disease progression, and 
fostamatinib treatment reversed disease in both nonscleroderma-
tous and several sclerodermatous models (168). Syk upregulation 
was observed in B cells from cGVHD mice and patients, and Syk 
inhibition in vitro effectively induced apoptosis of human cGVHD 
B cells. Syk inhibitors are currently in both phase I and phase II 
double-blind randomized trials for treatment of cGVHD (Table 1).

Rho-associated coiled-coil kinase 2 (ROCK2) has been 
implicated in IL-21 and IL-17 regulation. Treatment with the 
selective ROCK2 inhibitor KD025 ameliorated cGVHD in mul-
tiple models. In an antibody-mediated cGVHD model, spleens 
of KD025-treated mice had decreased frequency of Tfh cells and 
increased frequency of T follicular regulatory cells along with 
both increased phospho-STAT3 and decreased phospho-STAT5 
(52). In cGVHD patients with active disease, KD025 inhibited 
IL-21, IL-17, and IFN-γ secretion and phospho-STAT3. KD025 
has entered phase IIa clinical trials for cGVHD therapy (Table 1).

Sonic hedgehog and its receptor patched are expressed on 
resting and activated human peripheral CD4+ T cells (169). In the 
absence of hedgehog proteins, patched-1 inhibits the coreceptor 
smoothened (Smo). Smo induces the TFs Gli-1 and Gli-2, which 
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