Abstract

Maternal cigarette smoking during pregnancy remains one of the most common and preventable causes of fetal growth restriction (FGR), a condition in which a fetus is unable to achieve its genetically determined potential size. Even though epidemiologic evidence clearly links maternal cigarette smoking with FGR, insight into the molecular mechanisms of cigarette smoke–induced FGR is lacking. Here, we performed transcriptional profiling of placentas obtained from smoking mothers who delivered growth-restricted infants and identified secreted frizzled-related protein 1 (sFRP1), an extracellular antagonist of endogenous WNT signaling, as a candidate molecule. sFRP1 mRNA and protein levels were markedly upregulated (~10-fold) in placentas from smoking mothers compared with those from nonsmokers. In pregnant mice, adenovirus-mediated overexpression of sFRP1 led to FGR, increased karyorrhexis in the junctional zone, and decreased proliferation of labyrinthine trophoblasts. Consistent with our hypothesis that placental WNT signaling is suppressed in maternal smokers, we found that exposure to carbon monoxide analogs led to reduced WNT signaling, increased SFRP1 mRNA expression, and decreased cellular proliferation in a trophoblast cell line. Moreover, administration of carbon monoxide analogs to pregnant mice in late gestation led to FGR. In summary, our results indicate that the increased placental expression of sFRP1 seen in smokers impairs fetal growth by inhibiting WNT signaling and trophoblast proliferation.

Authors

Alice Wang, Zsuzsanna K. Zsengellér, Jonathan L. Hecht, Roberto Buccafusca, Suzanne D. Burke, Augustine Rajakumar, Emily Weingart, Paul B. Yu, Saira Salahuddin, S. Ananth Karumanchi

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement