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William Kaelin, Peter Ratcliffe, and Gregg Semenza 
receive the 2016 Albert Lasker Basic Medical  
Research Award

The importance of adequate oxygen-
ation has been recognized for over 200 
years, but how cells and tissues are able 
to monitor and respond to oxygen levels 
remained elusive until the late twentieth 
century. The 2016 Albert Lasker Basic 
Medical Research Award honors three 
scientists (Figure 1), William Kaelin, 
Peter Ratcliffe, and Gregg Semenza, for 
the discovery of the molecular mecha-
nisms by which human and animal cells 
sense and respond to low or inadequate 
oxygen levels, referred to as hypoxia.

Molecular oxygen is a critical sub-
strate for cellular metabolism and bio-
energetics, and cells within each tissue 
require an adequate oxygen supply to 
meet the needs of these pathways, as 
either oxygen deficiency or excess can 
lead to rapid death of both cells and 
whole organisms. While organisms with 
just a few cells can rely on passive oxy-
gen diffusion, large multicellular organ-
isms require multiple complex organ sys-
tems, including respiratory, circulatory, 
and neuroendocrine systems, to ensure 
that all cells and tissues have reliable 
access to oxygen. In all cells and tissues, 
hypoxia initiates a series of physiological 
responses that are geared toward main-
taining oxygen homeostasis over a time 
course of minutes to days. These events 
include upregulation of processes that 
enhance oxygen delivery, such as eryth-
ropoiesis, angiogenesis, and modulation 
of vascular tone, and downregulation of 
oxygen consumption through changes in 
cellular metabolism, proliferation, and 
apoptosis. Importantly, these adaptive 
responses are dysregulated in a number 
of disease states. Thus, the identification 
of the pathways that sense and respond 
to oxygen levels has not only furthered 
our understanding of multiple develop-
mental and physiological processes, but 
has also opened up new avenues for the 

development of therapies to treat diseas-
es such as anemia, cardiovascular dis-
ease, pulmonary hypertension, stroke, 
and cancer.

Early evidence of an oxygen 
sensor
As anyone who has traveled at high alti-
tudes will attest, low levels of atmo-
spheric oxygen have marked effects on 

physiology, ranging from relatively mild 
symptoms, such as breathlessness and 
dizziness, to severe symptoms, such as 
pulmonary and cerebral edema. Conse-
quently, some of the earliest evidence 
for an oxygen-sensing mechanism in 
animal cells came from scientists vis-
iting high-altitude locales. In 1890, 
François-Gilbert Viault noted that the 
number of erythrocytes in his blood 
was elevated after a stay in the Peruvian 
highlands (around 4,500 m above sea 
level). He concluded that erythropoiesis 
is stimulated when blood oxygen con-
tent is reduced (1). Similarly, as part of 

the 1910 Anglo-American expedition to 
Pikes Peak to investigate the effects of 
high altitude on breathing, Mabel Fitz-
gerald found that signs and symptoms of 
the response of humans to high altitude 
were set off even by small reductions in 
the partial pressure of oxygen (pO2) in 
the arterial blood (2, 3).

Further support for an oxygen-sens-
ing mechanism was provided by the 

discovery of erythropoietin (EPO), a 
glycoprotein hormone that stimulates 
erythrocyte production. In adults, EPO 
is produced in response to low oxygen 
levels in the blood by interstitial fibro-
blasts in the renal cortex. Human EPO 
was purified in 1977 (4), followed by 
cloning of the human EPO gene in 1985 
(5, 6). These advances led to the develop-
ment of recombinant human EPO for the 
treatment of anemia; however, the mech-
anisms underlying the regulation of EPO 
by oxygen levels remained enigmatic.

By the end of the 1980s, it was well 
established that the kidneys controlled 
the number of erythrocytes and thus the 
oxygen capacity of the blood through the 
release of EPO (7). Further, it was known Reference information: J Clin Invest. 2016;126(10):3628–3638. doi:10.1172/JCI90055.

Figure 1. The recipients of the 2016 Albert Lasker Basic Medical Research Award. From left to right: 
William Kaelin, Peter Ratcliffe, and Gregg Semenza discovered the essential pathway by which 
human and animal cells sense and adapt to changes in oxygen availability. Image credits (left to 
right): Sam Ogden/Dana-Farber Cancer Institute, Paul Wilkinson Photography, Jay VanRensselaer/
Johns Hopkins Medicine.
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derived from different tissues, Ratcliffe 
demonstrated that oxygen sensing was 
possible in many different cell types, 
even in those that did not produce EPO, 
suggesting that similar oxygen-sensing 
mechanisms were involved in the regula-
tion of other genes (21–23).

The identification of a genetical-
ly encoded hypoxia response element 
(HRE) and the demonstration that this 
element could be activated in a variety 
of tissues opened up two new avenues 
of research: 1) the identification of the 
nuclear factors that regulate hypoxia-in-
duced gene expression and 2) the iden-
tification of other genes that respond to 
hypoxia through similar mechanisms.

A hypoxia-inducible 
transcription factor
Semenza next focused on identifying 
the oxygen-regulated nuclear factors 
that bind EPO. In 1992, he and his post-
doc, Guang Wang, identified the nuclear 
factor that bound the HRE, which they 
termed hypoxia-inducible factor-1 (HIF-
1). Moreover, HIF-1 binding of the HRE 
was required for transcriptional acti-
vation and was induced by hypoxia in a 
variety of mammalian cell lines (24). “No 
matter which mammalian cell line we 
looked at, if we exposed the cells to low 
oxygen for four hours, we saw the induc-
tion of HIF activity. So that was a pretty 
clear indicator that HIF-1 was not just 
regulating the expression of EPO, but was 
regulating the expression of other genes 
under hypoxic conditions,” said Semen-
za. The DNA-binding activity of HIF-1 
decayed rapidly when cells were exposed 
to increased oxygen levels, suggesting 
that HIF-1 activity itself was directly reg-
ulated by oxygen (25). It rapidly became 
clear that HIF was not restricted to mam-
malians cells, as the Ratcliffe group 
observed a similar activity in Drosophila 
cells around the same time (26).

Purification of HIF-1 by the Semenza 
laboratory (27) revealed that it is a het-
erodimer consisting of an HIF-1α subunit 
and an HIF-1β subunit (also known as 
aryl hydrocarbon receptor nuclear trans-
locator [ARNT] protein), both of which 
are basic helix-loop-helix proteins that 
contain a Per-Arnt-Sim (PAS) domain. 
While HIF-1β expression is constitutive 
and stable, HIF-1α protein is induced in 

During the same time period in which 
Semenza was developing EPO-transgen-
ic mice, Peter Ratcliffe, a physician and 
kidney specialist, was establishing a 
laboratory in Oxford University’s Nuff-
ield Department of Medicine to study 
the regulation of EPO, a venture that 
was to be strongly supported by Chris-
topher Pugh, Patrick Maxwell, and other 
kidney specialists training at Oxford at 
the time, who contributed much to the 
laboratory’s work. As a kidney special-
ist, Ratcliffe was initially intrigued by 
the unusual counter-current circulation 
within the kidney that results in very low 
oxygen tensions within specific areas of 
the organ. “Somewhat surprisingly, the 
kidney is able to distinguish changes in 
blood oxygen content and the numbers 
of red blood cells in circulation from 
changes in renal blood flow. Consider-
ation of this remarkable oxygen-sensing 
capacity was what initially led me into 
the field,” said Ratcliffe. By understand-
ing how oxygen regulated EPO produc-
tion, it would be possible to get at the 
oxygen-sensing mechanism in the kid-
ney. One of Ratcliffe’s early experiments 
demonstrated that Epo mRNA levels in 
isolated rat kidneys were responsive to 
changes in oxygen delivery, confirming 
that all of the components necessary 
for Epo regulation were present in the 
kidney (17). At the time, there was evi-
dence that diseased kidneys and extra-
renal tissues could produce EPO, but 
the extent and localization of EPO pro-
duction were unclear. Using very sen-
sitive assays, Ratcliffe and colleagues 
showed that Epo mRNA was detectable 
not only in the kidneys and livers of 
rats, but also that small amounts of Epo 
mRNA became detectable in the spleen, 
brain, and testes under hypoxic condi-
tions, indicating that hypoxia can induce 
EPO expression outside of the kidney 
and suggesting that the oxygen-sensing 
process operated more widely than had 
previously been considered (18, 19). In 
a parallel line of investigation testing 
hypoxia-inducible expression of trun-
cated forms of the mouse Epo gene, Rat-
cliffe identified a region downstream of 
the coding sequence that was required 
for oxygen-regulated expression (20). 
By coupling this region of murine Epo 
to a broadly active promoter in cell lines 

that EPO production had three critical 
regulatory properties: 1) EPO expression 
is tissue specific; 2) EPO exhibits devel-
opmental stage specificity, being pro-
duced prenatally in the fetal liver, then 
postnatally in the kidney; and 3) EPO 
expression is inducible, with expression 
increasing in response to hypoxia, ane-
mia, or cobalt chloride exposure (8–12). 
These properties attracted the attention 
of two researchers, Gregg Semenza and 
Peter Ratcliffe, who would soon demon-
strate that EPO is not the only gene regu-
lated by hypoxia.

A genetic hypoxia response 
element
In 1986, Gregg Semenza was a postdoc-
toral fellow in medical genetics at Johns 
Hopkins School of Medicine, working 
with research teams led by Haig Kaza-
zian and Stylianos Antonarakis, who 
were renowned for their ability to dissect 
disease-associated mutations in order to 
understand how these mutations affect-
ed gene expression. “At the time, I was 
interested in studying developmental 
regulation, and it was known that EPO 
is expressed in the fetal liver and then in 
the adult kidneys. The original goal was 
to figure out what sequences were regu-
lating the expression in different organs 
during development,” Semenza recent-
ly recounted to the JCI. At the time, the 
ability to create transgenic animals was 
relatively new, but this technique had the 
advantage of allowing direct manipula-
tion of various aspects of gene expression, 
making it an interesting model in which 
to study the regulation of EPO. In a col-
laboration with John Gearhart, Semen-
za engineered transgenic mice carrying 
human EPO. The transgenic mice exhib-
ited increased erythropoiesis compared 
with their wild-type counterparts. (13). 
Semenza next began expressing EPO 
constructs that contained additional 5′ or 
3′ flanking regions to demonstrate that 
these regions conferred tissue-specific 
and hypoxia-inducible expression (14, 15). 
Narrowing down the hypoxia-responsive 
region of the EPO gene, Semenza iden-
tified a region downstream of the EPO 
coding sequence that was bound by mul-
tiple nuclear factors. The addition of this 
region to a different gene construct con-
ferred hypoxia-inducible expression (16).
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that would be distinct from his post-
doctoral work but that could potential-
ly take advantage of some of the same 
experimental approaches he had used 
successfully to study RB. He then read 
a paper describing the identification of 
the gene that causes von Hippel–Lindau 
(VHL) disease (50), a familial cancer 
syndrome that predisposes affected 
individuals to hemangioblastomas in 
the CNS and retina, renal cell carcino-
ma, and pheochromocytoma, a benign 
tumor of the adrenal gland. From his 
clinical training, Kaelin knew that VHL 
mutant–associated tumors are highly 
vascularized (angiogenic) and are nota-
ble for their ability to secrete EPO. By 
the early 1990s, there was considerable 
interest in targeting angiogenesis to treat 
tumors, making VHL-associated tumors 
a potentially useful system for the study 
of angiogenesis-targeted therapeutic 
approaches (51). In addition, he realized 
that a defect in oxygen sensing could be 
the unifying factor underlying the induc-
tion of angiogenesis and EPO by the 
VHL-mutant tumors, with the tumors 
behaving as though they were starved of 
oxygen. “These tumors are constantly 
putting out the stress signals that would 
be expected under hypoxic conditions. 
We thought that studying the VHL pro-
tein could provide some insight into how 
cells respond to hypoxia,” said Kaelin.

Kaelin first demonstrated that VHL 
encodes a functional tumor suppressor 
(pVHL) (52), as reintroduction of wild-
type, but not mutant, VHL in a renal 
cell carcinoma line prevented the cells 
from forming tumors in mice. Further, 
his work, together with findings from 
Richard Klausner, indicated that pVHL- 
mediated tumor suppression required 
that pVHL bind two proteins, elongins 
B and C, originally identified as regula-
tors of transcriptional elongation, but 
which are now known to wear multiple 
hats (53–55). The interactions between 
elongins B and C were disrupted by dis-
ease-associated VHL mutations (53, 54, 
56, 57). Importantly, Kaelin showed that 
various hypoxia-inducible mRNAs, such 
as VEGF, GLUT1, and PDGFB, which had 
recently been shown to be regulated by 
HIF-1 (48, 58, 59), were insensitive to 
oxygen in renal cancer cell lines lacking 
pVHL and, consequently, were over-

(Glut1), human aldolase A (ALDA), eno-
lase 1 (ENO1), and murine phosphofruc-
tokinase (Pfkl), which were bound and 
regulated by HIF-1 (43–46). Together, 
these studies established HIF-1 as a 
critical regulator of glycolysis, allowing 
cells to switch from aerobic to anaerobic 
metabolism (47).

Angiogenesis is critical for establish-
ing a blood supply and is therefore also 
a means by which tissues can increase 
their oxygenation, making the process a 
likely HIF regulatory target. Ratcliffe’s 
group showed that the expression of mul-
tiple angiogenic growth factors, includ-
ing PDGFA/B, placental growth factor 
(PLGF), TGF-β1, and VEGF, was regulat-
ed by hypoxia in a manner similar to that 
seen with EPO (48). This was followed by 
a study from the Semenza group demon-
strating that the VEGF gene was direct-
ly transactivated by HIF-1 (39). Further, 
Semenza and colleagues engineered 
a mouse lacking both copies of Hif1a, 
which resulted in developmental arrest 
and lethality at mid-gestation (E11). 
The HIF-1α–deficient embryos exhibit-
ed multiple malformations of the heart 
and blood vessels and decreased eryth-
ropoiesis (49). “Initially, the embryo is 
very small, and it can get all of its oxy-
gen just from diffusion from maternal 
blood vessels,” said Semenza. “At some 
point, it gets large enough that it has to 
have its own functioning circulatory sys-
tem. When we looked at the expression 
of HIF-1α in the embryo, we saw that at 
mid-gestation, the levels of HIF-1α went 
up in the wild-type embryos, and that’s 
when the mutant embryos died.” These 
studies confirmed the role of oxygen 
homeostasis and HIF-1 in development. 
Identification of angiogenesis as a tar-
get of HIF-1 would quickly provide a link 
between HIF and another highly angio-
genic process, tumorigenesis.

The cancer connection:  
von Hippel–Lindau disease
In 1993, William Kaelin, an oncologist, 
had just established his own laboratory 
after completing a postdoctoral fellow-
ship focused on determining the func-
tions of the retinoblastoma (RB) tumor 
suppressor in the laboratory of David 
Livingston at the Dana-Farber Cancer 
Institute. He was looking for a project 

cells exposed to 1% oxygen and decays 
rapidly when the cells are returned to 
normal oxygen levels (21% pO2). The 
genes encoding HIF-1α were assigned to 
murine chromosome 12 and human chro-
mosome 14 in 1996 (28). The mRNAs 
encoding HIF-1α and HIF-1β were pres-
ent in all human, rat, and mouse organs 
tested (29). A closely related gene, 
HIF2A, was identified and cloned in 
1997, followed by HIF3A in 1998 (30–
34). HIF-1α homologs were subsequently 
found in other organisms, including Dro-
sophila melanogaster and Caenorhabditis 
elegans, indicating an evolutionary con-
servation of the oxygen-sensing mecha-
nism (26, 35–37).

The identification of the HIF pro-
teins and cloning of the genes and 
cDNAs allowed for an in-depth function-
al analysis of the HIF subunits, providing 
hints as to how these genes and proteins 
are regulated. Studies in HIF-1β–defi-
cient cells by the Ratcliffe group demon-
strated that this subunit was required for 
hypoxia-induced gene expression (38). 
Semenza’s group showed that expression 
of a dominant-negative form of HIF-1α 
blocked the transcriptional response to 
hypoxia (39). Semenza’s group also iden-
tified the stretch of amino acids required 
for dimerization of the HIF-1α and -1β 
subunits and DNA binding, as well as 
N-terminal and C-terminal transacti-
vation domains in HIF-1α that interact 
with transcriptional coactivators such 
as CREB-binding protein (CBP), while 
both the Ratcliffe and Semenza groups 
identified a regulatory domain that pre-
vents transcriptional activity in normox-
ic conditions (40–42). These regulatory 
domains would soon provide insights 
into the role of oxygen in the regulation 
of HIF activity.

Identification of hypoxia-
regulated genes
Following the identification of the HRE 
and its operation in cell types that do 
not produce EPO, Ratcliffe and Semen-
za began hunting for other genes that 
exhibited hypoxia-induced expression. 
Both groups identified a number of genes 
involved in cellular metabolism, includ-
ing human phosphoglycerate kinase-1 
(PGK1), mouse lactate dehydrogenase-A 
(Ldha), mouse glucose transporter-1 
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normoxia or hypoxia, but that these com-
plexes were disrupted by treatment with 
Co2+ or the iron chelator desferrioxam-
ine. This observation initially led them 
to believe (as it turns out, erroneously — 
see below) that an iron-requiring protein 
was essential for complex formation and 
could potentially be involved in oxygen 
sensing through a subsequent action. 
Subsequently, Kaelin’s group showed 
that the pVHL-elongin B/C-CUL2 com-
plex binds directly to the HIF-1 ODD 
domain and polyubiquitinates HIF-1α 
(75). Similar conclusions were reached 
in parallel by the Ratcliffe, Poellinger, 
and Conaway laboratories and were pub-
lished soon thereafter (76–78).

An oxygen-dependent 
signaling mechanism
The studies described above established 
that pVHL targets HIFα for ubiquitina-
tion and subsequent proteasomal deg-
radation, but it was still unclear exactly 
how oxygen regulated this process. The 
Semenza group had shown that HIF was 
activated by Co2+ and iron chelators, as 
well as by hypoxia; these same factors 
induced the transactivation domain 
function of HIF (42, 79). These findings 
suggested the existence of an oxygen- 
and iron-dependent modification gov-
erning the interaction of the HIFα ODD 
with pVHL. In April 2001, the Kaelin and 
Ratcliffe groups published independent 
back-to-back studies identifying proline 
hydroxylation as the crucial oxygen- and 
iron-dependent posttranslational mod-
ification of HIFα that was required for 
recognition by the pVHL complex (80, 
81); the same mechanism was identified 
by Frank Lee’s group a few months lat-
er (82). Ratcliffe had initially been sur-
prised when, as described above, they 
could isolate the HIFα-pVHL complex 
from hypoxic cells, and postulated that 
reoxygenation of cell lysates during the 
experimental procedure might promote 
this interaction. “We made a slight mis-
take at the time, which is an interest-
ing one,” said Ratcliffe. “We initially 
thought that the association between 
VHL and HIF was regulated by cobalt 
and iron chelators, which matched the 
properties of the system, but not by oxy-
gen. We were extremely puzzled by that, 
as normally those properties were all 

dation under normoxic conditions (66). 
Shortly thereafter, Frank Bunn and col-
leagues showed that HIF-1α contains an 
oxygen-dependent degradation domain 
(ODD) consisting of approximately 200 
amino acid residues that makes the pro-
tein unstable in the presence of oxy-
gen and allows it to be degraded via the 
ubiquitin/proteasome pathway (67). The 
Semenza group then engineered missense 
mutations and deletions within HIF-1α 
that blocked ubiquitination, resulting in 
constitutive expression and transcription-
al activity in normoxic conditions (68).

Structural analyses of the pVHL 
complex provided key support for a role 
in HIF-1α degradation. Kaelin’s group 
found that pVHL-mediated regulation 
of hypoxia-inducible mRNAs required 
binding of pVHL to protein complexes 
containing elongins B and C and cul-
lin 2 (CUL2) (69), a protein that was 
suspected to be involved in targeting 
proteins for ubiquitin-dependent pro-
teolysis (70). Structural studies of the 
pVHL-elongin C-elongin B complex by 
Kaelin’s collaborator Nikola Pavletich 
revealed that it is structurally similar 
to SKP1-CUL1-F-box protein (SCF) E3 
ubiquitin ligases (57). This structure also 
showed that pVHL has two hotspots for 
VHL disease–associated mutations: the 
α-domain, which Kaelin had shown is 
required for binding to the elongins and 
CUL2, and the β-domain, which was pre-
dicted to be a substrate docking site (57). 
Two additional observations increased 
the suspicion that the pVHL complex 
was an E3 ubiquitin ligase. First, Kaelin’s 
collaborator Joan Conaway showed that 
the pVHL complex associates with ring- 
box 1 (RBX1), a known ubiquitin-conju-
gating enzyme (71). Second, two groups 
of researchers led by Richard Klausner 
and Wilhelm Krek showed that pVHL 
immunoprecipitated from cells displays 
E3 ubiquitin ligase activity (72, 73).

Soon thereafter, the Ratcliffe group 
demonstrated that cells lacking pVHL 
cannot target HIF-1α for oxygen-de-
pendent proteolysis in vivo (74). HIFα 
subunits were constitutively and stably 
expressed in VHL-defective cells, but 
reexpression of wild-type pVHL restored 
oxygen-dependent degradation of HIFα. 
They also found that HIFα subunits and 
pVHL formed stable complexes in either 

produced (60). In short, loss of pVHL 
uncoupled the accumulation of hypox-
ia-inducible mRNAs from actual oxygen 
availability.

The connection between HIF and 
cancer was also emerging. Using hepa-
toma-derived tumor xenografts, the Rat-
cliffe group demonstrated that VEGF and 
GLUT1 were induced in hypoxic regions 
surrounding areas of tumor necrosis in 
an HIF-1β–dependent manner. Notably, 
HIF-1β–deficient xenografts exhibited 
slower growth and reduced vasculariza-
tion compared with HIF-1β–expressing 
xenografts (61). Around the same time, 
the Semenza group demonstrated that 
the level of HIF-1 expression was cor-
related with tumor growth in murine 
xenografts (62). Further, Semenza’s 
group found that HIF-1α was overex-
pressed in multiple human cancers under 
both normoxic and hypoxic conditions 
(63), while Ratcliffe and his collabora-
tors found that HIF-1α and HIF-2α were 
expressed in a number of human can-
cers and tumor-associated macrophages 
(64). Together, these studies suggested a 
broader role for HIFs in oncogenesis, as 
well as a potential connection to pVHL.

Linking VHL and HIF
Differences in HIFα regulation at the 
protein and mRNA levels pointed to 
potential regulatory mechanisms. Lorenz 
Poellinger and colleagues found that 
HIF1A and HIF1B mRNAs are constitu-
tively expressed under both normoxic and 
hypoxic conditions in transformed cell 
lines; in contrast, HIFα protein levels are 
highly sensitive to changes in oxygen lev-
els, while HIF-1β protein levels are stable 
(65). These findings suggested that some 
form of posttranslational modification 
was responsible for regulating HIF-1α lev-
els. The Ratcliffe laboratory identified dif-
ferent domains of HIF-1α that conferred 
oxygen-regulated activity, distinguishing 
domains that altered protein levels from 
others that did not. They also showed that 
oxygen-regulated activity persisted in one 
domain, even when all phospho-accep-
tor amino acids were mutated, directing 
attention away from protein phosphoryla-
tion as the signal transduction mechanism 
(41). A study by Jaime Caro demonstrated 
that HIF-1α undergoes rapid ubiquitina-
tion and subsequent proteasomal degra-
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ylation site, Pro402, which mediates the 
interaction of HIFα with pVHL, was 
identified by the Ratcliffe group a few 
months later (85). These data revealed 
that prolyl-4-hydroxylase activity was 
necessary to promote the interaction 
between HIFα and pVHL.

The well-studied prolyl hydroxy-
lases at that time, which modify colla-
gen, required Fe2+, ascorbate, molecular 
oxygen, and 2-oxoglutarate (2-OG, also 
known as α-ketoglutarate) (86). These 
enzymes split molecular oxygen, using 
one atom to add a hydroxyl group to a 
target protein and the other to react with 
2-OG, resulting in the generation of suc-
cinate and CO2. Ratcliffe and colleagues 
determined that the prolyl hydroxy-
lase activity mediating HIFα hydrox-
ylation also required these cofactors 
and that HIF was induced by the 2-OG  
analog dimethyloxalylglycine (DMOG). 
Through a combination of structurally 
informed prediction and candidate test-

showed that pVHL could bind direct-
ly to HIFα unless the HIFα was derived 
from cells exposed to hypoxia or iron 
chelators. Additionally, both groups 
demonstrated that a cellular factor was 
required for the posttranslational mod-
ification of HIFα, as pVHL only recog-
nized recombinant HIF after incubation 
with vertebrate cell lysates. A system-
atic mutation analysis of the minimal 
pVHL-binding domain of HIFα zeroed 
in on a proline residue, Pro564, which was 
conserved in human, Xenopus, Drosoph-
ila, and C. elegans HIFα proteins. Mass 
spectrometric analysis confirmed that 
Pro564 was hydroxylated. Importantly, 
a hydroxyproline substitution at Pro564 
promoted the interaction of HIF-1α with 
pVHL. Follow-up studies by the Kaelin 
and Ratcliffe groups showed that the 
hydroxyproline inserts into a gap within 
the pVHL hydrophobic core within a site 
that is a hotspot for tumorigenic muta-
tions (83, 84). A second prolyl hydrox-

concordant. On reflection, we realized 
that oxygen would be in the buffers and 
all the reagents that we used to do the 
work on the bench. So it was possible 
that although the cells were made hypox-
ic, by the time we’d gotten the extracts, 
oxygen had gotten in, which turned out 
to be correct.”

By repeating these experiments in a 
hypoxia workstation with deoxygenated 
buffers, two highly skilled postdocs in 
the Ratcliffe laboratory, Panu Jaakkola 
and David Mole, showed that the associ-
ation between HIFα subunits and pVHL 
was governed by both oxygen and iron 
availability. Kaelin had reached the same 
conclusion by multiple means, including 
experiments with mouse cells express-
ing a temperature-sensitive mutant of 
the E1 ubiquitin–activating enzyme that, 
when grown at nonpermissive tempera-
tures, accumulated HIFα under both 
normoxic and hypoxic conditions. Using 
so-called “far Western blots,” his group 

Figure 2. Regulation of hypoxia-inducible factors. Under normoxic conditions, two proline residues on the HIFα subunit are hydroxylated (OH) by PHD 
enzymes (PHD1, -2, and -3), in the presence of O2, Fe2+, 2-OG, and ascorbate (not shown). Hydroxylated HIFα is recognized by the pVHL E3 ubiquitin ligase 
complex, which tags HIFα with polyubiquitin, allowing for proteasomal recognition and subsequent degradation. Additionally, the 2-OG dioxygenase FIH-1 
hydroxylates an asparagine residue in the C-terminal transactivation domain of HIFα, preventing its interaction with transcriptional coactivators. Under 
hypoxic conditions, HIFα prolyl hydroxylation is inhibited, preventing recognition of HIFα by pVHL. HIFα can then accumulate and translocate to the nucle-
us, where it dimerizes with HIF-1β. The HIF dimer binds to HREs within the promoters of target genes and recruits transcriptional coactivators such as CBP 
to induce transcription. Asn, asparagine; E2, ubiquitin-conjugating enzyme; Pro, proline; Ub, ubiquitin.
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asparagine residue, thereby inactivating 
one of its two transactivation domains 
(101–103).

The identification of the prolyl and 
asparginyl hydroxylation events revealed 
a dual regulatory system of HIF activity 
(Figure 2) involving two oxygen-depen-
dent hydroxylases: a PHD (most com-
monly PHD2) and FIH-1 (104). Both 
HIFα and HIFβ are constitutively pro-
duced, but HIFα is only stable and active 
under hypoxic conditions (around 1% 
pO2). As oxygen levels rise, FIH-1, which 
has activity at lower oxygen levels than 
does PHD2 (105, 106), becomes active 
and hydroxylates an asparagine residue 
in the C-terminal transactivation domain 
of HIFα, preventing interaction with 
transcriptional coactivators and thereby 
partially abrogating HIFα transcription-
al activity (as FIH-1 does not inhibit the 
N-terminal transactivation domain). 
As oxygen levels continue to increase, 
PHD2 becomes active and hydroxylates 
one (or both) of two prolines on HIFα. 
Hydroxylation of either proline pro-
motes the interaction of HIFα with the 
pVHL E3 ubiquitin ligase complex (107), 
resulting in ubiquitination and subse-
quent proteasomal degradation. Thus, 
these hydroxylation events allow cells to 
tightly control responses to alterations 
in oxygen levels, only allowing for HIF 
accumulation and transcriptional activi-
ty under the appropriate environmental 
conditions (108).

An expanding role for HIF in 
physiology and disease
The discovery of the HIF pathway not 
only unveiled a new signaling mechanism 
mediated by oxygen, but also demon-
strated that every cell in the body is capa-
ble of sensing and responding to oxygen 
levels. Kaelin, Ratcliffe, and Semenza 
have all worked to identify new roles for 
the pathway and to delineate the mech-
anisms by which HIF signaling is regu-
lated in a given context. At the cellular 
level, HIF signaling has a profound effect 
on metabolism, allowing cells to switch 
from the oxygen-consuming TCA cycle 
to glycolysis (109). Additionally, HIF sig-
naling contributes to cell fate decisions, 
including differentiation, senescence, 
and apoptosis (110–115). At the tissue lev-
el, HIF signaling is involved in the devel-

A second oxygen-mediated 
HIF regulatory pathway
By 2001, it was clear that HIF signaling 
can be induced in any cell type under 
hypoxic conditions and that it plays a 
critical role in the response to hypox-
ia through transcriptional activation 
of genes encoding proteins that either 
increase oxygen availability or mediate 
adaptive responses to intracellular oxy-
gen deprivation. Upon the return of nor-
mal oxygen levels, oxygen-dependent 
binding of pVHL mediates the destruc-
tion of the HIFα subunit, terminating 
the response to hypoxia. Additionally, 
the C-terminal domains of HIFα sub-
units were known to contain regulatory 
domains (41, 42), which bind transcrip-
tional coactivators, including CBP, p300, 
steroid receptor coactivator-1 (SRC1), 
and transcriptional intermediary factor-1 
(TIF1) (96–98). Ratcliffe, Semenza, and 
others had shown that the C-terminal 
transactivation domains were regulated 
by oxygen, but this regulation influenced 
transcriptional activity independently of 
protein stability (41, 42).

In order to understand the regu-
lation of the transactivation domains, 
the Semenza group conducted a yeast 
two-hybrid screen to identify proteins 
that interact with HIF-1 to modulate its 
biological activity. They identified and 
characterized a protein that they named 
factor inhibiting HIF-1 (FIH-1), which 
negatively regulates the function of the 
HIF C-terminal transactivation domain 
(99). They also found that FIH-1 binds 
to pVHL and that pVHL can function as 
a transcriptional corepressor that inhib-
its HIF-1α transactivation function by 
recruiting histone deacetylases, thereby 
closing down the chromatin.

In 2002, Murray Whitelaw and col-
leagues showed that an asparagine res-
idue in the C-terminal transactivation 
domain of HIF was hydroxylated under 
normoxia, but that the modification 
was not present under hypoxia. Aspar-
agine hydroxylation was also prevented 
by iron chelators or inhibitors of 2-OG–
dependent dioxygenases (100). Shortly 
thereafter, both the collaborating Scho-
field and Ratcliffe laboratories and the 
Whitelaw group showed that FIH-1 is 
an iron- and 2-OG–dependent dioxy-
genase that hydroxylates HIF-1α on an 

ing, Ratcliffe and his collaborator Chris-
topher Schofield identified the dioxy-
genase EGL-9 as the enzyme responsible 
for hydroxylating the HIFα ortholog in 
C. elegans. Further, they identified a set 
of mammalian HIF prolyl hydroxylases 
(PHD1, -2, and -3; also known as EglN2, 
EglN1, and EglN3, respectively) that 
mediate hydroxylation of human HIFα. 
Moreover, the activity of these enzymes 
was modulated by graded hypoxia, iron 
chelation, and Co2 , as well as the 2-OG 
analog DMOG, mirroring the in vivo 
characteristics of HIF regulation (87). 
Rick Bruick and Steve McKnight iden-
tified these same three enzymes, after 
similar studies that began with the Dro-
sophila ortholog (88).

Prolyl hydroxylation has a profound 
effect on HIF stability and activity, mak-
ing the PHDs potential targets for phar-
macological mimicking of the effects 
of hypoxia. The Kaelin group had also 
been working to identify HIFα PHDs 
and, using biochemical approaches, 
identified PHD2, which has emerged 
as the workhorse member of the family 
(89). In collaboration with Joan and Ron 
Conaway, Kaelin’s group purified PHD2 
and demonstrated that some small mol-
ecules designed to inhibit the related 
collagen prolyl hydroxylases, includ-
ing selected iron chelators and 2-OG 
antagonists, also inhibited the activity 
of PHD2 (89). Moreover, treatment of 
cultured cells with these inhibitors sta-
bilized HIF-1α, increased expression of 
VEGF (89), and induced EPO in mice, 
including mice made anemic by par-
tial nephrectomy (90). In collaboration 
with Christopher Schofield, the Ratcliffe 
group also developed and tested differ-
ent analogs of the PHD cofactor 2-OG, 
which stabilized HIFα (91). These stud-
ies established PHDs as bona fide phar-
macological targets for HIF regulation. 
Given the growing role of HIF signaling 
in human disease, many such inhibitors 
have been developed in the past decade 
(92). Notably, Josef Prchal, Frank Lee, 
and others have linked genetic variants 
of PHD2, HIF2α, and VHL to familial 
polycythemia and high-altitude adap-
tation. Therefore, there is genetic vali-
dation in humans as well as in multiple 
model organisms that ties prolyl hydrox-
ylation to oxygen sensing (93–95).
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to ask big questions. When you say the 
question out loud, it should sound a little 
audacious.” These three physician-sci-
entists became interested in pursuing 
one of the most audacious of questions: 
what are the mechanisms that underlie 
oxygen sensing in animals? The answer 
to that question has expanded our under-
standing of many different aspects of 
biology, ranging from metazoan evolu-
tion to cancer biology, and underscores 
the importance of research focused on 
the most basic of scientific questions.
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under development, with several ther-
apeutic modalities advancing to late-
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signaling. Such drugs could potentially 
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phase II clinical trials for kidney cancer 
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Coda
Each of these researchers approached 
this essential biological question in a 
slightly different way, based on their 
area of specialty: Kaelin from oncology, 
Ratcliffe from nephrology, and Semenza 
from medical genetics. Since their ini-
tial discoveries, they have all continued 
to examine the mechanisms by which 
oxygen sensing impacts human physiol-
ogy and disease. William Kaelin is cur-
rently a professor in the Department of 
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As Kaelin told the JCI, “in order to 
make big advances in science, you need 

opment and maintenance of numerous 
organs and tissues, including those in 
the cardiovascular, skeletal, and immune 
systems (116–118). Further, HIF has been 
shown to play a critical role in mucosal 
barrier functions and inflammation (119, 
120). “It really has become a situation 
where I assume that HIF is involved in 
a given process until proven otherwise, 
because in so many contexts this pathway 
is important,” said Semenza.

HIF-signaling pathways have been 
implicated in a variety of diseases states, 
with HIF playing a beneficial or a detri-
mental role, depending on the context. 
HIF signaling has been shown to medi-
ate protective responses in diseases 
characterized by impaired tissue oxy-
genation and inflammation, such as cor-
onary artery disease (CAD) (121–124), 
peripheral arterial disease (PAD) (125–
127), wound healing (128–130), organ 
transplant rejection (131, 132), and coli-
tis (133–135). In contrast, HIF signaling 
might be maladaptive in other disease 
states, including hereditary erythrocy-
tosis (136), pulmonary arterial hyper-
tension (137–139), chronic ischemic car-
diomyopathy (140, 141), and obstructive 
sleep apnea (142, 143).

HIF signaling plays complex role in 
cancer (144–146). Hypoxia and expres-
sion of HIF in tumors are associated with 
poor prognosis and have been shown to 
promote tumor angiogenesis, epithe-
lial-to-mesenchymal transition, stem 
cell maintenance, invasion and metas-
tasis, therapy resistance, and induction 
of metabolic alterations (147–149). The 
role of HIF in cancer has best been illus-
trated in the context of pVHL-defective 
kidney cancers. In this setting, HIF-2, 
rather than its better-studied cousin 
HIF-1, appears to the be the main culprit 
(150–157). The identification of HIF-2 as 
a driving force in kidney cancer helped 
to motivate and accelerate the success-
ful development of drugs that inhibit 
the HIF-responsive growth factor VEGF 
for the treatment of this disease (145). 
Delineation of the pathways and factors 
that interact with HIF in a specific dis-
ease context has and will continue to 
help identify therapeutic strategies cen-
tered on HIF signaling.

Given its role in so many different 
disease states, a number of therapies 
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