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Introduction
Over the last 25 years there has been an explosion in our under-
standing of the roles of the diverse cellular elements of the gut. 
Remarkably, even in the last five years, new cell types have been 
discovered and completely new functions have been ascribed to 
cells about which we have long known (for example, see refs. 1, 2).  
These exciting discoveries have refined our understanding of 
gut physiology and, to some extent, pathophysiology. Nowhere 
is this exemplified more vividly than in the enteric nervous sys-
tem (ENS). The ENS provides local neural control of the gastro-
intestinal (GI) tract and is required for the coordination of diges-
tive and defensive functions of the gut (3). It consists of nerve 
cell bodies arranged in two ganglionated plexuses and nerve 
fibers throughout the external muscle layers, submucosa, and 
mucosa (3). The ganglia of the ENS form the myenteric and the 
submucosal plexuses, which are located between the longitu-
dinal and circular muscle layers and in the submucosa, respec-
tively. Neurons of the ENS are supported by a unique peripheral 
glial cell called enteric glia (4–6). Exciting recent findings have 
shed new light on the roles of enteric glia in the physiology and 
pathophysiology of the GI tract.

Enteric glia are increasingly being recognized as playing piv-
otal roles in health and disease. These cells were once thought to 
play a passive structural role but now emerge as having significant 
regulatory functions throughout the GI tract (4, 7, 8). There are two 
major populations of enteric glia, one in the ENS and the other 
beneath the epithelium throughout the intestinal mucosa (Figure 
1). In the ENS, enteric glia slightly outnumber enteric neurons and 
are found in both the myenteric and submucosal plexuses (ref. 
4 and Figure 2). In this Review I focus on selected new develop-
ments in the molecular physiology of enteric glia and relate them 
to pathophysiological conditions in the gut and to neurological con-
ditions that affect the GI tract. Interested readers are encouraged 
to consult other recent reviews and articles on enteric glia (4, 7–9).

Historical perspective
Glial cells of the ENS were discovered in the late 19th century 
by Dogiel, but it was not until the 1970s when a detailed ultra-
structural analysis of the ENS was conducted by Giorgio Gabella 
that their identity as a unique cell type was really appreciated 
(10, 11). Gabella termed these astrocyte-like glial cells “enteric 
glia” in 1981 (10), though the term had been used previously by 
Jessen and Mirsky who showed that enteric glia express the glial 
marker glial fibrillary acidic protein (GFAP) (12). With charac-
teristic precision, Gabella also noted that enteric glia receive 
specialized contacts from enteric nerves, which he termed 
“neuroglial junctions” (11). The intimate connections between 
nerves and glia suggested a functional relationship whose signif-
icance remained obscure for many years but which provides the 
structural basis for many key roles that enteric glia play in the 
gut. Another important early finding was made by Hanani and 
colleagues, who showed that enteric glia are dye coupled, form-
ing a functional syncytium (13). Thus, injection of a small-mo-
lecular-weight dye into one cell rapidly spreads around the glial 
network in an enteric ganglion to label 10 to 100 cells over a dis-
tance of 300 μm from the site of injection. Below I discuss the 
significance of the functional connectivity of enteric glia.

Two other early observations are worth highlighting. The 
first is that in the inflamed ileum of patients with Crohn’s disease 
enteric glia express MHC class II (14, 15). In controls, MHC class 
II was weakly expressed or absent, but this expression was mark-
edly upregulated in patients with Crohn’s disease, and Geboes et 
al. showed that enteric glia were associated with T lymphocytes 
(14). These data illustrate that enteric glia have immunological 
functions and form a bridge between the immune system and the 
neurons of the ENS. This likely has important functional conse-
quences for protecting critical neuronal functions in the face of 
immunological challenges that frequently plague the digestive 
system as a result of infection. The second early observation of 
note is that ablation of enteric glia leads to a rapidly developing 
fulminant jejunoileitis (16, 17). This massive intestinal inflam-
mation apparently results from breakdown of the intestinal 
epithelial barrier. This remarkable observation was completely 
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physiological control of GI motility. More-
over, they point to enteric glia as cellular 
elements potentially involved in abnor-
malities of gut motility (23, 24).

The studies described above raise a 
number of critical questions, some of which 
have been addressed in the last few years. 
In the following sections I examine the 
mechanisms involved in enteric glial regu-
lation of GI motility.

Enteric glia and neurotransmission in 
the ENS. The control of propulsive motility 
requires coordinated activation of neurons 
in the ENS. How do glia synchronize their 
activity with that of enteric neurons? As 
noted above, Gabella first observed neu-

roglial junctions in the early 1970s (11). In my laboratory, we 
developed functional imaging approaches to directly visualize 
enteric glial activation in response to neuronal stimulation in 
both mouse and guinea pig myenteric plexus, and demonstrated 
neuroglial transmission in the ENS (25–27). Building on these 
findings, Gulbransen’s group showed that the spread of activ-
ity in enteric glia, which is observed as an elevation in intracel-
lular calcium, is mediated by connexin-43 hemichannels (28). 
They utilized genetic approaches in mice to selectively knock-
out connexin-43 in GFAP-expressing enteric glia. They showed 
that purinergic signaling to the glial network is substantially 
blocked in these mice and they confirmed these findings using 
pharmacological approaches to block connexin-43 hemichan-
nels. Impressively, they then demonstrated that colonic transit 
was substantially delayed and isometric force generation was 
reduced in their glial-specific connexin-43 knockout mice. Fur-
thermore, these changes mirrored the effects of aging, in which 
connexin-43 expression is altered, potentially offering a novel 
explanation for age-related reductions in colonic motility (28). 
These new and exciting findings extend work by Broadhead et 
al., who showed that colonic migrating motor complexes activate 
enteric glial networks (29). Broadhead and colleagues demon-
strated that intracellular calcium waves propagated between 
closely apposed glia and between glial processes to the glial cell 
body, where calcium levels were further elevated, suggesting 
that the glial cell soma acts as an integrator of activity.

unexpected and illustrated the very significant role of enteric glia 
in the intestinal mucosa.

This short perspective illustrates the potential role that enteric 
glia have in physiological and pathophysiological conditions of the 
GI tract. In the three sections below, I discuss the role of enteric 
glia in GI motility disorders, in barrier and defense functions of 
the gut, and in neurological disorders that affect the GI tract.

Role of enteric glia in GI motility disorders
Enteric glia and the control of motility. Enteric glia were first 
implicated in the control of GI motility when mice, treated with 
6-aminonicotinamide to induce an enteric gliopathy, were found 
to have diarrhea (18, 19). However, because motility was not 
directly assessed, it was only recently that this concept gained 
more traction. Using selective glial disruption techniques, Aubé 
et al. clearly demonstrated that loss of enteric glia was associated 
with reduced motility (20). Using a pharmacological approach, 
Nasser and colleagues also demonstrated reduced motility in 
animals following glial cell disruption with a selective gliotoxin, 
fluorocitrate (21). Around the same time as these papers were 
published, Bassotti and colleagues examined samples of the 
ileum and colon from patients with slow-transit constipation 
(22). They showed that there was a widespread and significant 
loss of enteric glia in most of these specimens, although there 
was also some reduction in the density of enteric neurons. Taken 
together, these findings reveal that enteric glia play a role in the 

Figure 1. Schematic representation of the distri-
bution of enteric glia in the GI tract. Subpopula-
tions of enteric glia are located around all classes 
of neurons in the myenteric and submucosal 
plexuses and in the mucosa. In the mucosa, 
enteric glia lie below the epithelium and connect 
to the “neuropod” of enteroendocrine cells (EECs) 
to form a tripartite connection among enteric 
nerves, enteroendocrine cells, and enteric glia 
(see text for details). Enteric glia also form a 
functional bridge between immune cells. Dark 
blue indicates intrinsic primary afferent neurons; 
light blue, interneurons; orange, excitatory motor 
neurons; green, inhibitory motor neurons; purple, 
secretomotor neurons.
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structures speaks to their importance as part of the integrated 
regulatory control mechanisms of gut function.

Enteric glia and abnormal GI motility. The mechanisms that 
explain how enteric glia are involved in abnormal GI motility 
have not been extensively studied and remain obscure. Possible 
mechanisms include immune mediators, inflammatory signal-
ing, and viral infection of enteric glia. As noted above, enteric 
glia can function as a bridge between the nervous and immune 
systems, and they may contribute to abnormal motility through 
immune signaling mechanisms. Such a role has recently been 
described in an elegant study by Stoffels et al., who examined the 
mechanisms of postoperative ileus in mice (36). They showed 
that postoperative ileus was attenuated in mice that lacked the 
IL-1R or in mice after blocking the IL-1R pharmacologically. They 
demonstrated that the IL-1R was present on enteric glia and that 
stimulation of this receptor in cultured enteric glia increased the 
expression of IL-6 and monocyte chemotactic protein 1 (MCP1), 
which stimulates the infiltration of immune cells and the local 
inflammatory conditions associated with postoperative ileus 
(36). The presence of cytokine receptors on enteric glia is a very 
interesting feature of this study and should be confirmed with 
additional experimental approaches. Enteric glia may also con-
tribute to ileus through the production of NO from iNOS (37, 38), 
though this has yet to be directly demonstrated.

Enteric glia could also be the target of viral infection, as 
revealed in an examination the myenteric plexus from patients 
with chronic idiopathic intestinal pseudo-obstruction (39). Here it 
was shown that about 70% of samples from patients with severe 
dysmotility had John Cunningham virus–related (JCV-related) 
T antigen protein expression and 80% had DNA sequences of 
the JCV T antigen, in contrast to control patients (patients with 
uncomplicated colon cancer), in whom no protein expression was 
detected and DNA sequences of the JCV T antigen were found in 
only 10% of samples. Interestingly, the JCV T antigen was colocal-
ized in GFAP immunoreactive enteric glia and not enteric neurons 
(39). The functional consequences of this infection and whether 
or not the infected glia will go on to die remain to be determined. 
These findings are consistent with previous work showing that the 
enteric glia are preferentially infected with adenovirus in vitro 
(40) and suggest that viral infection of glia may lead to dysfunc-
tion and contribute to dysmotility.

As noted above, it has been reported that there is a preferen-
tial loss of enteric glia in patients with slow-transit constipation, 
though the underlying mechanisms are completely unknown. This 
is due in part to a limited understanding of the factors that regu-
late the maintenance of enteric glia cell numbers in the GI tract. 
However, one factor that has recently been described is the retin-
oblastoma 1 tumor suppressor gene (Rb1) (41). Rb1 knockout mice 

These studies raise the question of which neurotransmit-
ters enteric glia respond to. Functional imaging studies, mostly 
on cultured enteric glial cells from animals, have revealed that 
enteric glia express receptors for many neurotransmitters (see 
refs. 4, 30, 31). Boesmans and colleagues recently extended these 
studies, utilizing enteric glial cultures from human duodenal 
biopsies, and showed that enteric glia could be activated by all 
primary fast enteric neurotransmitters, acetylcholine, serotonin, 
and ATP, although to different degrees (32). This obviously raises 
the question of whether enteric glia are “innervated” (Figure 2). 
The early structural work is certainly supportive of this, and fur-
ther evidence was provided by Vanden Berghe and Klingauf, who 
demonstrated synaptic release sites on enteric glia (33). How-
ever, those studies did not show the transmitter phenotype, and 
indeed there is still much to do in this regard, but a recent paper 
from Okamoto et al. elegantly reveals the serotonergic inner-
vation of enteric glia in the myenteric plexus of the colon (34). 
Importantly, these serotonin neurons have extensive connec-
tivity throughout the myenteric and submucosal plexuses and 
also innervate interstitial cells of Cajal and blood vessels, sug-
gesting that they are “command neurons” of the colon capable 
of coordinating motility with secretion and blood flow (34). Pre-
vious studies have also shown that enteric glia in the myenteric 
plexus also receive a cholinergic innervation (35). That enteric 
glia are innervated along with neuronal and other non-neuronal  

Figure 2. Enteric glia in the myenteric and submucosal plexus. (A) 
Enteric glia labeled with GFAP (green) surround enteric neurons labeled 
with Hu C/D (purple) in the myenteric plexus of the mouse colon. Note 
that the expression of GFAP is not uniform in the myenteric plexus. Scale 
bar: 50 μm. (B) Enteric glia labeled with GFAP (green) surround enteric 
neurons labeled with Hu C/D (blue) in the submucosal plexus of the rat 
colon. Enteric glia and neurons are decorated with punctate nerve termi-
nals expressing calcitonin gene–related peptide (red). Scale bar: 20 μm.
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colon, Liu et al. showed that enteric glial processes form a con-
tinuous network in the lamina propria from the base of crypts 
extending up the mucosa to the crypt openings (48). Enteric glia 
are also in intimate contact with subepithelial myofibroblasts and 
the epithelial basement membrane. Moreover, the glial network 
is also in close contact with lymphatic vessels, an association not 
previously known and whose function has yet to be demonstrated. 
Recently, Badizadegan et al., identified a novel population of cells 
with a dendritic morphology in the colonic mucosa that have both 
neuronal and glia phenotypes (49). These intramucosal neuro-
glial cells express S-100 and the neuronal marker Tuj1. They were 
observed in normal human colon and, interestingly, in the mucosa 
of patients with Hirschsprung disease, challenging the current 
concepts of the developmental origins of the ENS (49). The func-
tion of these newly described cells remains to be determined.

The mucosal enteric glial cell population is positioned to 
serve as a signaling intermediary between the epithelial cells that 
line the GI tract and immune and neural elements in the lam-
ina propria of the mucosa (Figure 1). Exactly how this is accom-
plished and the nature of the signals are now becoming clearer. 
At an anatomic level, it was recently discovered that enteric glia 
are not only associated with enteric nerves, but also with a struc-
ture called a “neuropod,” a basal extension of enteroendocrine 
cells (50). Enteroendocrine cells are specialized cells that are 
scattered throughout the epithelium of the gut wall. These cells 
release amines and peptides basolaterally, which act as local 
paracrine regulators or as gut hormones. Recent evidence sup-
ports the notion that these cells, which have microvilli that project 
into the lumen, are capable of “tasting” the luminal environment 
(51, 52). That enteric glia may be targets of the enteroendocrine 
transmitters and that enteroendocrine cells could be influenced 
by glial-derived neurotrophic factor (GDNF) or other signaling 
molecules opens up new avenues for signaling in the gut. Bohór-
quez et al. revealed that neuropods were formed more frequently 
in the presence of nerve growth factor, suggesting this anatomic 
relationship is plastic in nature and subject to regulation (50). The 
significance of these findings is not yet clear but imply that factors 
released from enteroendocrine cells during digestion or by other 
means regulate glial function, which may in turn regulate barrier 
function. An interesting potential example in this regard is the 
peptide glucagon-like peptide 2 (GLP-2), which is released from 
L cells, a subpopulation of enteroendocrine cells found mostly in 
the distal ileum and colon (53). GLP-2 has long been known to 
enhance gut barrier function, and in a recent paper we showed 
that the enteric glia express GLP-2 receptors and are activated by 
this peptide (54). While the enhancement of barrier function has 
not been directly linked to enteric glial function, these findings 
are consistent with this possibility.

Functionally, many enteric glial-derived factors, including 
S-nitrosoglutathione, GDNF, and TGF-β, have been shown to play 
important roles in enhancing barrier function by reducing epithe-
lial permeability (8, 55–57). Enteric glia could be activated to ful-
fill this homeostatic role by bacterial or other luminal signals or 
by neural signals. Vagal nerve activation of enteric glia has been 
linked to enhanced barrier function, and recently nicotinic cho-
linergic receptor signaling pathways have been shown to down-
regulate NF-κB in enteric glia, providing a potential intracellular  

gain weight slowly and suffer from intestinal pseudo-obstruction 
and severe colonic motility defects. Surprisingly, the most striking 
alteration in the ENS of these mice is a doubling of the enteric glial 
cell populations in the myenteric plexus of the ileum and colon, 
coupled with an enlargement of the size of some NOS-expressing 
neurons in the distal ileum (41). Other populations of enteric neu-
rons are similar to those in control mice. At this point it is unclear 
how these changes in enteric glial cell numbers alter motility. 
However, one can imagine that a lack of coordinated network 
responses in the glial cells might significantly compromise normal 
contractility of the bowel.

The factors that lead to loss of enteric glia are also not well 
understood. However, studies examining the effects of dietary 
manipulation and aging reveal that enteric glial cell numbers 
appear to be influenced by both age and diet, suggesting that 
environmental factors are able to influence glial cell numbers (28, 
42–46). Studies of aging reveal a consistent reduction in enteric 
glial cell density in the myenteric plexus (28, 44). In contrast, the 
development of obesity caused by feeding a high-fat diet had only 
minimal effects on glial cell density in the myenteric plexus but 
did lead to a massive reduction in apparent glial cell density in 
the duodenal mucosa and the submucosal plexus (45). Interest-
ingly, food restriction in aging rats actually accentuated the loss 
of enteric glia, although it had been expected that food restriction 
may reduce the parameters of oxidative stress in the GI tract (46). 
Finally, another study found that enteric glia of the rat intestine 
cultured in vitro and exposed to elevated levels of lipids expressed 
an altered morphology without any change in the cell density (47). 
An important point to consider is whether changes in glial num-
bers with age or diet or in the Rb1 knockout mice are reflective 
of direct effects on glia or are secondary responses in the glia to 
alterations in the size or number of enteric neurons. Since very lit-
tle is known about the actual processes that regulate glial number 
in the ENS, this question cannot be answered at this time. Another 
point to consider from the discussion above is that an insult to 
enteric glia may affect the integrity of enteric neurons, implying 
that gliopathy-mediated neuronal damage might be a cause of 
abnormal GI motility. Further investigations that directly examine 
this possibility are warranted.

An important caveat to consider in all of these studies is that 
the populations of enteric glia are not themselves homogeneous 
but rather show a remarkable degree of structural, functional, 
and phenotypic heterogeneity (9). This complicates the issues 
discussed above, as the roles of enteric glia may well be linked to 
specific glial subtypes. Importantly, how these different subtypes 
of enteric glia respond to insults in pathophysiological situations 
remains to be determined. This may be of considerable relevance 
given the differential functional responsiveness of these glia.

Role of enteric glia in the mucosa
The significance of the glial network of the mucosa is underscored 
by the effects of targeted glial ablation, as described previously 
(16). However, the nature of this glial network in the human gut 
was not well understood. Recent findings using novel imaging 
methods reveal the very extensive nature of the distribution of 
mucosal enteric glia (48). Using optical clearing methods com-
bined with high-resolution confocal microscopy in the human 
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glial cells. In Ppara knockout mice, PEA has no anti-inflammatory 
effects and does not reduce S-100β or TLR4 expression (or that of 
other inflammatory markers) (62, 68). While in this study PEA was 
given exogenously, it is produced naturally in the gut and its lev-
els are regulated by the enzyme fatty acid amide hydrolase, whose 
expression has been proposed to be important in the control of 
intestinal inflammation (69). Whether endogenous PEA acting on 
enteric glia is an important mediator of host defense remains to 
be determined.

Role of enteric glia in brain disorders
Though it may seem counterintuitive that glial cells residing in 
the wall of the gut are involved in disorders of the CNS, two recent 
observations suggest otherwise. The first reveals enteric glia as 
targets for the misfolded (infective) isoform of the prion protein, 
which is responsible for transmissible spongiform encephalop-
athies such as variant Creutzfeldt-Jakob disease. Enteric glia 
express the normal cellular form the of the prion protein and have 
been implicated as a reservoir of infective prions, as they serve as 
a template for replication of the misfolded prion protein (70–72). 
Following intravenous, intraperitoneal, or intracerebral inocula-
tion with infective prions, misfolded prion is found in enteric glia. 
Lawson and colleagues demonstrated that intracerebral inocu-
lation with infectious prion protein resulted in the presence of 
infectious prions in the ileum at the time of clinical disease, about 
220 days after inoculation (71). All animals displayed some degree 
of myenteric neuropathy, with loss of neurofilament M–express-
ing neurons in the myenteric plexus, though there were no major 
changes in the submucosal plexus. However, there were markedly 
altered and morphologically distorted enteric glia in the myenteric 
plexus, and where this was observed, Hu immunoreactive neurons 
were shrunken and there was a loss of NOS immunoreactivity. 

mechanism for this effect (58–60). Enteric glia express TLRs, and 
these are differentially upregulated in response to pathogenic and 
non-pathogenic bacteria (61, 62). When the upregulation of TLRs 
by a bacterial pathogen occurs, it leads to NF-κB activation. An 
increase in S-100B protein has also been observed and, together 
with NF-κB activation, leads to enhanced production of NO. The 
presence of S-100B in enteric glia has previously been shown to 
increase inducible NO synthase (iNOS), and S-100B–mediated 
upregulation of iNOS has been demonstrated in ulcerative colitis 
and also, interestingly, in celiac disease, where there are marked 
alterations in mucosal integrity (63–65). It seems likely that the 
role of NO is bactericidal; however, rather than being homeostatic, 
an excessive production of NO through the upregulation of iNOS 
in enteric glia could lead to a breakdown in barrier function (66). 
Of further interest, when enteric glia are activated by stimuli that 
increase iNOS (lipopolysaccharide and IFN-γ), MHC class II expres-
sion is induced, as it is in the ENS from patients with Chagas disease 
(67). Taken together, these studies demonstrate that enteric glia play 
a pivotal role in the regulation of gut homeostasis by responding to 
pathogenic challenges through various defensive mechanisms. 
They also extend the earlier observations of enhanced expression in 
Crohn’s disease and raise the possibility that enteric glia upregulate 
MHC class II in response to specific pathogens as part of the host 
defense mechanisms to protect the ENS.

The links between inflammation and enteric glial activation 
were recently tested in a mouse model of intestinal inflamma-
tion and using human colonic biopsies (62). In dextran sodium 
sulphate–induced colitis and human ulcerative colitis, the lipid 
mediator palmitoylethanolamide (PEA) reduced inflammation 
through activation of PPARα (62). It also reduced enteric glial 
S-100B expression, the expression of TLR4 and the production of 
NO in the animal model and in isolated human and mouse enteric 

Table 1. Functional roles of enteric glia in the GI tract

Function Location of enteric glia Mediator(s) released/expressed by enteric glia References
Epithelial barrier function Mucosa S-nitrosoglutathione 16, 17, 55, 56, 77, 78

15-Deoxy-Δ12,14-prostaglandin J2
TGF-β1

pro-epidermal growth factor
Fluid secretion Myenteric plexus NO 38
Intestinal motility Myenteric plexus ATP 28
Support of enteric neurons and neuronal survival ENS L-arginine 40, 79–83

Glutamine
Reduced glutathione
Nerve growth factor

15-Deoxy-Δ12,14-prostaglandin J2
Enteric neurotransmission ENS ATP 28, 84, 85
Neurogenesis ENS 86, 87
Immune signaling ENS MHC class II, CD80, CD86 14, 36, 61–65, 67, 88–91

IL-1β
IL-6

MCP1
Prostaglandin E2

S-100B
TLR4
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This study and a more recent study by Seelig et al. (73) demon-
strate that misfolded prion protein can be transmitted from the 
brain to the gut, where it can cause pathological changes in enteric 
glia and neurons. Exactly how this transmission occurs remains to 
be determined, but likely it is through autonomic neural pathways, 
including the vagus nerve. The transmission of infective prion 
from the gut to the brain is well established (74) and involves the 
ENS and autonomic pathways. Thus enteric glia may be an impor-
tant reservoir for infective prions that may go from the gut to the 
brain or vice versa, and they may potentially be a source of prion 
disease transmission through environmental contamination if the 
prions are shed into the gut lumen.

The second recent observation is of a role for enteric glia 
in Parkinson’s disease. Changes in GFAP expression and/or 
phosphorylation are a feature of neurodegenerative diseases. 
In Parkinson’s disease, enteric neurons accumulate α-synuclein 
and exhibit pathological features of Parkinson’s disease (75). 
Recently, Clairembault et al. showed that enteric glia become 
reactive by assessing the expression and phosphorylation levels 
of GFAP in colonic biopsies from patients with Parkinson’s dis-
ease (76). Compared with control subjects, those patients had 
significantly higher GFAP expression and the phosphorylation 
level of GFAP at serine 13 was significantly lower. These find-
ings provide evidence that reactive gliosis occurs in Parkinson’s 
disease, and this reinforces the role of the ENS in this important 
neurodegenerative disease. The inflammatory state of enteric 
glia in Parkinson’s disease may reduce their functional capacity, 
contributing to the ENS dysfunction that is responsible for the 
constipation associated with this condition.

Conclusions and future directions
Enteric glia play an important role in GI homeostasis by act-
ing as cellular integrators in the control of motility and barrier  

function (Table 1). They may also play a role in the control of 
intestinal secretion, but less is known in this regard and further 
studies are warranted. Depending on their location, enteric glia 
form a cellular and molecular bridge between enteric nerves, 
enteroendocrine cells, immune cells, and epithelial cells. It seems 
likely that connectivity among these cells through hemichannels 
or possibly gap junctions is important in serving these roles, but 
there is much to be determined in this regard. Novel approaches 
to study enteric glia, including sophisticated imaging techniques 
— and particularly studies that explore neuron-glial crosstalk in 
the ENS — will advance these investigations (31). From a clinical 
standpoint, enteric glia represent new and probably important tar-
gets for drug treatment in disorders of motility and host defense, 
notably inflammatory conditions of the gut such as inflammatory 
bowel disease. Their role in neurodegenerative diseases is also 
worthy of further consideration from both a GI and CNS perspec-
tive. The molecular constituents of enteric glia have the potential 
to become important biomarkers for a range of diseases. Future 
studies should focus on this possibility, particularly given the rela-
tive ease with which these cells can be studied in humans.
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