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Introduction
Implantable devices like orthopedic, dental, and cardiac implants 
are an increasingly indispensable part of medical therapeutics. 
With regard to orthopedic devices, over 1 million lower-extremity 
joint replacements are performed each year in the United States, 
and this number is predicted to rise in the future due to the aging 
population, increase in the rate of obesity, and expansion of med-
ical indications (1). These devices contain metal alloys includ-
ing nickel, cobalt, and chromium that provide their strength and 
long-term durability. However, allergy to metals included in the 
implants is commonly seen, with about 20% of the US popula-
tion being allergic to nickel (2). Chronic inflammation from metal 
joint replacements may cause complications at the implant site, 
which mostly present as chronic joint pain, swelling, loosening, 
and joint failure (3). For other implants placed in close proximity 
to the skin, allergic contact dermatitis (ACD) can ensue in 0.1% to 
5% of metal implant cases (4, 5). The mechanism of acute ACD is 
well understood and involves a type IV hypersensitivity reaction 
mediated by Th1 cells responding to hapten-modified proteins (6), 
while chronic ACD results in Th2-polarized inflammation (7, 8). 
The long-term consequences of chronic ACD caused by allergenic 
metal implants are poorly understood.

Here, we present a clinical case of Marjolin’s ulcer, an invasive 
squamous cell carcinoma (SCC) that developed in the context of 
nickel allergy from a subcutaneous metal implant. Using animal 
models, we demonstrate that prolonged ACD markedly enhances 
the development of skin cancer at the skin site exposed to a carcin-

ogen. Further, we show that chronic ACD has the cardinal features 
of a protumorigenic inflammatory environment and is responsible 
for this tumor promotion.

Results and Discussion
A 46-year-old white female with no history of skin cancer had an 
ankle fracture 3 years earlier, which was repaired with open reduc-
tion and internal fixation with metal rod placement on the lateral 
aspect of her fibula for stabilization. After the initial surgery, the 
patient developed a nonhealing skin lesion on her left ankle over-
lying the metal implant and the surgical wound site. Subsequently, 
she was found to be allergic to the nickel in the metal implant (Fig-
ure 1A). The implant was removed a year after the initial surgery, 
but the skin lesion persisted. When the patient presented to us 
with a 3-year history of the ulcerated skin lesion, she had signifi-
cant erythema, pain, and oozing at the lesion site and evidence of 
chronic sun exposure in the nonlesional skin (Figure 1B). A biopsy 
showed a well-differentiated but invasive SCC consistent with a 
Marjolin’s ulcer (Figure 1C). Due to the depth of invasion and con-
cern for metastasis, the patient underwent a PET-CT scan, which 
was negative (Supplemental Figure 1; supplemental material avail-
able online with this article; doi:10.1172/JCI77843DS1). The SCC 
was surgically excised with a clear margin without signs of recur-
rence over a 2-year follow-up period.

The development of a high-risk SCC in an individual without 
a history of skin cancer strongly suggested that the chronic ACD 
surrounding the surgical wound on the patient’s sun-exposed 
skin culminated in cancer formation. To determine whether 
chronic ACD can synergize with the surgical wound to promote 
skin tumorigenesis, we examined the tumor-promoting poten-
tial of contact hypersensitivity in mice. Due to species-specific 
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To determine whether DNFB-induced chronic ACD results 
in a tumor-promoting environment, we analyzed the dorsal skin 
of animals treated with DNFB versus acetone at the end of the 
chronic allergen treatment period (Figure 1D). The DNFB-treated 
skin showed marked epidermal hyperplasia, with dense dermal 
inflammation compared with that of the acetone-treated controls 
(Figure 2A). Chronic ACD in our animals was associated with a 
Th2-dominant immune response, characterized by abundant pro-
duction of Il4 but not Ifng (Figure 2B and refs. 14, 15). This is con-
sistent with previous studies demonstrating the switch from type 
1 inflammation in acute ACD to type 2 in the chronic phase (7, 8). 
In addition, the DNFB-treated skin expressed significantly higher 
levels of Il6 compared with levels detected in the acetone-treated 
controls (Figure 2C and ref. 16). In addition to CD4+ T cells, the 
number of mast cells, alternatively activated (M2) macrophages 
(F4/80+CD206+), and blood vessels was markedly increased upon 
chronic DNFB treatment (Figure 2D and Supplemental Figure 3). 
Each of these factors has been implicated in tumor promotion (14, 
17, 18). Therefore, chronic ACD results in the critical elements of a 
tumor-promoting inflammatory environment in the skin.

To confirm that the tumor-promoting effect of DNFB is driven 
by chronic ACD and not by a direct effect of the chemical on 
keratinocytes (tissue source of the tumor) (19), we studied Rag1–/–  
(Rag-KO) and Rag2–/–, γc–/– (Ragγc-KO) animals (Figure 1D) that 
lack adaptive and innate immune cells implicated in the induction 
of ACD (20, 21). Although WT, Rag-KO, and Ragγc-KO animals 
showed a similar degree of hair loss and skin irritation in response 
to DNFB (Supplemental Figure 4), Rag-KO and Ragγc-KO animals 
developed significantly less inflammation in response to chronic 
DNFB treatment (Supplemental Figure 5A). Likewise, Rag-KO 

susceptibility, mice do not respond to nickel, and we therefore 
studied hapten-induced contact hypersensitivity, which induces 
similar inflammatory responses (Figure 1D and refs. 9, 10). First, 
we exposed a group of age-matched female FVB mice to ace-
tone (carrier) or 1-fluoro-2,4-dinitrobenzene (DNFB) on their 
abdomen at day 0. One week later, their back skin was treated 
with a single dose of 7,12-dimethylbenz(a)anthracene (DMBA), 
a commonly used carcinogen that mimics the cancer-initiating 
effect of sun exposure (11–13). The following week, the animals 
were randomized for surgical wounding and placed into 1 of the 
following 3 groups: (a) acetone (carrier) treatment plus surgical 
wounding; (b) DNFB treatment; or (c) DNFB treatment plus sur-
gical wounding. After surgical incision, suture placement, and 
the first topical treatment, the animals were treated every 2 to 
3 days with DNFB or acetone for 14 weeks and followed for an 
additional 9 weeks (Figure 1D). Animals receiving DNFB devel-
oped skin tumors with a short latency, while none of the animals 
treated with acetone alone developed tumors, despite the carcin-
ogen (P < 0.01, Figure 1, E and F). Notably, the tumor-promoting 
effect of the allergen was dominant and masked any contribu-
tion from a surgical wound. In addition, skin tumors that formed 
during the allergen treatment period persisted after treatments 
were stopped (Figure 1F). Although the DNFB-treated animals 
each developed a few skin tumors (Figure 1F), they experienced a 
high rate of tumor progression from papilloma to SCC, leading to 
their early demise (P < 0.05; Supplemental Figure 2A). The SCCs 
were well-to-moderately differentiated invasive carcinomas 
with aggressive behavior reminiscent of the SCC in our clinical 
patient (Supplemental Figure 2B). Thus, chronic ACD markedly 
enhanced tumor formation.

Figure 1. Chronic ACD promotes skin tumorigenesis. (A–C) Clinical case of an invasive SCC that developed in the context of ACD to nickel is shown. 
(A) Skin-patch test result indicated nickel allergy. (B) SCC lesion on the patient’s left lateral ankle. Note the solar lentigines on the patient’s leg 
that are a sign of chronic sun exposure. Also, there were no signs of vascular compromise or stasis changes (arrow marks the biopsy site). (C) Punch 
biopsy of the lesion demonstrated a well-differentiated, but invasive, SCC (scale bar: 100 μm), consistent with Marjolin’s ulcer. (D) Experimental 
design used to investigate whether chronic ACD synergizes with the surgical wound to promote tumor development. (E) Time to tumor onset and 
(F) average number of tumors per animal for each group. Regardless of the presence of a surgical wound, animals chronically treated with DNFB 
developed skin tumors with short latency (*P < 0.001 by log-rank test) and increasing tumor counts over time (*P < 0.05 starting from week 7 by 
Student’s t test). No skin tumors developed in the acetone-treated group, despite carcinogen exposure. Age-matched FVB female mice were used 
in this study; n = 6 per group.
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confined to the local environment of the SCC and extended with 
similar intensity into the cancer-free margins of the excision (Fig-
ure 3C and Supplemental Figure 7). These features strongly suggest 
that the patient’s inflammation was the driver of the carcinogenesis 
and not secondary or reactive to cancer development itself.

Our findings provide clear evidence for the tumor-promot-
ing property of chronic ACD. Chronic ACD can thus lead to the 
development of Marjolin’s ulcer–like invasive SCC in areas where 
a significant burden of cancer-initiated cells is present (i.e., sun- 
or carcinogen-exposed skin). The chronic nature of ACD caused 
by implantable devices that are placed adjacent to sun-exposed 
skin can thus provide this “perfect storm,” as seen in our clinical 
patient. Although rare, the morbidity and mortality associated 
with such aggressive cancers highlight the importance of skin-
patch testing prior to the placement of implantable devices, espe-
cially in patients with known metal allergies (22).

Interestingly, skin cancer development in the context of metal 
allergy has also been observed with metal dental restorations (23, 
24). In addition, there are multiple clinical case reports of SCC 
development in tattoos, and ACD due to metals used in tattoo dyes 

and Ragγc-KO animals treated with DNFB failed to develop any 
significant epidermal hyperplasia, accumulation of mast cells, M2 
macrophages, or blood vessels in their skin compared with what 
we observed in the DNFB-treated WT animals (Supplemental 
Figure 5). Importantly, Rag-KO and Ragγc-KO animals treated 
with DNFB and surgical wounding showed a significantly lower 
propensity for skin tumor development compared with their age-
matched WT animals on a C57BL/6 genetic background (P < 0.01, 
Figure 2, E and F). These findings demonstrate that chronic expo-
sure to a hapten-producing allergen induces tumor-promoting 
inflammation in the skin.

Finally, we examined the immune environment of the SCC 
that developed in our clinical case. A dense dermal inflammation 
was present, surrounding the focus of skin cancer, which was dom-
inated by Th2 cells with characteristic expression of GATA3 but not 
T-bet (Figure 3A). In addition, the other cellular hallmarks of the 
tumor-promoting chronic ACD environment were present in the 
patient’s lesional skin, as shown by a marked increase in blood ves-
sels, M2 macrophages, and mast cells (Figure 3, B and C, and Sup-
plemental Figures 6 and 7). Importantly, the inflammation was not 

Figure 2. Chronic ACD manifests 
protumorigenic factors and mediates 
the tumor-promoting effects of DNFB. 
(A) Representative H&E-stained skin 
images from mice treated with DNFB 
for 14 weeks and their acetone-treated 
controls (scale bars: 100 μm). Note the 
extent of epidermal hyperplasia and der-
mal inflammation in the DNFB-treated 
skin. (B) Quantitative real-time PCR 
analysis of cytokine expression by major 
Th cell subtypes performed on skin from 
mice treated with DNFB for 14 weeks 
compared with cytokine expression in 
acetone-treated controls (n = 4 in each 
group; *P < 0.05 by Student’s t test). (C) 
Il6 expression in skin treated with DNFB 
for 14 weeks was compared with that in 
skin of acetone-treated controls (n = 4 
in each group; *P < 0.05 by Student’s t 
test). (D) Average number of mast cells 
in 6 random high-power microscopic 
fields (HPF) of skin from animals treated 
chronically with DNFB was compared 
with that of acetone-treated mice  
(*P < 0.05 by Student’s t test). Rep-
resentative images of toluidine blue–
stained skin sections show increased 
number, size, and granularity of mast 
cells in DNFB-treated skin (scale bar: 
50 μm). (E and F) Tumor outcome of 
Rag-KO, Ragγc-KO, and WT animals in 
response to DNFB plus surgical wounding 
(following the protocol described in Fig-
ure 1D). (E) Shown are the time to tumor 
onset (*P < 0.01 by log-rank test) and (F) 
average number of tumors per animal for 
each of the 4 groups (*P < 0.05 starting 
from week 10 by Student’s t test). Age-
matched C57BL/6 female mice were used 
in this study; n > 7 per group.
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publish the patient’s photographs and study her skin cancer. All animal 
studies were approved by the IACUC of Washington University.

Refer to the Supplemental Methods for a further description of the 
methods.
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has been reported to precede the development of such cancers (25, 
26). Our findings provide a mechanistic explanation for skin can-
cer development in these clinical contexts. Taken together, our 
study describes the mechanism of a severe adverse event associ-
ated with implantable materials and calls for close monitoring of 
patients receiving these implants to avoid chronic ACD and the 
possibility of developing SCC.

Methods
Patient samples. The initial punch biopsy of the SCC and the completely 
excised lesion with clear margins were fixed in formalin and embed-
ded in paraffin. H&E staining was performed using Tissue-Tek Prisma 
Stainer (Sakura Finetek USA). Formalin-fixed, paraffin-embedded 
tissue sections (4-μm) were immunostained using a Ventana ULTRA 
automated immunostainer (Ventana Medical Systems).

Statistics. To test the significance between study groups, we used 
a log-rank test for tumor onset and survival data and a 2-tailed Stu-
dent’s t test for tumor counts and other quantitative measurements. 
A P value of less than 0.05 was considered statistically significant. All 
bar graphs show the mean + SD.

Study approval. The clinical study was approved by the IRB of 
Washington University, and written informed consent was obtained to 

Figure 3. Tumor-promoting inflammation is associated with patient’s SCC. (A) H&E staining of the punch biopsy specimen highlights the extent of 
inflammation associated with SCC compared with that in normal skin. CD3, GATA3, and T-bet staining of the patient’s SCC shows significant accumulation 
of GATA3+ T cells (i.e., Th2 cells) in the dermis surrounding the SCC (quantified as the percentage of CD3+ cells counted in 6 random HPFs). (B) CD31 staining 
marks the vascular density surrounding the patient’s SCC compared with that in the normal skin. (C) Average number of mast cells in 6 random HPFs near 
the site of SCC (Punch Bx) and beyond at the excision margins was compared with the number of mast cells in the normal skin. The increased number of 
mast cells in the excision margins indicates that the patient’s skin inflammation extended beyond the cancer site. Representative images are shown.  
*P < 0.05. Scale bars: 100 μm; 10 μm (enlarged images in A and inset in B).
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