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Introduction
The BM niche comprises a tightly controlled microenvironment 
formed by various cell types that regulate the behavior of hema-
topoietic stem cells (HSCs). Currently, i.v. injection of cells in 
immunodeficient mouse models, followed by cellular studies of 
murine BM tissue, is the most common assay for studying nor-
mal and malignant human hematopoiesis. Although success-
ful engraftment of primary acute myeloid leukemia (AML) is 
achievable, our own lab and others have shown that not all AML 
samples are able to engraft immunodeficient mice and that the 
engraftment ability of these samples is related to their clinical 
outcome (1–3). Over the past few years, this has prompted the 
development of new mouse strains encoding human cytokines 
and has also opened the door to a novel approach. By merging 
knowledge from biomaterials, tissue engineering, and cell- 
implantation fields, investigators have generated new models 
to mimic the native human hematopoietic microenvironment 
within s.c. 3D structures (4–5). Using human mesenchymal stro-
mal cells (hMSCs) as stromal cell support within bone-forming 
implants, researchers have studied normal (6–10) and malignant 
(11–16) hematopoiesis.

In this context, we focused on the development of an implant-
able tool whereby different niche components could be tested, 
both in vitro and in vivo, in order to study both normal and malig-
nant primary human hematopoietic cells.

Results and Discussion
Preliminary assays were performed using different scaffold 
materials and various cell-seeding methods (data not shown). 
We found that injecting a stromal cell suspension into the cen-
ter of a partially dehydrated gelatin-based porous scaffold (Gel-
foam) provided a consistent coverage throughout the material 
(Supplemental Figure 1; supplemental material available online 
with this article; doi:10.1172/JCI89364DS1). Further seeding of 
human hematopoietic cells using the same technique allowed 
adherence to preseeded stromal cells (Supplemental Figure 1), 
suggesting that this approach could be useful for hematopoiet-
ic cell studies. Importantly, the flexible nature of the selected 
biocompatible cell-carrier scaffold facilitates sectioning to the 
desired size via simple cutting while also allowing effective 
digestion using collagenase, meaning easy access to the cells 
for further studies. Next, we evaluated the supportiveness of 
mesenchymal, endothelial, or osteoblastic niche cells for the 
maintenance of human cord blood–derived hematopoietic 
stem and progenitor cells (CB-HSPCs) within the 3D model 
both in vitro and in vivo (Supplemental Figure 2). In vitro, most 
of the tested stromal cells promoted robust growth of all pri-
mary hematopoietic colony lineages (Supplemental Figure 2, 
B and C). In vivo, despite the detection of multilineage human 
engraftment in most stroma-seeded scaffolds, the hMSC-coat-
ed scaffolds had a significantly (P < 0.0001) (Supplemental 
Figure 2E, Left panel) higher capacity for maintaining human 
hematopoietic cell engraftment in primary mice. Using a sec-
ondary transplantation assay, we observed engraftment only 
with cells recovered from human osteoblast-, endothelial- and 
MSC-seeded scaffolds (Supplemental Figure 2E). Therefore, 
based on primary and secondary transplant assays, we decid-
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the engraftment of single-donor CB-HSPCs in scaffolds coat-
ed with hMSCs from different donors (Figure 1, C and D) and 
comparing it with that of i.v.-injected CB-HSPCs. In this case, 
we observed differences in the human hematopoietic hCD45+ 
cell-engraftment level (Figure 1C), indicating interdonor hMSC 
variability, while lineage distribution was similar for all tested 
cells, which in this case was mainly myeloid (Figure 1D). Inter-

ed to use hMSCs for further studies. Single-donor–derived 
hMSCs were used to test CB-HSPC interdonor variability in 
vivo (Figure 1). Although we found no significant differences 
in human hematopoietic cell engraftment, we did observe dis-
parity in myeloid and lymphoid lineage distribution outcome 
between cord bloods (Figure 1, A and B respectively). Further-
more, hMSC intradonor variability was also tested measuring 

Figure 1. UCB-derived HSPC engraftment in s.c. scaffolds. (A and B) Comparative assay using a single hMSC donor and multiple UCB donors. Each point 
represents 1 mouse seeded with 6 scaffolds. For each UCB donor, 3 to 8 mice were transplanted. (A) hCD45 scaffold-engraftment level. D1-D5: different 
UCB Donors. (B) Lineage distribution of engrafted cells. (C and D) A comparative assay using a single UCB donor and multiple hMSC donors. Each point 
represents 1 mouse seeded with 6 scaffolds. For each hMSC donor, 3 to 6 mice were transplanted. (C) hCD45 scaffold–engraftment levels. For compara-
tive purposes, the engraftment levels in BM of i.v.-injected mice are provided. Tukey’s test for multiple comparisons was applied. *P < 0.05. (D) Lineage 
distribution of engrafted cells. (E) Gross morphology of harvested scaffold. (F) microCT study of a harvested scaffold. The scaffold is mainly soft tissue, 
with sporadic calcification spots. (G) Immunofluorescence image showing hCD45 cells in the scaffold and (H) osterix-positive (OSX+) and osterix-negative 
human stroma cells. (I) Schematic of preparation and implantation of bone-forming scaffolds. (J) Whole-mouse microCT showing the s.c. ossicle forma-
tion. (K) Gross morphology of the harvested ossicle. (L) microCT study of a harvested ossicle. (M and N) Immunofluorescence images showing (M) human 
vimentin+ (hVIM) mesenchymal cells and adipocytes and mature neovascularized (endomucin+, End) BM. (N) Trabecular bone formed inside ossicles. Dot-
ted line shows delimited trabecular bone area. hVIM+/Osx+ cells are osteocytes or osteoblasts in the bone surface areas. (O) hCD45+ engraftment levels 
in the ossicle model tested with multiple UCB donors. Each point represents 1 mouse with 2 scaffolds. For each UCB donor, 2 to 4 mice were transplanted. 
Scale bars: 1 mm (E, F, K, and L); 20 μm (G, H and N); 50 μm (M). All data were harvested at 12 weeks after implantation.
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approaches) (Figure 2B). Additionally, in this model, we observed 
that human hematopoietic cells barely engraft the host BM (Sup-
plemental Figure 6). We hypothesize that this could be related 
to the favorable microenvironment within the scaffold, but is 
most likely due to the fact that scaffolds were implanted in non-
irradiated mice. Indeed, it is well known that NSG mice require 
a preconditioning regimen using either sublethal irradiation or 
busulfan pretreatment to engraft human HSPCs (17). Thus, the 
fact that low or no engraftment of host BM tissue was observed 
was expected. Moreover, the procedure named (d) i.v.+S showed 
a high level of engraftment in both the BM and scaffolds, indi-
cating that hHSPCs were able to circulate to the neovasculature 
formed in the scaffolds and engraft there.

Next, we chose the preseeded protocol to test whether the 
“humanized” scaffolds were able to maintain AML patient sam-
ples in vivo. We selected a cohort of 15 AML patients (Supple-
mental Table 1), which included patients previously tested and 
classified as high engrafters (≥1%), low engrafters (1%–0.1%), and 
nonengrafters (≤0.1%) within the conventional i.v. transplantation 
model using NSG mice.

We generally observed a comparable or superior level of 
engraftment in the 2-scaffold–implanted models (SC and BSC) 
compared with conventional i.v. injection in all high- or low-en-
grafted samples tested (8 out of 8 in the scaffold-implanted 
model versus 4 out of 5 in the bone scaffold–implanted mod-
el) (Figure 3A), with mainly no to little engraftment in host BM 
(Supplemental Figure 7), except when higher AML cell doses 
were seeded in the scaffold (see Supplemental Figure 7, B and 
C). Importantly, leukemic engraftment of the nonengrafter 
samples was exclusively observed in the scaffold models (7/7 
cases in the scaffold-implanted model versus 5 out of 6 in the 
bone scaffold–implanted model) (Figure 3A). In order to com-
pare and track the AML burden in the xenotransplantation 

estingly, we observed that mouse hematopoietic cells migrat-
ed into the implanted scaffolds (Supplemental Figure 3), while 
vascularization of the scaffolds was observed using intravital 
microscopy (Supplemental Figure 4A). Additionally, histo-
logical characterization revealed some hCD45-positive cells 
next to vascular structures within the scaffolds (Supplemental 
Figure 4B). We also looked for the presence of hMSCs in the 
recovered scaffold (Supplemental Figure 5). Histology showed 
Vimentin expressing cells in scaffolds, while we were able to 
recover cells with hMSC phenotype from scaffolds (Supple-
mental Figure 3 and 5). None of the implanted scaffolds showed 
evidence of calcification (Figure 1, E and F), whereas a small 
portion of implanted hMSCs had differentiated to osteolineage 
(osterix+, Figure 1H, or osteocalcin+, Supplemental Figure 5B). 
We questioned whether bone formation within the implant-
ed scaffolds would affect hematopoietic cell engraftment and 
therefore added BMP-2, an osteoinductive growth factor, to the 
implanted material (see Figure 1I). This approach yielded s.c. 
bone formation with vascularized BM and hMSCs, which had 
differentiated into adipose and osteoblastic lineages (Figure 1, 
J–N). Moreover, human hematopoietic cells had also engrafted 
in the newly formed mature BM tissue (Figure 1O).

Following this, we evaluated different methods of seeding 
hHSPCs into the scaffold: either (a) preseeding hHSPCs before 
implantation; (b and c) first implanting the hMSC scaffolds and 
4 to 6 weeks later injecting hHSPCs (b) intrascaffold; or (c) i.v. 
(S+i.v.); or (d) implanting hMSCs-scaffolds 4 to 6 weeks after 
transplantation of hHSPCs injected i.v. in sublethally irradiated 
mice (i.v.+S) (see schematic, Figure 2A). We found that preseed-
ing hHSPCs within the scaffold before implantation not only 
gave the best engraftment level, but was also the quickest mod-
el to allow establishment of engraftment (only 10 to 12 weeks 
after implantation compared with 16 to 18 weeks for the other 

Figure 2. Different modality of transplantation of HSPCs into scaffold. (A) Schematic of hMSC seeding and the different tested methods for CB-HSPCs 
inclusion in the scaffold: preseeded in the scaffolds before implantation in nonconditioned mice (preseeded); intrascaffold injection of hHSPCs in noncon-
ditioned mice; i.v. injection of hHSPCs in scaffold-implanted nonconditioned mice (S+i.v.); and finally, irradiated mice injected i.v. with hHSPCs and 4 to 6 
weeks later implanted with hMSC-seeded scaffolds (i.v.+S). All assays were performed without BMP2 (SC) or with BMP2 injection (BSC). All assays were 
performed with pools of HSPCs from different donors. (B) Analysis of human cells in the scaffolds. Percentage of hCD45+ cells (left panel) and proportion 
of hCD3+, hCD19+, and hCD33+ cells in the different scaffolds 12 weeks after implantation of HSPCs. Each point represents 1 mouse implanted with 2 to 6 
scaffolds, which were pooled before the analysis. For each condition, 3 to 10 mice were transplanted. Preseeded approach shows higher engraftment levels 
than injected and S+i.v. approaches. Tukey’s multiple comparison test was applied: **P ≤ 0.005; *** P ≤ 0.0005.
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transplanted i.v., suggesting their dependence on a humanized 
environment for their growth (Figure 3C).

Overall, our work describes a versatile humanized niche 
model for studying both normal and leukemic human hemato-
poietic cell biology, particularly for the less aggressive subtypes 
that fail to engraft in NSG mice. Recent reports demonstrate 
the use of humanized bone ossicles for the study of malignant 
hematopoiesis (11–16). Nevertheless, in all of these models, 
hMSCs were first induced to form bone ossicles before malig-
nant hematopoietic cells were injected intrascaffold, making 
the duration of the whole experiment between 20 and 34 weeks 
compared with only 10 to 12 weeks in our study. Importantly, 
our data demonstrate that bone formation is not mandatory for 
human normal and leukemic engraftment, contrary to what was 
previously described (18, 19). Moreover, the flexibility of our 
reported approach should also help to decipher the role of dif-
ferent human stromal cell types (normal or malignant hMSCs 
or even comparing in vivo hMSC versus human endothelial cells 

models, a panel of 24 genes, commonly mutated in myeloid 
malignancies, was used to screen hCD33+ pretransplanted cells 
obtained at day 0 from all patients (Table 1). Following on, 
patient-specific targeted mutation screen was performed on the 
posttransplanted cells. Analysis showed that in the implanted 
scaffolds, leukemic burden was largely maintained compared to 
the preimplanted patient cells, indicating that the scaffold mod-
el retained the original clonal architecture (Figure 3B and Sup-
plemental Table 2). Finally, we tested to determine whether the 
leukemic cells present in these scaffolds (see absolute number 
of cells retrieved/mouse, Supplemental Figure 8) had leukemic 
stem cell capacity by performing secondary transplantation. For 
patients 1 and 2, which were high engrafters, we observed sim-
ilar secondary engraftment whatever model was used, whereas 
for patients 4 and 9 (low engrafter and nonengrafter, respective-
ly), secondary engraftment was only successful in the scaffold 
models. Interestingly, in this case, samples from primary scaf-
folds were not able to engraft the BM of secondary mice when 

Figure 3. AML engraftment in different implantation models. (A) Percentage of hCD45+hCD33+ cells recovered from each xenograft implantation 
model compared with conventional i.v. injection in NSG mice 12 weeks after transplant for patients classified as high engrafters (≥ 1% engraftment), 
low engrafters (between 1 to 0.1%), and nonengrafters (< 0.1%) using conventional i.v. injection. i.v., i.v. injection; SC, scaffold-implantation; BSC, bone 
scaffold-implantation. Comparison between i.v. and SC or BSC was applied using Dunnett’s test. *P < 0.05. Each point represents 1 mouse implanted 
with 2 to 6 scaffolds. For each patient, 2 to 8 mice were transplanted per condition. (B) Graphical representation of gene mutations detected in CD33+ 
pretransplant and hCD45+hCD33+ postxenografted cells. Mutations are grouped in transcription factor and cell signaling (TF/CS) genes, epigenetic 
modifier (EM) genes, and splicing factor (SF) genes. NA, sample not available for testing; NE, no engraftment was detected in mice; NT, not tested. 
Red boxes, variant allele frequencies comparable to day 0; pink boxes, ≤ 2-fold day 0; gray boxes, not detected. Variant allele frequencies for xeno-
transplanted samples are the average between ≥1, where applicable. (C) Percentage of hCD45+ cells recovered from secondary recipients. Primary cells 
from i.v. mice were transplanted i.v. into secondary mice (i.v.-i.v.). Primary cells from SC were transplanted i.v. (SC-i.v.) or implanted into scaffold (SC-SC) 
in secondary mice. Primary cells from BSC were implanted into BSC in secondary mice (BSC-BSC). Each point represents 1 mouse. For each patient, 2 to 
4 mice were transplanted per condition.
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versus osteoblasts) as well as the importance of particular signal-
ing pathways within the hematopoietic niche, using genetically 
modified stromal cells to dissect the crosstalk between normal 
and/or leukemic human hematopoietic cells and their stroma. 
This model could also be used to screen drugs, specifically those 
that target stromal components.

Methods
Additional methods and associated references are available in the 
Supplemental Methods.

Study approval. All animal experiments were performed under 
license PPL 70/8904 approved by the Home Office of the United 
Kingdom and in accordance with Cancer Research UK guidelines. The 
use of umbilical cord blood (UCB) and AML samples was approved 
by the East London Ethical Committee and carried out in accordance 
with the Declaration of Helsinki.

Statistics. Prism Version 6 software (GraphPad) was used for sta-
tistical analysis. Data are presented as mean ± SEM. To determine 
the level of significance, statistical analysis was performed using 
either a Dunnett’s test for comparison of 2 groups or using a Tukey’s 
ANOVA test for multiple comparisons. A P value of less than 0.05 
was considered significant.

Table 1. Myeloid-related gene panel mutation data of all the studied patients

Patient Gene Chromosome Coordinates Protein ID Codon/Changes Amino acid change MAB (%)
AML-1 NPM 5 170837543 NP_002511.1 ins_TCTG W/C288fsX12 45

FLT3 13 28608238 NP_004110.2 – P606_R607insYDLKWEFP 10
AML-2 FLT3 13 28592642 NP_004110.2 Gat/Aat D/N835 41
AML-3 NPM1 5 170837543 NP_002511.1 Ins_TGCA W/C288fsX12 45

FLT3 13 28608251 NP_004110.2 – L601_K602insREYEYDL 50
RUNX1 21 36259324 NP_001745.2 tTg/tCg L/S56 51

AML-4 NRAS 1 115258747 NP_002515.1 gGt/gAt G/D12 8
KRAS 12 25380276 NP_203524.1 cAa/cTa Q/L61 30
NPM1 5 170837543 NP_002511.1 ins_TGTA W/C288fsX12 52

AML-5 DNMT3A 2 25457242 NP_072046.2 cGc/cAc R/H882 51
RUNX1 21 36206847 NP_001745.2 delT S/P222fsX15 50
RUNX1 21 36259306 NP_001745.2 Ins_GCGG D62GfsX77 48

AML-6 IDH1 2 209113113 NP_005887.2 Cgt/Tgt R/C132 51
NPM1 5 170837543 NP_002511.1 insCTGC W/C288fsX12 48

AML-7 DNMT3A 2 25457242 NP_072046.2 cGc/cAc R/H882 47
IDH2 15 90631934 NP_002159.2 cGg/cAg R/Q140 50

AML-8 KIT 4 55599321 NM_000222.2 gAc/gTc D/V816 51
AML-9 CEBPA 19 33792371 NP_004355.2 dupAGC L317_T317insGlnQ 26
AML-10 None detected – – – – – –
AML-11 NPM 5 170837543 NP_002511.1 insTGTG W/C288fsX12 44

FLT3 13 NP_004110.2 R/G845 5
AML-12 DNMT3A 2 25457242 NP_072046.2 cGc/cAc R/H882 52

SRSF2 17 74732959 NP_001182356.1 P/H95 53
RUNX1 21 36252853 NP_001745.2 SS_donor 508+1G>A 60

AML-13 SF3B1 2 198267359 NP_036565.2 aaG/aaC K/N666 45
JAK2 9 5073770 NP_004963.1 Gtc/Ttc V/F617 46

AML-14 KRAS 12 25398285 NP_203524.1 Ggt/Agt G/S12 71
ZRSR2 X 15841230 NP_005080.1 delAGCCGG G438_S439InsSR 83

AML-15 None detected – – – – – –

MAB, mutant allele burden.
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