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Introduction
The transcriptional program of a cell is shaped by its transcrip-
tion factor (TF) repertoire and its genetic makeup. We summarize 
molecular mechanisms involved in creating steroid receptor– 
driven gene expression programs in hormone-dependent cancers 
and will elucidate the interplay between steroid receptor–depen-
dent transcription and genetic alterations that contribute to endo-
crine therapy resistance. We focus on processes that share molec-
ular similarities in prostate cancer (PCa) and breast cancer (BCa). 
This is based on the idea that the androgen receptor (AR) and the 
estrogen receptor (ER) α are related TFs and have similar functions 
in driving both primary and recurrent disease. Other cancers, such 
as endometrial cancers, are also hormone driven but will not be 
covered here due to space constraints. We highlight molecular 
mechanisms that underlie the adaptation of the transcriptional or 
genomic activity of AR and ER in endocrine therapy–resistant PCa 
and BCa and discuss how genetic alterations may influence this 
process. Furthermore, we discuss how understanding the mode 
of action of specific genetic changes might provide improved and 
more precise treatments of endocrine therapy–resistant cancers.

The clinical problem of endocrine therapy 
resistance
Targeting AR in PCa. PCa remains one of the most common causes 
of male cancer deaths worldwide (1). In 2017, approximately 161,360 
men will be diagnosed with PCa in the United States — of whom an 
estimated 26,730 will die from the disease (2). Nearly all diagnosed 
cases are localized (3) and are treated by surgery or radiotherapy. 
While these treatments are initially effective, many patients rapid-
ly relapse and develop recurrent metastatic disease, which is often 
fatal, as evidenced by a five-year survival rate of 28% (4).

Locally advanced and metastatic PCa therapy aims to reduce 
serum androgen levels and inhibit AR function. Androgen depriva-
tion therapy (ADT) has been the mainstay treatment for advanced 
PCa for many years (5). Current first-line ADT suppresses testic-
ular androgen secretion (6). Additional treatments include adre-
nal androgen synthesis inhibitors, such as abiraterone (7, 8), and 
antagonists that prevent androgen/AR binding, such as enzalut-
amide (9). Unfortunately, most patients with advanced disease 
develop resistance to AR inhibition and progress to a lethal, endo-
crine therapy–resistant stage termed castration-resistant PCa 
(CRPC). Most CRPC cases continue, at least initially, to rely on AR 
signaling. The means by which AR drives CRPC are incompletely 
characterized, but it is believed that mechanisms enable AR trans-
activation under low androgen conditions (10).

Targeting ER in BCa. According to the American Cancer Soci-
ety, BCa is the second most common cancer among American 
women. An estimated 252,710 women will be newly diagnosed 
with BCa in 2017, and around 40,610 women will die from the 
disease (2). Primary treatment options for localized disease 
include surgery and radiation. Because approximately 75% of BCa 
expresses ER, inhibiting ER function is the goal of endocrine ther-
apy; this is effective both in the adjuvant setting after surgery to 
reduce the risk of relapse and in patients with metastatic disease 
to slow disease progression (11).

Examples of endocrine therapy drugs include the selective 
ER modulator tamoxifen, which antagonizes ER in BCa while 
preserving its activating and estrogen-like functions in the bone 
(12). The full antagonist fulvestrant leads to ER degradation, while 
aromatase inhibitors reduce overall estrogen levels by preventing 
the conversion of androgens to estrogens (13, 14). The widespread 
application of these drugs as adjuvant therapies has led to a signif-
icant reduction in BCa mortality (15). However, not all ER-positive 
BCa patients respond to endocrine treatments and nearly all wom-
en with advanced cancer will eventually die from metastatic dis-
ease (16). As with PCa, it is thought that many endocrine therapy– 
resistant breast tumors continue to rely on active ER signaling, 
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Proposed mechanisms leading to endocrine 
therapy resistance
Many mechanisms contributing to endocrine therapy resistance in 
PCa and BCa have been proposed. It has been suggested that resis-
tance to anti-hormone therapy is promoted by the presence of a 
preexisting hormone-independent tumor-initiating cell (22, 23) or 
by cellular plasticity that allows conversion to the hormone-inde-
pendent phenotype. In this situation, hormone independence may 
be achieved by losing dependence on the steroid hormone receptor– 
driven and lineage-defining gene expression programs. Consistent 
with this idea, it is estimated that 10% of patients with late-stage 
CRPC (24), and 15% to 20% of patients with ER-positive primary BCa 
that becomes metastatic lose receptor expression (25). Additionally, 
the dependency on a specific steroid receptor for gene regulation can 
be bypassed through the activity of alternative TFs. For example, in 
PCa, administration and ensuing resistance to AR-targeted therapies 
coincides with the upregulation of the glucocorticoid receptor (GR) 
(26–28). GR induction is further associated with restored expression 
of a subset of AR target genes implicated in mediating enzalutamide 
resistance in xenografts (28). However, in the majority of endocrine 
therapy–resistant cases the relevant steroid receptors remain active 
and are crucial for tumor proliferation and survival (10, 17).

where ER transactivation is mediated by alternative, hormone- 
independent mechanisms (17).

Endocrine therapy resistance and genomic hormone action. 
Despite the effectiveness of endocrine therapies in PCa and BCa, 
intrinsic and acquired resistance remain a clinical challenge. Fur-
thermore, both PCa and BCa are heterogeneous diseases with dif-
ferent subtypes that do not all respond to treatments in the same 
way. BCa patients can be stratified according to gene expression, 
which is predictive of the clinical course of disease; this is exem-
plified by ER-positive luminal subtypes that respond well to endo-
crine treatment (18, 19). In contrast, PCa subtypes are not well 
defined, and prognostic stratification of intermediate-risk patients 
based on gene expression profiles is still a challenge (20).

AR and ER share a common modular structure (Figure 1A) 
and play critical roles in the normal development and function 
of the prostate and breast, only becoming oncogenes in specific 
genetic contexts (21). They function as ligand-dependent TFs that 
bind to steroid hormones with their ligand-binding domain (LBD) 
and, upon DNA binding, regulate hormone-responsive transcrip-
tion (Figure 1B). This transcriptional axis is altered during endo-
crine therapy resistance and functions despite low levels of acti-
vating hormone (Figure 1C).

Figure 1. Steroid receptor (SR) structure and function in endocrine therapy–sensitive and –resistant cancer. (A) Schematic structure of the SR proteins 
AR and ER, which belong to the nuclear receptor TF superfamily and harbor two transcriptional activation domains, the N-terminal ligand–independent 
activation function domain (AF-1) and the C-terminal ligand-dependent AF-2 domain. The LBD also resides in the C terminus, while the DNA-binding 
domains (DBDs) and hinge domains are in the central core of the proteins. (B) SRs are the main targets of endocrine therapy, which induces tumor regression 
in sensitive PCa and BCa. In general, AR and ER function as ligand-dependent TFs that act as homodimers when activated in response to hormone binding. 
Androgens bind to AR, while estrogens bind to ER, and the respective receptor-ligand hormone complexes directly recognize specific DNA sequences har-
boring hormone response elements (HREs). Upon their DNA binding, transcriptional coregulators, including NCOAs and NCORs that mediate the regulation 
of hormone-responsive genes, are recruited. In addition, collaborating pioneer TFs of the FOXA1 and GATA families ensure the establishment of oncogenic 
gene expression programs that drive prostate and breast tumors. (C) Reactivation of SR in endocrine therapy–resistant PCa and BCa can be due to genetic 
alterations in the SR, in their transcriptional coregulators and in their pioneer factors, resulting in altered transcriptional activity. Enhanced activity in thera-
py-resistant disease is shown with green arrows pointing upward, whereas reduced activity is shown with red arrows pointing downward.
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Endocrine therapy generally can be considered a constraint that 
selects for specific genetic factors that enhance hormone signal-
ing, ultimately providing a growth advantage for the tumor cells 
that harbor the alteration. This idea is the basis for the clonal 
evolution model that has been proposed to act in progressing 
PCa and BCa (35, 36). Indeed, both types of malignancy show an 
increase in mutations along the AR and ER signaling axes upon 
endocrine treatment, suggesting that these genetic events are 
selected for under the pressure of endocrine treatment. Below 
we discuss the molecular effects of these genetic determinants 
on AR- and ER-dependent transcription during the emergence of 
endocrine therapy resistance.

Genomic alterations of steroid receptors
Steroid receptor amplifications. In men with PCa, AR amplifica-
tion was first observed in 7 of 23 (30.4%) tumors that recurred 
under ADT; this genetic alteration was absent in matched primary 
tumors prior to treatment (37). The rate of AR amplification was 
even higher (52%) in a more recent study (Table 1 and ref. 38). In 
BCa, the clinical significance of ESR1 gene amplifications in driv-
ing recurrent disease is less clear, since recent studies showed an 
amplification rate of around 2% in both primary and metastatic 
disease (Table 1 and ref. 36). Overexpression of AR and ER allows 
tumor growth under hormone-depleted conditions in models of 
PCa and BCa (39, 40). Therefore, amplifications that result in 
increased levels of steroid receptors may be functional drivers of 
proliferation in an endocrine therapy–resistant setting.

Steroid receptor splice variants. A recent study revealed a pos-
itive correlation between AR copy number increase and upregu-
lation of LBD-deficient AR splice variants (AR-Vs) (41). The find-

The reactivation of AR- and ER-dependent transcription 
during endocrine therapy resistance can occur through two major 
mechanisms. First, the steroid hormone genomic signaling axis 
itself can adapt to endocrine therapy by augmenting its activi-
ty and its responsiveness to hormones, mainly through genom-
ic alterations (discussed in detail below). Second, the activated 
kinase cascades that mediate growth factor receptor–dependent 
signaling frequently exhibit increased activity during cancer pro-
gression and can mediate phosphorylation of AR, ER, and their 
transcriptional coregulators, thereby contributing to hormone- 
independent activation of gene expression (29–31). These steroid 
receptor transactivation mechanisms are not mutually exclusive, 
but instead result in different gene expression programs (32). 
For example, in BCa cells, EGF induces ER binding sites across 
the genome (“cistromes”) that are distinct from those induced 
by estrogen (33). ER at EGF-induced cistromes shows corecruit-
ment and dependence on the TF AP-1; this differs from ER at 
estrogen-induced sites, suggesting a change in collaborating fac-
tors under different activation conditions (33). Similarly, in men 
with CRPC, AP-1 binding motifs are overrepresented at AR bind-
ing sites located at predicted CRPC drivers (34). Ultimately, the 
improved characterization of growth factor– and hormone-depen-
dent steroid receptor activation and how they cross-talk should 
provide the basis for improving endocrine therapy.

Restoration of the transcriptional AR/ER 
signaling axis
In endocrine therapy–resistant cancers, reactivation of steroid 
receptor signaling can emerge as a consequence of genetic alter-
ations in the AR/ER-dependent transcriptional signaling axis. 

Table 1. Genetic alterations in the transcriptional AR/ER axis in primary and endocrine therapy–resistant PCa and BCa

Molecule Levels in endocrine 
therapy resistance

Stage Frequency of alterations Total frequency  
of alterations

Reference
Amplification Deletion Point mutation

PCa genetic alterations
AR Upregulated Primary PCa 0.9% 0.3% — 1.2% 46

CRPC 52% — 18% 62.7%A 38
NCOR1/2 Downregulated Primary PCa 0.9% 3.9% 1.8% 6.3% 46

CRPC — 1.3% 6.7% 12.7%B 38
NCOA1–3 Upregulated Primary PCa 6.3% 0.3% 1.2% 7.5% 46

CRPC 17.3% — 2% 18.7% 38
FOXA1 Upregulated Primary PCa 2.1% 0.6% 3.9% 6.3% 46

CRPC 4.7% — 10.7% 15.3% 38
GATA2 Upregulated Primary PCa 3.3% 0.3% — 3.6% 46

CRPC 6.7% — — 6.7% 38
BCa genetic alterations
ER Upregulated Primary BCa 1.9% 0.2% 0.4% 2.5% 71

Endocrine therapy–resistant BCa 2% n.a. 21% 23% 36
NCOR1, 2 Downregulated Primary BCa 0.8% 1% 3.9% 5.8% 71
NCOA1-3 Upregulated Primary BCa 8.1% 0.4% 1.5% 9.5% 71
FOXA1 Upregulated Primary BCa 1.7% — 1.7% 3.3%C 71

Primary BCa, ILC 1.8% — 7% 8.8% 112
GATA3 Possibly upregulated Primary BCa 2.5% — 10.4% 12.9% 71

—, none; n.a.: not available. AAR rearrangements are detected in 30% of men with CRPC (41). BNCOR1/2 fusions are detected in an additional 4.7% of men 
with CRPC (38). CFOXA1 copy number gains are detected in 20% of people with primary BCa (71, 104).
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Studies in the 1990s identified potential endocrine resistance 
mutations in a small number of BCa patients (61), and studies in 
cell lines indicated that the identified LBD mutations confer gain 
of function, resulting in both ligand-independent and enhanced 
ligand-stimulated ER transcriptional activity (62, 63). More recent-
ly, five studies identified missense point mutations in the ER LBD 
in metastatic BCa. Overall, 187 metastatic ER-positive BCa samples 
from patients undergoing endocrine treatment were sequenced 
in these studies, and ER LBD mutations were identified in 39 
patients (21%) (Table 1 and refs. 36, 40, 64–66). Jeselsohn et al.  
found a correlation between the prevalence of hotspot ER LBD 
mutations and the number of lines of endocrine treatment (36). 
The most common missense mutations were D538G and those 
affecting the Y537 residue, which showed amino acid changes to S, 
N, and C. Several other mutations in the LBD that can confer resis-
tance have been found. Consistent with an expansion of the ER 
transcriptional network being responsible for this phenotype, gene 
expression profiling showed that mutant ER activates both known 
estrogen-induced genes and novel targets. Importantly, fulvestrant 
and tamoxifen both blocked mutant ER, although the required 
doses were substantially higher than for WT ER (36, 40, 64–66).

The LBD of all steroid receptors is folded into 12 α-helices, 
where helices 3, 4, and 12 are integral for the structural response of 
ligand binding, ultimately leading to recruitment of transcription-
al coactivators to the AF-2 domain. Structural studies comparing 
WT and Y537S ER proteins revealed that in the absence of ligand, 
helix 12 in mutant ER is stabilized in the agonistic conformation, 
similar to that of estrogen-bound WT ER. Consistently, multiple 
ER coactivators were recruited to the ER mutant AF-2 in a ligand- 
independent manner. In PCa patients with AR gain-of-function LBD 
mutations, AR is transcriptionally active because mutations such as 
T878A and W742L result in an antagonist-bound activating confor-
mation, where helix 12 is in the agonistic state (67). Promiscuous 
activity of ligands, such as glucocorticoids on the L702H mutation, 
may be explained structurally by the fact that residues within the 
ligand-binding pocket not only determine the structure of the LBD, 
but also dictate the types of ligands that can be accommodated (68).

In general, the presence of these gain-of-function AR and ER 
mutations in tumors requires the development of better antag-
onists for endocrine treatment. Ideally, these molecules should 
bind more strongly than hormone to the LBD without permitting 
coactivator binding to AF-2. This would result in an unstable 
receptor conformation, leading to its degradation, as exempli-
fied by fulvestrant (14).

Alterations in collaborating factors
Transcriptional coregulators. Gene regulation by steroid recep-
tors requires positive and negative transcriptional coregulators, 
termed nuclear receptor corepressors (NCORs) and nuclear 
receptor coactivators (NCOAs). The enzymatic activity associated 
with these coregulator complexes leads to decreases or increas-
es in acetylation of local chromatin. Because acetylation relaxes 
chromatin, increased transcriptional activity is observed at hyper-
acetylated loci, while decreased activity is seen at hypoacetylat-
ed regions. Acetylation is mediated by p300 histone acetyltrans-
ferase enzymes, which associate with the p160 family of NCOAs 
(NCOA1–3). Removal of acetyl groups from chromatin counteracts 

ings further suggested that AR genomic rearrangements enhance 
the production of AR-Vs in a subset of patients (41). AR-Vs can 
promote resistance by engaging AR chromatin-binding sites 
(42) and by driving AR-dependent transcription in a constitutive 
ligand-independent manner (43–45). Notably, AR-Vs can arise 
in the absence of genetic alterations and are detected in normal 
prostate tissue (44, 46), where they may contribute to endoge-
nous AR signaling. Consistent with AR-V levels being correlated 
with progression, detection of the AR-V ARv7 in circulating tumor 
cells from abiraterone- or enzalutamide-treated patients with 
CRPC is associated with therapeutic resistance and decreased 
overall survival rates (47, 48).

The clinical implication of ER splice variants in recurrent BCa 
is less well established than implications of AR-Vs. It is possible 
that ER splice variants are less potent transcriptional activators 
than AR-Vs, as the N-terminal AF-1 domain of ER is a weaker 
transcriptional activator than the corresponding AR domain (49) 
and may be unable to activate target genes in a hormone-indepen-
dent manner. In support of this idea, a YAP1-ESR1 translocation 
has been identified in a metastatic ER-positive BCa (40). In this 
fusion, the AF-1 domain, the DNA-binding domain, and the hinge 
region of ER are joined to regions of the YAP1 protein that contain 
a transactivation domain. Expression of this chimeric protein pro-
motes ligand-independent tumor growth and resistance to fulves-
trant (40), reminiscent of the effect of AR-Vs in PCa. Future stud-
ies will reveal the frequency and functional impact of such events 
in endocrine therapy–resistant disease.

Steroid receptor point mutations. More than 20 years ago, AR 
mutations were detected in men with CRPC, but not in patients 
with primary disease, supporting the idea of continued AR 
dependence in these cases (50, 51). More recently the AR LBD 
has emerged as a mutational hotspot with four major missense 
mutations (L702H, W742C, H875Y, and T878A) that are found 
in 15% to 20% of CRPC cases (Table 1 and refs. 38, 52). Char-
acterization of AR T878A, H875Y, and W742C showed that the 
mutants were stimulated rather than inhibited by the AR antag-
onists nilutamide, flutamide, and bicalutamide, respectively  
(53–55). This antagonist-to-agonist switch results in a dependen-
cy of AR transactivation on these agents and is consistent with 
the “anti-androgen withdrawal response” that is often seen in 
PCa patients upon treatment termination (56). Interestingly, 
antagonist-to-agonist conversion is not only seen in the pres-
ence of AR point mutants but also in AR-overexpressing cells 
(39). Therefore, this clinical manifestation may also be linked 
to an amplification-dependent increase in AR levels. Another 
proposed mode of action for AR mutations is enhanced sensitiv-
ity to an increased spectrum of agonists, which allows for tran-
scriptional activation by noncanonical steroid ligands, including 
adrenal androgens, estrogen, progesterone, and glucocorticoids 
(57–59). Although there is no direct clinical evidence that these 
alternative ligands drive CRPC — and although metabolic con-
version of the ligands to testosterone or dihydrotestosterone may 
occur — the clinical observation that not all patients harboring 
specific antagonist-to-agonist switch mutations were treated 
with the respective antagonist (38, 60) is consistent with the idea 
that an increased ligand repertoire or increased ligand sensitivi-
ty is important for AR mutant–driven CRPC.
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activating transcription, and they have the capacity to increase 
the accessibility of local chromatin structures, allowing produc-
tive binding of other tissue-specific TFs, such as steroid receptors. 
Thus, pioneer TFs are integral for establishing cell lineage identity 
(85). FOXA1 as well as GATA family members are the pioneer TFs 
that facilitate genomic binding of AR and ER, and they are deter-
minants of mammary and prostate epithelial lineages (86, 87). In 
PCa cells, FOXA1 and GATA2 cobind with AR, while in BCa cells, 
FOXA1, GATA3, and ER colocalize to the genome. Binding of these 
multicomponent TF complexes mediates activation of luminal epi-
thelium- and cancer-associated gene expression programs (88–92).  
Since pioneer TF binding to the genome occurs in a hormone- 
independent manner, these TFs potentially have an intrinsic capac-
ity to drive steroid receptor–dependent transcription in endocrine 
therapy–resistant cancer cells. Below, we explore this idea in light 
of recent findings of genetic alterations in pioneer TFs.

FOXA1. Cistrome analyses for AR, ER, and FOXA1 in PCa and 
BCa cell lines revealed cooccupancy between FOXA1 and the ste-
roid receptors (88, 89, 93). Moreover, the observed coexpression 
of FOXA1 with AR in PCa and with ER in BCa is consistent with 
FOXA1 playing an important role in shaping AR- and ER-depen-
dent transcriptional programs in these cancers (94, 95). In PCa 
patients, high levels of FOXA1 correlate with a shorter time to 
recurrence (96, 97). Increased FOXA1 expression is also observed 
in most metastatic and CRPC cases (95, 96). Conversely, in BCa, 
FOXA1 levels are associated with a good prognosis in ER-positive 
BCa patients (94, 98), whereas high levels of both ER and FOXA1 
are expressed in endocrine therapy–resistant metastases (99). The 
discrepancy of FOXA1 being a “good” or “bad” factor in prima-
ry PCa or BCa, respectively, can be explained by distinct modes 
of chromatin targeting, resulting in different dependencies of AR 
and ER on FOXA1. Specifically, ER requires FOXA1 to bind chro-
matin, whereas AR can bind in its absence (100–102). This fun-
damental difference helps explain why FOXA1 is a positive pre-
dictor for endocrine therapy response in BCa, since its presence 
mediates a functional ligand-dependent ER transcriptional com-
plex that is sensitive to ER antagonism. In PCa, the AR cistrome is 
FOXA1 independent; therefore, FOXA1 is not a marker for endo-
crine therapy response but instead may promote the acquisition of 
novel, potentially oncogenic binding sites.

In endocrine therapy–resistant disease, both PCa and BCa 
patients have elevated FOXA1 levels, consistent with FOXA1 
being a driver of the ligand-independent phenotype (95, 96, 99). 
Furthermore, ER cistrome mapping in patients with BCa suggest-
ed that FOXA1-dependent reprogramming of ER sites correlated 
with worse clinical outcome (99). The oncogenic role of FOXA1 
may also be linked to its genetic alteration, the functional effects 
of which are discussed below.

FOXA1 amplifications. In PCa, the frequency of FOXA1 ampli-
fication increases from 2% in primary disease to 5% in CRPC 
(Table 1 and refs. 38, 46). In PCa xenograft models, larger tumors 
are induced upon FOXA1 overexpression, suggesting that FOXA1 
amplification may have functional consequences in clinical dis-
ease (52). In PCa cells, FOXA1 overexpression increases prolifer-
ation rates under low-androgen conditions (103). This phenotype 
is linked to the FOXA1-dependent acquisition of new AR genomic 
binding sites that activate a novel, CRPC-like transcriptional profile 

activation and prevents transcription. This reaction is catalyzed by 
histone deacetylases such as HDAC3, which interact with NCOR1- 
and NCOR2-containing protein complexes (69, 70).

NCOR. In PCa, the frequency of potential loss-of-function 
alterations in NCOR1/2 increases from around 6% in primary dis-
ease to 13% in metastatic CRPC (Table 1 and refs. 38, 46). Sim-
ilarly, in BCa NCOR1/2 show putative inactivating mutations in 
approximately 6% of primary tumors (Table 1 and ref. 71). Tamox-
ifen mediates its inhibitory effect on estrogen-responsive genes 
by locking the ER LBD into a conformation that prevents recruit-
ment of NCOA1–3 and promotes the recruitment of NCOR1/2. 
Tamoxifen resistance has been associated with downregulation 
of NCOR1 expression (72), and loss of NCOR1 expression is suffi-
cient to trigger resistance in experimental models (73). Thus, it is 
possible that inactivating NCOR1/2 mutations may also contrib-
ute to the emergence of tamoxifen resistance.

NCOA. NCOA2 amplification is seen in 6% of PCa patients 
with primary disease and in 16% with metastasis (Table 1 and refs. 
38, 46), and an increased NCOA2 level was associated with the 
development of CRPC (74). Clinical and experimental approaches 
have demonstrated that NCOA2 is an important regulator of endo-
crine response in PCa. It is thought that the clinical AR antagonist 
bicalutamide functions by decreasing coactivator recruitment and 
that enhanced coactivator activity may contribute to resistance 
(75). NCOA2 depletion reduces AR-dependent gene expression in 
PCa cells (74). Moreover, in a genetically engineered mouse mod-
el, overexpression of NCOA2 in the prostate epithelium drives 
neoplasia and promotes metastasis through hyperactivation of 
growth factor signaling (76). Therefore, NCOA2 contributes to 
endocrine therapy–resistant phenotypes by promoting AR-depen-
dent and -independent mechanisms.

In BCa, NCOA2 and NCOA3 are amplified in 8% of prima-
ry tumors (Table 1 and ref. 71). In the mouse mammary gland, 
NCOA3 overexpression contributed to mammary tumor develop-
ment via estrogen-dependent and -independent mechanisms (77, 
78). In patients, elevated NCOA3 expression is associated with a 
higher risk of developing tamoxifen resistance (79). Additionally, 
because NCOA3 can be activated by growth factor–mediated phos-
phorylation (30), patients who express high levels of both NCOA3 
and the receptor tyrosine kinase HER2 have an even greater chance 
of developing tamoxifen resistance (79). Functionally, elevated 
NCOA3 expression increases the agonistic activities of tamoxi-
fen-bound ER, thereby reducing its anti-tumor activity (80).

Reinstating NCOR activity in endocrine therapy–resistant PCa 
and BCa will be challenging. Paradoxically, a recent clinical study 
demonstrated that inhibitors of HDAC activity can resensitize 
endocrine therapy–resistant BCa to tamoxifen (81). The molecular 
mechanisms underlying this phenomenon are only starting to be 
understood (82) but are likely to involve NCOR-independent pro-
cesses. Therapeutic interference with the augmented dependence 
on specific coactivators may also be feasible, as evidenced by the 
development of NCOA1/3-specific tool compound inhibitors (83, 
84). Therefore, it is conceivable that relapsed patients harboring 
NCOA gene amplifications and/or overexpression may benefit 
from NCOA inhibitors.

Pioneer TFs: FOXA1, GATA2, and GATA3. Pioneer TFs interact 
with their recognition sequences in condensed chromatin before 
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that is enriched in oncogenic signaling pathways known to promote 
cell growth and survival in a hormone-starved environment (103).

FOXA1 amplification and copy number gain are seen in 20% of 
primary BCa (Table 1 and refs. 71, 104). Further, FOXA1 copy num-
ber is significantly increased in lymph node metastases compared 
with primary matched ER-positive tumors (104) and is increased in 
patients receiving endocrine treatment (105). Similar to PCa, over-
expression of FOXA1 in ER-positive BCa cell lines promotes resis-
tance to tamoxifen and to estrogen deprivation (104), and gene 
expression profiling revealed stimulation of oncogenic signaling 
pathways that promote ligand-independent ER activation.

Taken together, these results suggest a model in which 
increased FOXA1 levels reprogram and adapt AR- and ER-depen-
dent transcription in response to endocrine therapy. FOXA1 
likely acts in two ways: first, FOXA1 induces signaling-depen-
dent phosphorylation and activation of AR and ER by promoting 
expression of genes in growth factor receptor–driven pathways. 
Second, FOXA1 creates novel genomic binding sites for the ligand- 
independent steroid receptors. The potential interplay between 
FOXA1, steroid hormone signaling, and growth factor receptor 
pathways provides opportunities for targeted therapeutic strate-
gies in the context of endocrine therapy failure. For example, the 
concerted upregulation of IL-8 by FOXA1 and ER in endocrine 
therapy–resistant BCa cells identifies a potential target for the 
treatment of ER-positive, FOXA1-high patients (104). Moreover, 
FOXA1 also drives proliferation in PCa and BCa cell lines (100, 
106), suggesting that it can also be considered as a therapeutic 
target. It is possible that compounds selectively targeting FOXA1 
may be identified since the transcriptional activity of a related fac-
tor, FOXM1, can be inhibited by a small molecule (107).

FOXA1 point mutations. Several whole exome sequencing 
studies have revealed that FOXA1 harbors recurrent mutations 
in 4% of patients with primary PCa and 11% with CRPC (Table 
1 and refs. 38, 46, 108). Two mutational hotspots in or around 
the DNA-binding Forkhead domain and the C-terminal transac-
tivation domain were identified. The most common mutations 
in primary tumors affect the Forkhead domain and are predicted 
to change FOXA1 DNA binding (46). Gene expression studies 
comparing mutated FOXA1-carrying with WT–carrying prima-
ry tumors revealed increased levels of AR target gene activity 
in the former (46), which is in agreement with the hypothesis 
that mutant, more than WT FOXA1, promotes AR signaling and 
favors a more oncogenic AR-dependent transcriptional program 
that drives PCa progression. Because FOXA1 appears to contrib-
ute to reprogramming of the AR cistrome and downstream gene 
expression in primary PCa tumors (109) and in CRPC (110), the 
impact of FOXA1 mutations on this process should be deter-
mined. A fraction of the FOXA1 mutations would potentially give 
rise to loss-of-function truncated proteins. Therefore, FOXA1 
inactivation may be an additional mechanism that influences 
AR-dependent transcription. In agreement with this, it has been 
proposed that decreased levels of FOXA1 significantly alter the 
AR cistrome (111).

The Cancer Genome Atlas (TCGA) initiative performed large-
scale genome sequencing of different cancer types, including 
BCa. In their initial report of this study, FOXA1 point mutations 
were found in 8 of 482 tumors (1.7%), all of which were ER positive 

(Table 1 and ref. 71). More recently, specific profiling of invasive 
ER-positive lobular BCa (ILC), the second most prevalent sub-
type after invasive ductal carcinoma (IDC), revealed that 7% of 
ILC harbored FOXA1 mutations (Table 1 and ref. 112). As in PCa, 
these mutations affected the Forkhead domain and the C-termi-
nal transactivation domain (112), suggesting that these regional 
FOXA1 hotspot mutations are tissue independent and may con-
tribute to oncogenic transcriptional programs in PCa and BCa 
in an as yet unknown manner. Although some FOXA1 mutations 
were predicted to give rise to truncated proteins, an indirect mea-
surement of FOXA1 activity in this dataset revealed no decrease 
(112), suggesting that overall FOXA1 mutations are active. Gene 
expression profiling comparing FOXA1-mutant and WT ILC 
tumors showed increased expression of neuroendocrine lineage 
genes in FOXA1 mutant tumors, which is consistent with mutant 
FOXA1 reprogramming the cell type–specific ER transcriptional 
program (112). The precise impact of mutant FOXA1 as well as its 
interplay with WT FOXA1 have not been thoroughly investigat-
ed, and further studies are needed to develop potential FOXA1 
mutant–targeting strategies.

GATA2 in PCa. Another AR-interacting pioneer is GATA2. 
Cistrome analyses in PCa cells revealed that AR binding sites were 
significantly enriched in GATA motifs (89). Moreover, GATA2 
was shown to play an essential role in AR-chromatin interactions, 
resulting in androgen-dependent gene activation (113, 114). There 
is also a positive correlation between GATA2 and AR expression, 
reflecting the direct activation of AR by GATA2 (113, 115). Addi-
tionally, GATA2 and AR cooperatively regulate androgen-depen-
dent genes in high-risk PCa patients, where GATA2 is overex-
pressed and correlates with a more aggressive phenotype (116) 
and a higher risk of disease recurrence (117).

GATA2 point mutations are rarely detected (52), whereas 
gene amplification was seen in 3% of patients with PCa and 7% 
with CRPC (Table 1 and refs. 38, 46). However, the functional 
consequences of these genetic alterations have not been studied. 
GATA2 has been implicated in activating IGF2 expression (118), 
which has been proposed to contribute to PCa progression in cel-
lular models and in patients (119). IGF signaling is also thought to 
mediate chemotherapy resistance in PCa (118), suggesting that 
the IGF axis provides a therapeutic opportunity in patients with 
enhanced GATA2 function.

GATA3 in BCa. GATA3 is an ER-interacting pioneer TF that is 
required for estrogen-dependent cell cycle progression in ER-posi-
tive BCa cells (120). Cistrome data revealed that GATA3 enhances 
ER genome access (121). Moreover, GATA3 engages in a regula-
tory feed-forward loop with ER, whereby GATA3 increases ER 
expression and ER increases GATA3 levels (120). Accordingly, 
GATA3 and ER levels strongly correlate in BCa patients, and sev-
eral studies have indicated that GATA3 is a predictor of endocrine 
therapy response (122). This clinical observation is consistent with 
the idea that luminal lineage determinants, including ER, FOXA1, 
and GATA3, are indicators for a functional ER-dependent tran-
scriptional complex that is responsive to endocrine therapy.

GATA3 mutations occur at a high frequency (10.4%) in prima-
ry BCa (Table 1 and refs. 71, 123–126) and are mutually exclusive 
with FOXA1 mutations (71, 112). Moreover, FOXA1 mutations are 
more prevalent in ILC (7%), whereas GATA3 mutations are higher 
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in IDC. FOXA1 and GATA3 are both key regulators of ER activity, 
suggesting that IDC and ILC may rely on different mechanisms to 
mediate their ER transcriptional programs.

The functional consequences of GATA3 mutations are only 
starting to be determined. Of the 54 mutations described, 49 
result in frameshifts, which give rise to either truncated or C-ter-
minally extended GATA3 proteins (GATA3-ext) (71). Frameshift 
mutations generally are believed to yield inactive proteins; how-
ever, recent findings suggest that this is not the case with GATA3 
(127, 128). The proposed gain-of-function activity of mutant 
GATA3 may be linked to its ability to dimerize with WT GATA3 
(129). Accordingly, it was shown that truncated GATA3, while 
showing decreased DNA binding activity, stabilized GATA3 WT/
mutant heterodimers (128). This finding may have important 
repercussions since GATA3 affects ER regulation both by activat-
ing ESR1 transcription and by acting as a collaborating factor for 
ER-dependent transcription (120, 121). Therefore, increases in 
GATA3-ext stability may alter the kinetics of this transcriptional 
network, resulting in potentially novel oncogenic functions.

A study of C-terminally extended GATA3 mutants also sug-
gested gain-of-function activity (127). Reanalyses of the TCGA 
BCa patient cohort revealed that the specific frameshifts that give 
rise to GATA3-ext proteins are under positive selective pressure in 
patients (127). In contrast to the behavior of other GATA3 muta-
tions in the same cohort, GATA3-ext was associated with reduced 
disease-free survival, suggesting that these tumors display a differ-
ent pathology with respect to recurrence. However, the prognostic 
value of GATA3 mutations is still a matter of debate. Improved 
disease-free and overall survival were significantly correlated with 
GATA3 mutations in one study (130), whereas only marginal sig-
nificance was seen for improved overall survival in ER-positive 
patients in the TCGA and METABRIC cohorts (130, 131). There-
fore, not only the functional role of GATA3 mutations but also the 
interpretation of their clinical role requires further study.

Conclusions and outlook
Acquired resistance to various targeted therapies, including 
endocrine approaches, can be due to secondary genetic aberra-
tions that alter the target protein, additional components of its 

pathway, or other compensatory pathways, thereby counteract-
ing the inhibitory effect of the drug. Herein we addressed dif-
ferent mechanisms in light of the role of coding mutations and 
their effects on steroid receptor genomic activity in endocrine 
therapy–resistant PCa and BCa. We should mention, however, 
that alterations in noncoding genomic sequences are also gain-
ing in importance and changes in cis-regulatory elements recog-
nized by steroid receptors during cancer progression are a crucial 
level of transcriptional control. In this context, AR and ER bind 
to enhancer sequences, which enable the precise regulation of 
gene expression while acting over large distances from their 
target genes through physical interactions. The accessibility of 
enhancers can be affected by epigenetic alterations as well as by 
genetic mutations. For example, allele-specific recruitment of AR 
and AP-1 account for the increased enhancer activity that drives 
upregulation of oncogenic SOX9 in men harboring the 17q24.3 
PCa risk locus (132). Additionally, the BCa risk locus 16q12.1 is 
thought to alter FOXA1 enhancer recruitment, resulting in the 
downregulation of the TOX3 tumor suppressor gene (133).

In the future, the molecular understanding of the role of 
specific genetic and epigenetic factors such as EZH2 (134–136) 
will provide the basis for tailoring cancer treatments through the 
course of disease for people with PCa and BCa. Thus, the complex 
interplay between FOX, GATA, and steroid receptor–dependent 
gene regulation in cancer cells, which is influenced by the amount 
of the proteins, their mutational state, and their cistromes, needs 
to be more precisely described.
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