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Introduction
The molecular mechanisms underlying insulin secretion and glu-
cose metabolism have not been fully elucidated (1–6). Numerous 
studies have demonstrated that calcium (Ca2+) plays a pivotal role 
in insulin secretion from the islets of Langerhans and that altered 
cellular Ca2+ homeostasis may be involved in defective insulin 
release (7–11). Nevertheless, according to the classical view of the 
glucose-sensing machinery, insulin secretion largely depends on 
voltage-activated Ca2+ influx, whereas the role of intracellular Ca2+ 
release in pancreatic β cells in response to glucose has not been 
fully elucidated (12–14). In particular, the mechanistic role of 
type 2 ryanodine receptor/Ca2+ release channel (RyR2), which is 
expressed on the endoplasmic reticulum (ER) of pancreatic β cells 
(14–16), in insulin secretion remains controversial, and a relation-
ship between RyR2 and type 2 diabetes mellitus (T2DM) has not 
been clearly established.

RyR channels are macromolecular complexes comprising 4 
protomers, each with a molecular mass of 565 kDa (17). They are 
the largest known ion channels, and the structure of RyR1, which 
is highly homologous (~70%) to RyR2, has recently been solved, 
revealing that RyRs are members of the 6-transmembrane fam-
ily of ion channels (18). RyR channels are widely expressed and 
regulate the release of intracellular Ca2+ involved in vital organ-
specific functions (17–22). We studied knockin mice harboring 
RyR2 containing mutations that were discovered in humans 
with a genetic form of exercise-induced sudden cardiac death 
syndrome known as catecholaminergic polymorphic ventricular 
tachycardia (CPVT), which has a 50% mortality rate by 35 years 
of age (23–25). Each RyR2 protomer binds one calstabin2, a sub-
unit that stabilizes the closed state of the channel and prevents 
the pathological leak of Ca2+ (18, 19, 26). Dissociation of calsta-
bin2 from RyR2 results in intracellular Ca2+ leak via RyR2 chan-
nels (20, 23, 27). We have demonstrated that CPVT-linked RYR2 
mutations reduce the binding affinity of the stabilizing subunit 
calstabin2 to the RyR2 channel (17, 20, 23).

CPVT patients provide a unique opportunity to address the 
role of RyR2 in glucose metabolism because they have disease-
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Figure 1. Humans and mice with leaky RyR2 channels exhibit glucose intolerance. OGTT in healthy subjects (see Supplemental Table 1 for patient char-
acteristics) and patients with CPVT due to RYR2 mutations (see Supplemental Table 2 for RYR2 mutations in CPVT patients) with determination of blood 
glucose (A) and serum insulin levels (B). *P < 0.05 compared with healthy subjects, 2-tailed Student’s t test. (C) Representative immunoblots of pancreatic 
islets from CPVT mice chronically (50 mg/kg/d, 4 weeks) treated with S107. 2,4 DNPH, 2,4-dinitrophenylhydrazone; Cys-NO, nitrosylation. (D–F) Quantifica-
tion of data shown in C (from triplicate experiments). (G and H) Resting cytosolic [Ca2+]cyt is elevated in pancreatic β cells from CPVT mice (pancreatic β cell 
Ca2+ imaged using acetoxy-methyl-ester fura-2, fura-2 AM). (G) ER Ca2+ stores measured using caffeine to release the RyR2 Ca2+ pool are markedly depleted 
in pancreatic β cells from CPVT mice (H); acute (10 μM, 4 hours) S107 treatment restores ER Ca2+ by inhibiting RyR2-mediated leak. (I and J) Blood glucose 
levels following i.p. glucose challenge in WT, RyR2-R2474S, and RyR2-N2386I mice chronically treated with S107. Insulin concentration measured in sera 
from WT, RyR2-R2474S (K), and RyR2-N2386I (L) mice, following i.p. glucose challenge, with and without chronic S107. (M) Plasma glucagon in fed and 
fasted (6 hours) conditions. (N) Blood glucose levels measured following i.p. insulin injection. Insets in I–L represent AUC. Data are expressed as mean ± 
SEM. n = 9–12/group. *P < 0.05 compared with WT, ANOVA, Tukey-Kramer post hoc correction. Additional details are given in Methods.
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in baseline parameters (Supplemental Table 5). The release of 
C-peptide in response to glucose was significantly decreased in 
CPVT mice compared with WT littermates (Supplemental Figure 
3A), whereas plasma glucagon levels (Figure 1M) and gluconeo-
genic response were comparable among groups (Supplemental 
Figure 3B). Insulin tolerance tests were normal, indicating that 
glucose intolerance was not due to insulin resistance (Figure 1N). 
Besides, islet architecture was similar in WT and CPVT mice (Fig-
ure 2A). Pancreas weight, islet size, insulin content, and β cell 
mass in CPVT mice were comparable to those observed in WT 
littermates (Figure 2, B–G), further denoting that the decrease 
in serum insulin levels was most likely due to impaired insulin 
secretion. To better assess this aspect, we also performed ex vivo 
secretion assays in isolated islets. In the presence of leaky RyR2 
channels, insulin release was impaired in response to glucose or 
leucine and glutamine (Figure 2, G–I) and was rescued following 
the pharmacological blockage of ATP-sensitive potassium (KATP) 
channels with glyburide (glibenclamide, Figure 2J). Importantly, 
glucagon content and secretion were similar among the studied 
groups (Supplemental Figure 4, A and B).

Leaky RyR2 channels cause ER stress and defective mitochondrial 
function, impairing metabolism-secretion coupling. Given the rela-
tionship between intracellular Ca2+ storage and ER stress response 
(30, 31), we investigated the activation of the unfolded protein 
stress response in our CPVT models. Interestingly, we found that 
intracellular Ca2+ leak via RyR2 and depleted ER stores were asso-
ciated with a significant increase in immunoglobin heavy-chain 
binding protein (BiP, a chemical chaperone) and in total and 
spliced X-box binding protein 1 (XBP1), but not in CCAAT/enhanc-
er-binding protein homologous protein (CHOP), which is consid-
ered an execution signal that triggers apoptosis (Supplemental 
Figure 5, A–D). Importantly, no significant changes were observed 
in the levels of other key modulators of Ca2+ handling (Supplemen-
tal Figure 6). These data suggest a mild adaptive response that 
favors a survival outcome as opposed to the terminal response in 
which upregulation of CHOP leads to apoptosis. The activation 
of the ER stress response along with the impaired insulin secre-
tion observed in CPVT islets in response to the fuel secretagogues 
leucine and glutamine (Figure 2I), which stimulate insulin release 
through increased mitochondrial metabolism and ATP produc-
tion (4, 32), prompted us to investigate the mitochondria in pan-
creatic β cells. Mitochondrial morphology was abnormal in CPVT 
compared with WT β cells (fragmented cristae, swelling, lamellar 
degeneration, and outer membrane disruption) (Figure 3A). There 
were no significant differences in the diameter or number of insu-
lin secretory granules (Supplemental Figure 7, A and B). However, 
total mitochondrial area was increased (Figure 3B), cristae density 
reduced (Figure 3C), the percentage of abnormal mitochondria 
augmented (Figure 3D), mitochondrial DNA (mtDNA) copy num-
ber reduced (Figure 3E), and ROS generation increased (Figure 3F) 
in CPVT versus WT β cells. Further evaluation of specific markers 
of mitochondrial dysfunction revealed an increased expression 
of uncoupling protein 2 (Ucp2) (Figure 3G) in CPVT islets, which 
negatively regulates insulin release and is considered an essential 
link between β cell dysfunction, T2DM, and obesity (33–35), and 
reduced aconitase activity (Figure 3H) accompanied by decreased 
mRNA levels of aconitase2 (Supplemental Figure 8A), enhanced 

causing mutations that make the channels leaky (23, 24). More-
over, we have developed a new class of orally available small mol-
ecule drugs (Rycals), which are 1,4-benzothiazepine derivatives 
that inhibit stress-induced (e.g., oxidation, nitrosylation, or hyper-
phosphorylation of RyR2) or genetic mutation–induced dissocia-
tion of calstabin (e.g., CPVT mutations) from RyR channels (17, 
27, 28). The Rycal tested in the present study (S107) is in the same 
chemical class and has the same mechanism of action as 2 closely 
related Rycals that are undergoing clinical testing for cardiovascu-
lar and muscle disorders.

Results
Patients with leaky RyR2 channels have glucose intolerance and 
impaired insulin secretion. Oral glucose tolerance tests (OGTT) 
performed in 27 CPVT patients with known RYR2 mutations and 
27 age- and BMI-matched healthy controls (Supplemental Tables 
1 and 2; supplemental material available online with this article; 
doi:10.1172/JCI79273DS1) revealed significant glucose intoler-
ance (Figure 1A) and reduced insulin levels after glucose challenge 
in CPVT patients (Figure 1B).

To determine whether the mutant leaky RyR2 can cause the 
glucose intolerance observed in CPVT patients, we studied 2 
knockin mouse models, each harboring 1 of the human CPVT-
linked RYR2 mutations found in the 27 patients with glucose 
intolerance, RyR2-R2474S or RyR2-N2386I. RyR2 was present in 
murine and human pancreatic islets (Supplemental Figure 1, A–C, 
and Supplemental Tables 3 and 4), consistent with previous analy-
ses (16). We have previously shown that mutant CPVT RyR2 chan-
nels are leaky due to depletion of the RyR2-stabilizing subunit 
calstabin2 (FKBP12.6) from the RyR2 macromolecular complex 
and that oxidation and/or Cys-nitrosylation of RyR2 also causes 
depletion of calstabin2 from the channel (17, 20). RyR2 channels 
from murine CPVT islets were oxidized, nitrosylated, and deplet-
ed of calstabin2 (Figure 1, C–F). These findings support a previous 
report suggesting that genetic ablation of calstabin2 is associated 
with impaired insulin secretion in pancreatic β cells (29). The caf-
feine-depletion assay, in which caffeine is applied to cells to open 
the RyR2 channel in order to measure the amount of Ca2+ released 
from the ER, revealed that ER Ca2+ stores were dramatically 
depleted in pancreatic islets from mice with leaky RyR2 (Figure 1, 
G and H). To directly measure the Ca2+ leak, we used an assay in 
which RyR2-containing microsomes were isolated from pancre-
atic islets and placed in a Ca2+-sensitive dye–containing solution. 
The microsomes were loaded with Ca2+ using ATP to activate the 
Ca2+ uptake pump, which was then blocked using thapsigargin; the 
amount of RyR2-specific Ca2+ leak was measured as an increase 
in fluorescence outside the microsomes (Supplemental Figure 
2). Ryanodine was used to block the leak to show that it was due 
to the RyR channels. Thus, both of the CPVT-linked RyR2 muta-
tions resulted in depleted ER Ca2+ stores as a consequence of the 
intracellular Ca2+ leak in pancreatic islets (Figure 1, G and H, and 
Supplemental Figure 2).

Leaky RyR2 causes impaired insulin secretion in vivo. Similarly to 
CPVT patients, both CPVT murine models examined here exhib-
ited marked glucose intolerance (Figure 1, I and J) and decreased 
glucose-stimulated serum insulin levels compared with WT litter-
mates (Figure 1, K and L). There were no significant differences 
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tional indicator of mitochondrial function, we monitored NADPH 
autofluorescence, increase of which in response to glucose was 
significantly impaired in both RyR2-R2474S and RyR2-N2386I 
mutants, indicating a relative energy deficit (Supplemental Figure 
10). Depletion of ER Ca2+ levels (due to ER Ca2+ leak) resulted in 
reduced glucose-stimulated mitochondrial Ca2+ uptake in pancre-
atic β cells from CPVT mice (Figure 4, A–C). Similarly, mitochon-
drial Ca2+ uptake was also reduced following application of caf-
feine, which releases the ER Ca2+ stores by activating RyR2 (Figure 
4, D–F). Thus, depletion of ER Ca2+ stores due to leaky RyR2 chan-
nels reduces glucose-induced mitochondrial Ca2+ uptake.

Pharmacologic stabilization of RyR2 improves insulin secre-
tion and glucose tolerance. In order to confirm that intracellular 
Ca2+ leak via RyR2 leads to decreased insulin secretion, we used 

expression of peroxisome proliferator–activated receptor gamma 
coactivator-1α (Pgc1a) (Supplemental Figure 8B), and reduced lev-
els of mitochondrial Ca2+ uniporter (Mcu) (Supplemental Figure 
8C), mitochondrial pyruvate carriers 1 and 2 (Mpc1–2) (Supplemen-
tal Figure 8D), and Atp6 (Figure 3I), a subunit of the mitochondrial 
pump ATP synthase. These findings were mirrored by decreased 
glucose-induced (Figure 3J) and pyruvate-induced (Figure 3K) 
ATP production, strongly suggesting a respiratory chain deficiency. 
Decreased ATP production prompted us to evaluate the regula-
tion of KATP channels, fundamental regulators of insulin release (5, 
36). CPVT islets exhibited increased Kir6.2 mRNA and protein, 
which encodes a component of the KATP channel critical to nutrient-
secretion coupling, whereas levels of the regulatory subunit SUR1 
were not significantly altered (Supplemental Figure 9). As an addi-

Figure 2. Leaky RyR2 channels cause impaired insulin secretion. (A) Representative images of pancreatic islets from WT, RyR2-R2474S, and RyR2-
N2386I mice stained for insulin (red) and glucagon (yellow). Original magnification, ×63. Scale bars: 200 μm. Pancreatic weight (B), islet density (C) and 
size (D), ratio of Σ insulin area/Σ islet area (E), β cell mass (F), and insulin content (G). Data are expressed as mean ± SEM. Additional details are given in 
Methods. (G–J) Insulin release in response to glucose (H), leucine plus glutamine (I), or glyburide (J) evaluated ex vivo in pancreatic islets isolated from WT 
and CPVT mice undergoing S107 (50 mg/kg/d, 4 weeks) or vehicle treatment. Data are expressed as mean ± SEM. n = 6–10 animals/group. *P < 0.05 vs. 
WT, ANOVA, Tukey-Kramer post hoc correction.
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Figure 3. Leaky RyR2 channels lead to abnormal mitochondrial structure and function in pancreatic β cells. (A) Representative transmission electron 
micrographs of pancreatic β cell mitochondria from 4-month-old WT, RyR2-R2474S, and RyR2-N2386I mice, treated for 4 weeks with S107 or vehicle. Origi-
nal magnification, ×30,000; insets, ×65000. N, nucleus. Scale bars: 500 nm. (B–D) Morphometric analyses of mitochondria reveal ultrastructural abnormali-
ties in CPVT mice. (B) Mitochondrial area, (C) cristae density, (D) percentage of abnormal mitochondria per cell (mitochondria were defined as abnormal 
when a loss of electron density was detectable in more than 20% of the area of a mitochondrion). (E) mtDNA/nDNA copy number, (F) ROS production, (G) 
UCP2 expression, (H) aconitase activity, and (I) mt-ATP6 expression in isolated pancreatic islets. (J and K) ATP production in isolated pancreatic islets chal-
lenged with glucose (at indicated concentrations, J) or pyruvate (10 mM, K). Islets were isolated from n = 7–10 mice per group. Data are shown as mean ± 
SEM (triplicate measurements per sample). Box plots in B indicate upper/lower quartiles, lines in the middle of each box are the medians, and the whiskers 
represent the range of minimum and maximum values of total mitochondrial area per section. *P < 0.05 vs. WT, ANOVA, Tukey-Kramer post hoc correction.
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the Rycal S107, which prevents stress-induced dissociation of 
the stabilizing subunit calstabin2 from RyR2, thereby preventing 
ER Ca2+ leak (27, 37). S107 is water soluble and has no significant 
activity against other ion channels, including human ether-a-go-
go–related gene (HERG) and voltage-gated Ca2+ channels (28). 
S107 (50 mg/kg/d) prevented calstabin2 depletion from the RyR2 
complex of pancreatic islets (Figure 1, C–E), reduced ER Ca2+ leak 
(Figure 1, G and H), improved glucose tolerance (Figure 1, I and 
J), and increased insulin secretion in CPVT mice (Figure 1, K and 
L). Furthermore, islets isolated from CPVT mice treated with S107 
exhibited a secretory response to glucose (Figure 2H) and leucine/
glutamine (Figure 2I) that was comparable to that seen in WT. 
Mitochondrial ultrastructural abnormalities in CPVT islets were 
also improved by S107 treatment, as were the mtDNA copy num-
ber and ROS generation (Figure 3).

Next, we studied the effects of S107 on the RyR2 macromo-
lecular complex in human islets obtained from T2DM and con-
trol (nondiabetic) human subjects (Supplemental Table 4). Islets 
from diabetic patients exhibited oxidation and nitrosylation of 
RyR2 and depletion of calstabin2 from the channel complex 
(Figure 5, A–D), similar to that observed in murine CPVT islets 
(Figure 1, C–F). S107 treatment prevented the dissociation of 
calstabin2 from RyR2 channels (Figure 5, A and D), but did not 
affect the oxidation and nitrosylation of RyR2. We then tested 
S107 in an animal model of T2DM, the ob/ob mouse. Islets of 
Langerhans isolated from ob/ob mice displayed marked post-
translational modifications of RyR2 (Figure 5, E–H), comparable 
to that seen in human diabetic (Figure 5, A–C) and CPVT islets 
(Figure 1, C–F), accompanied by intracellular Ca2+ leak (Supple-

mental Figure 11), activation of ER stress (Figure 5I), and overall 
mitochondrial dysfunction evaluated in terms of Atp6, aconi-
tase2, Ucp2, Pgc1a, Mcu, and Mpc1–2 expression (Supplemental 
Figure 12, A–F) and ATP synthesis (Supplemental Figure 13). A 
4-week treatment with oral S107 prevented the loss of calsta-
bin2 from the complex (Figure 5H), improved the Ca2+ leak via 
RyR2 (Supplemental Figure 11), ER stress response (Figure 5I), 
mitochondrial dysfunction (Supplemental Figure 12, A–F, and 
Supplemental Figure 13), and in vivo glucose tolerance (Figure 
5J), and also increased glucose-stimulated insulin secretion 
assessed ex vivo (Figure 5K).

Discussion
In the present study, we examined glucose homeostasis in 27 CPVT 
patients, all of whom had RYR2 mutations, including the RyR2-
R2474S or RyR2-N2386I mutations that were engineered in our 
CPVT knockin mice. Strikingly, OGTTs were markedly abnormal 
in both CPVT patients and in 2 murine models of human CPVT 
(RyR2-R2474S and RyR2-N2368I). Moreover, glucose-stimulated 
insulin secretion evaluated ex vivo was reduced in isolated islets 
from CPVT mice with leaky RyR2 channels.

Mounting evidence indicates that ER and mitochondria are 
highly dynamic organelles that are structurally and functionally 
related (3). The activation of ER stress response has been dem-
onstrated to cause mitochondrial dysfunction (38), triggering oxi-
dative stress and further exacerbating ER stress (39). Our CPVT 
models displayed a mild ER stress response in pancreatic β cells 
associated with chronic ER Ca2+ depletion due to leaky RyR2 chan-
nels, with the upregulation of BiP and unspliced/spliced XBP1, but 

Figure 4. Intracellular Ca2+ leak via RyR2 causes decreased glucose-stimulated mitochondrial Ca2+ uptake, which is restored by Rycal treatment. 
(A–C) Mitochondrial Ca2+ uptake in response to glucose was decreased in pancreatic β cells from 2 CPVT mouse models with leaky RyR2 (representa-
tive traces for RyR2-R2474S and RyR2-N2386I are shown in A and B, respectively). S107 treatment (50 mg/kg/d, 4 weeks) improved mitochondrial Ca2+ 
uptake. (D–F) Caffeine-induced mitochondrial Ca2+ uptake was also markedly reduced, reflecting depleted ER Ca2+ stores, and was improved with S107 
treatment (representative traces for RyR2-R2474S and RyR2-N2386I are shown in D and E, respectively). n = 7–10 mice per group. Data are shown as 
mean ± SEM. *P < 0.05 vs. WT.
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with normal levels of CHOP, which is considered the key player in 
the activation of apoptotic pathways elicited by ER stress (40). We 
speculate that in the long term, mitochondrial dysfunction could 
have a detrimental effect on β cell survival, which may eventu-
ally become apparent only in aged mice. Indeed, a recent study 
has demonstrated that Ca2+ depletion pharmacologically obtained 
by thapsigargin application is associated with activation of ER 
stress, causing upregulation of both BiP and CHOP in a dose-
dependent manner, eventually inducing cell death (41). Further-
more, our data show that, in addition to ER stress due to ER Ca2+ 
depletion, primarily triggered by leaky RyR2 channels, another 
factor contributing to impaired insulin secretion is the reduction 

in mitochondrial ATP production, attributable to decreased mito-
chondrial Ca2+ uptake secondary to ER Ca2+ depletion. Indeed, 
mitochondrial Ca2+ depletion can reduce ATP production because 
the activity of several of the enzymes in the Krebs cycle is regu-
lated by Ca2+ (17, 42).

Mitochondrial metabolism orchestrates fuel-stimulated insu-
lin release in pancreatic β cells by finely tuning the rate of ATP 
generation (4, 32, 33, 35, 38, 43–45). Compared with WT, islets 
of Langerhans from mice with leaky RyR2 channels exhibited 
ultrastructural and functional abnormalities and decreased lev-
els of ATP. Our findings are consistent with mitochondrial altera-
tions described in β cells from T2DM patients (46) and may also 

Figure 5. Fixing the RyR2-mediated ER Ca2+ leak restores calstabin2 binding to RyR2 in human diabetic islets and improves ER stress response, 
glucose tolerance, and insulin secretion in diabetic mice. (A) Representative immunoblots of pancreatic islets from healthy subjects (nondiabetic) 
and patients with T2DM. Islets were treated with or without S107 (10 μM for 4 hours). (B–D) Quantification (from triplicate experiments, donors’ clinical 
information is given in Supplemental Table 4) of RyR2 oxidation (B), RyR2 nitrosylation (C), and levels of calstabin2 bound to RyR2 (D). *P < 0.05 vs. 
nondiabetic, ANOVA. (E–H) Immunoblots of pancreatic islets from ob/ob mice treated with or without S107 (50 mg/kg/d in drinking water for 4 weeks); 
representative immunoblots (E) and quantification (triplicate experiments) of RyR2 oxidation (F), RyR2 nitrosylation (G), and calstabin2 bound to RyR2 
(H). *P < 0.05 vs. untreated WT, ANOVA. (I) ER stress response in murine islets evaluated in terms of Bip, total and spliced Xbp1, and Chop by real-time 
RT-qPCR analysis of total RNA, relative to untreated WT mice (horizontal dashed line), using β actin as internal standard. Primer sequences are reported 
in Supplemental Table 3. Each bar represents mean ± SEM of 4 independent experiments, each performed in triplicate. *P < 0.05 vs. ob/ob plus vehicle; 
#P < 0.05 vs. WT, 2-tailed Student’s t test. (J and K) Effects of chronic S107 treatment (50 mg/kg/d in drinking water for 4 weeks) in ob/ob mice on 
glucose tolerance in vivo (J) and insulin release from isolated pancreatic islets (K). All data are shown as mean ± SEM. n ≥ 6 animals/group. *P < 0.05 vs. 
ob/ob plus vehicle, 2-tailed Student’s t test.
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suggested in the first GWAS that identified risk loci for T2DM 
(56); however, RYR2 had been subsequently excluded (56).

One limitation of our study is that the genetically altered mice 
used are not pancreatic β cell specific, but general knockins. On 
the one hand, this accurately reflects the human condition, as 
the CPVT patients are heterozygous for RYR2 mutations (23, 24), 
which are expressed throughout the body (17). However, we can-
not exclude the possibility that leaky RyR2 in other organs also 
contribute to the altered glucose metabolism observed in humans 
and mice with RYR2 mutations. Nonetheless, the finding that the 
knockin of single amino acid missense mutations causes a pheno-
type in mice similar to that in humans (CPVT and glucose intoler-
ance) provides strong genetic evidence supporting a central role 
for mutant leaky RyR2 in the pathogenesis of cardiac arrhythmias 
and altered glucose metabolism. Additionally, the restoration of 
insulin secretion and glucose homeostasis obtained with chronic 
S107 treatment provides further support for the RyR2-mediated 
leak as the culprit in both of these abnormalities. We did not per-
form an arginine test to assess the maximal insulin response (60–
62). Such a test could have helped distinguish between the role of 
RyR2 in acute function versus the maintenance of β cell mass (63).

The ob/ob mouse used in this study to test in vivo the effects of 
S107 on insulin secretion and glucose homeostasis is a well-estab-
lished model of T2DM (33, 34, 62, 64). However, β cell failure is 
not considered the main trigger of diabetes in this murine model, 
in which a major pathophysiological role is played by insulin resis-
tance; therefore, modifications in RyR2 observed in pancreatic 
islets from these mice could represent an epiphenomenon of a pro-
longed hyperglycemic status. We did not investigate mitochondrial 
morphology in β cells from obese mice, which has been reported 
to be profoundly altered (34), and we did not specifically test the 
potential beneficial effects of Rycals in this context or the possibil-
ity of systemic effects of S107 on peripheral tissues.

explain, at least in part, why RyR2 are oxidized in CPVT islets. 
Alterations in mitochondrial dynamics have been reported among 
the mechanisms underlying the development of T2DM and obe-
sity (38, 43, 45). Further supporting our results, RyR2 channels on 
the ER have been recently shown to be in close proximity to mito-
chondria in pancreatic β cells (47, 48), suggesting that depletion of 
intracellular Ca2+ store via RyR2 leak could affect mitochondrial 
function. The abnormal upregulation of PGC-1α observed in both 
CPVT and ob/ob mice represents a shared feature of numerous 
models of T2DM and has been proposed as a pathophysiological 
link connecting mitochondrial dysfunction and β cell failure (49). 
The reduced ATP production detected in CPVT mice in response 
to both glucose and pyruvate most likely contributes to glucose 
intolerance via decreased insulin secretion. Indeed, both CPVT 
mutations investigated in the present study caused an upregula-
tion, which might also be compensatory, of KATP channel activ-
ity. We did not specifically evaluate other potential electrophysi-
ological modifications in channel activity, which we speculate to 
be elevated in CPVT mice, consistent with the demonstration of 
gain-of-function mutations in the Kir6.2 gene in monogenic forms 
of diabetes (5, 50). Moreover, we found that pharmacological 
blockade of KATP channels with glyburide rescued insulin release. 
These results suggest a scenario in which the chronic ER Ca2+ leak 
triggers ER stress and mitochondrial dysfunction, causing a bioen-
ergetic deficit with decreased ATP synthesis (Figure 6).

T2DM represents a heterogeneous disease that results 
from a complex inheritance-environment interaction (51–55). 
GWAS have identified components of the genetic architecture 
of T2DM susceptibility (56–58). Notably, a GWAS focused on 
African Americans revealed an association between T2DM 
and a single nucleotide polymorphism located intergenically 
between RYR2 and 5-methyltetrahydrofolate-homocysteine 
(59). Previously, the association between RYR2 and T2DM was 

Figure 6. Model of RyR2-mediated ER 
Ca2+ leak in the pancreatic β cell. Chronic 
intracellular Ca2+ leak via RyR2 chan-
nels causes store depletion, triggering 
ER stress and mitochondrial dysfunc-
tion, leading to reduced ATP synthesis 
and eventually decreased glucose-
stimulated insulin release, indicating an 
altered metabolism-secretion coupling. 
Impaired mitochondrial fitness also 
leads to increased production of ROS, 
which trigger redox modifications of 
RyR2 alongside calstabin2 dissocia-
tion, thereby exacerbating the Ca2+ leak. 
GLUT2, glucose transporter 2.
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using 5-(and-6) chloromethyl-2′,7′-dichlorodihydrofluorescein diace-
tate (CM-H2DCFDA; Thermo Fisher Scientific). Aconitase activity 
was evaluated using a commercially available assay (Cayman Chemi-
cal) following the manufacturer’s instructions.

Ca2+ measurements. Ca2+ imaging assays were performed as previ-
ously described (21, 22, 26, 27, 73). Briefly, islets were dispersed using 
5 mg/ml dispase (Roche) attached on poly-l-ornithine–coated (PORN-
coated) (Sigma-Aldrich) glass-bottom culture dishes (MatTek Corp.) 
loaded with Fura-2 AM (5 μM, 15 minutes, 37°C). Images were obtained 
using a DeltaScan dual excitation fluorescence imaging system (Photon 
Technology International) on the stage of a Nikon A1 inverted micro-
scope (Nikon Fluor, ×40 objective, numerical aperture 1.3). A field of 
cells was illuminated alternately at 340 and 380 nm and emitted fluo-
rescence (510 nm) images collected on line using a Coolsnap k4 CCD 
video camera (Princeton Instrument) connected to a Photon Technol-
ogy International image processor. This provided an indication of Ca2+ 
content that was independent of dye concentration in the tissue.

NADH autofluorescence was imaged in unloaded islets excited at 
a wavelength of 340 nm and recorded at 510 nm. Changes in intracel-
lular Ca2+ were reflected in the ratio of fluorescence emission acquired 
above 510 nm in response to excitation at 340 nm and 380 nm.

Mitochondrial Ca2+ was assessed using a confocal microscope (Zeiss 
LSM 5 Live, ×63 oil immersion lens) in β cells loaded with rhod-2 AM  
(3 μM, 30 minutes, 37°C), followed by washout and 1 hour rest at room 
temperature for de-esterification. Due to its delocalized positive charge, 
this dye accumulates preferentially within the mitochondrial matrix, 
where it is hydrolyzed and trapped. Fluorescence was detected using a 
pass-band filter of 545 to 625 nm in response to excitation at 542 nm.

To measure Ca2+ leak in microsomes, pancreatic islets were 
homogenized in 10 mM Tris-maleate buffer with protease inhibi-
tors. The homogenate was centrifuged for 20 minutes at 4,000 g. The 
supernatant was subsequently centrifuged for 30 minutes at 45,000 g.  
The resulting pellet was then resuspended in 50 ml of Tris-maleate 
buffer (pH 7.4) containing 0.3 M sucrose and 0.9% NaCl. The Ca2+ 
loading and leak assay was performed using microsomes (150 μg)  
from islet samples in 1 ml of buffer: 120 mM K-gluconate, 7 mM NaCl; 
5 mM K-phosphate, 1 mM MgCl2, 8 mM K-phosphocreatine, 20 mM 
HEPES/K(OH), pH 7.2, and 2 units/ml of creatine kinase and the 
Ca2+-sensitive fluorescent indicator Fluo-3 (2.5 μM). Ca2+ loading was 
initiated by adding 0.8 mM ATP to activate the Ca2+ uptake pump, 
after which thapsigargin (0.8 μM) was added to block the Ca2+ pump. 
Ryanodine (20 μM) was used to prove that the RyR channel was the 
specific source of the leak. The time course of Ca2+ uptake was moni-
tored spectrophotometrically as the emission of Fluo-3 after excitation 
at 485 nm. Changes of fluorescence intensity were recorded by dedi-
cated software (FeliX version 2; Photon Technology International).

Transmission electron microscopy. Each pancreas was fixed in 
2.5% glutaraldehyde in 0.1 M Sørensen’s buffer and post-fixed in 1% 
OsO4. Following dehydration, samples were embedded in Lx-112 
(Ladd Research Industries). After cutting (ultramicrotome MT-7000), 
60-nm sections were stained with uranyl acetate and lead citrate and 
visualized (JEM-1200 EXII, JEOL). From 8 to 10 randomly obtained 
sections for each pancreas were used for morphological analyses of 
mitochondria and secretory granules. β Cell secretory granules are 
polymorphous and contain crystalline cores surrounded by a promi-
nent electron-lucent halo beneath the limiting membrane and can be 
distinguished from α cell granules, which are typically relatively small-

The present study indicates a functional role for RyR2 in metab-
olism-secretion coupling both in mice and in humans. T2DM rep-
resents a potent risk factor for the development of cardiovascular 
disease (65–69). Since RyR2 channels are chronically leaky in heart 
failure (17, 20), our findings raise the possibility that the relationship 
between diabetes and cardiovascular disorders may be more com-
plex than previously appreciated in that T2DM is both a risk factor 
for and a sequela of heart disease. Taken together, our data provide 
compelling evidence that intracellular Ca2+ leak via RyR2 channels 
induces glucose intolerance associated with pancreatic β cell ER 
stress, mitochondrial dysfunction, and decreased insulin secretion.

Methods
Human studies. All recruited subjects were of mixed European 
descent and unrelated. Glucose metabolism was assessed by means 
of fasting blood glucose and standard OGTT (75 g glucose in 200 ml 
water). The number of participants was determined with an a priori 
power analysis using a standard for adequacy of 80% to reject the 
null hypothesis of zero correlation. Subjects with known disorders 
other than CPVT were not enrolled. Human islets used in this study 
were obtained from normal and diabetic (T2DM) cadaveric donors 
from the Islet Resource Facility, Transplantation Division, Southern 
Tissue Center, University of Alabama at Birmingham (Birmingham, 
Alabama, USA) and from Prodo Laboratories Inc. Characteristics of 
donors are reported in Supplemental Table 4. S107 treatment con-
sisted of incubation of human islets with the drug (10 μM) for 4 hours.

Animal experiments. The ob/ob mice were purchased from Jackson 
Laboratories. RyR2-R2474S and RyR2-N2386I mice were generated 
as described previously (27). Animals were maintained in a specific 
pathogen–free animal facility on a 12-hour light/12-hour dark cycle at 
an ambient temperature of 21 ± 2°C. They were given free access to 
water and food. S107 was diluted in the drinking water. The optimal 
dosage was determined based on preliminary time-course and dose-
response assays. Age-matched male mice were used for all animal 
experiments, which were conducted by operators who were blinded to 
the genotypes of the mice. Glucose, insulin, C-peptide, and glucagon 
(Wako Diagnostics and Ultrasensitive ELISA, Mercodia) were deter-
mined as previously described (1). Plasma nonesterified fatty acids 
and triglycerides were assessed in fasted animals using commercially 
available kits (Wako Diagnostics and Sigma-Aldrich). For morpho-
metric analysis of pancreatic islets, at least 6 animals (4 months old) 
per group were analyzed. The staining for insulin and glucagon was 
performed according to established protocols (1). For each pancreas, 
several sections spaced approximately 160 μm apart were covered sys-
tematically and images were analyzed using Fiji (70).

Mouse pancreatic islet isolation. Mouse pancreatic islet isolation 
was performed as previously described (1). Briefly, islets of Langerhans 
were isolated by collagenase P digestion (Roche Applied Sciences) in 
a shaking water bath (37°C) for 5 to 8 minutes. The digested pancreas 
was treated with DNase I (New England BioLabs). After Histopaque 
gradient purification, the islets were hand picked under a stereomicro-
scope and cultured at 37°C with 95% air and 5% CO2 in RPMI 1640 
(1). In some experiments, islets were treated with glucose (5.5 and  
16.7 mM), glyburide (10 μM), methyl pyruvate (10 mM), or l-leucine 
(10 mM) and glutamine (2 mM), all from Sigma-Aldrich. Islet ATP 
content was determined using a quantitative bioluminescence assay 
(Sigma-Aldrich), as described (71, 72). ROS production was assessed 
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