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It is increasingly evident that cancer results from altered organ homeostasis rather than from deregulated control 
of single cells or groups of cells. This applies especially to epithelial cancer, the most common form of human solid 
tumors and a major cause of cancer lethality. In the vast majority of cases, in situ epithelial cancer lesions do not 
progress into malignancy, even if they harbor many of the genetic changes found in invasive and metastatic tumors. 
While changes in tumor stroma are frequently viewed as secondary to changes in the epithelium, recent evidence 
indicates that they can play a primary role in both cancer progression and initiation. These processes may explain 
the phenomenon of field cancerization, i.e., the occurrence of multifocal and recurrent epithelial tumors that are 
preceded by and associated with widespread changes of surrounding tissue or organ “fields.”

Introduction
The vast majority of epithelial cancers are limited to in situ lesions 
that, for internal organs like breast, prostate, or lung, can remain 
undetected for the whole life of an individual (1, 2). The reason why 
only a minor fraction of these lesions progress to malignancy is not 
understood. In fact, many if not most of the genetic changes found 
in invasive and metastatic tumors are already present in premalig-
nant lesions, raising the question of whether such changes are a pri-
mary cause or merely permissive for later cancer-spreading events. 
A related issue raised by deep sequencing analysis of tumors is the 
question of whether any of the identified driver mutations actually 
initiate the carcinogenic process (3). An extreme view is that none of 
these mutations are by themselves a driver of cancer development 
and that it is the ecological cellular environment that restrains or 
unleashes tumor growth (2, 4). Changes in tumor stroma are most 
frequently viewed as secondary to changes in the epithelium; how-
ever, recent evidence indicates that they may play a primary role. 
Such a possibility would help explain, not only dormancy of most 
epithelial cancers, but also field cancerization, a condition of major 
clinical significance defined as broader tissue and organ changes 
beyond localized areas of tumor development that result in multi-
focal and recurrent tumors (refs. 5, 6, and Figure 1).

In this Review, I will start with an overview of the clinical problem, 
followed by a discussion of underlying changes in epithelial and 
stromal tissues. I will focus on new insights into early stromal events 
that precede and determine the development of epithelial cancer. A 
defining primary role of the stroma may be of substantial concep-
tual and practical value for the development of new approaches to 
treat and prevent epithelial cancer.

The clinical problem
An important but overlooked fact is the multifocality of cancer, 
with a surprisingly high frequency of multiple lesions of primary 
origin (with estimates ranging between 3% and 25%) of same or 
different histological types, with concomitant or subsequent 
occurrence (synchronous versus metachronous lesions), and with 
occurrences at proximal versus distant organ sites (7–9). An obvi-

ous difficulty is distinguishing between truly independent primary 
lesions and separate lesions that are the result of distant spread 
with single initiating events. As a result, published frequencies of 
multiple primary (MP) cancers depend on operational definitions 
adopted by various cancer registries, like those of the Surveillance, 
Epidemiology and End Results Program (SEER) (http://seer.cancer. 
gov/) and the International Association of Cancer Registries 
(IACR) (http://www.iacr.com.fr/). Typically, multifocal malignant 
lesions originating at same body sites, including the entire lung, 
are considered for epidemiological purposes as single primary can-
cers. However, significant differences exist in the adopted criteria, 
including the counting of contralateral malignant breast lesions as 
MP cancers according to SEER, but not IACR, rules. A number of 
epidemiological studies have also reported on the incidence of mul-
tiple primary tumors within the same or neighboring organs, with 
potentially important insights (10–17). Notably, premalignant 
lesions are usually excluded from cancer statistics so that real fre-
quencies of MP lesions are likely to be significantly underestimated, 
a conclusion supported by the staggering numbers of premalignant 
and malignant lesions that are discovered by autopsy studies of 
individuals with other causes of death (30%–40% of cases) (18–21).

Squamous cell carcinoma of the head and neck (HNSCC) is the 
sixth major cause of cancer death and a problem of major clini-
cal significance (22). The concept of field cancerization was first 
developed in a landmark study of these tumors, in which a link 
was established between the common multifocality and recur-
rences of HNSCC and histological abnormalities, not visible to the 
naked eye, in surrounding epithelial and stromal tissues (6). There 
have been substantial advances in surgical treatment of HNSCC, 
in combination with radiotherapy and targeted approaches, such 
as EGFR inhibitors. However, these improvements have not led 
to any significant decrease in locoregional recurrences, secondary 
tumors, or early distant metastases, and the overall five-year sur-
vival rate has improved only marginally (22). Cutaneous field can-
cerization with multifocal and recurrent skin squamous cell car-
cinomas (SCCs) is also a common occurrence in organ transplant 
recipient patients treated with calcineurin inhibitors, representing 
a major cause of death (23).

Adenocarcinomas and SCCs of the lung are also frequently 
multi focal (24). While adenocarcinomas tend to be peripherally 
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located and difficult to find at early stages, lung SCCs preferen-
tially develop in the central and pericentral airways, allowing for 
the observation of early tissue alterations. The use of autofluo-
rescence bronchoscopy imaging coupled with targeted biopsies 
and clinical follow-up studies has failed to provide convincing 
evidence of a sequential progression from mild/severe dysplastic 
lesions to carcinoma in situ (CIS) and invasive SCC of the lung 
(25, 26). Importantly, while malignant progression of dysplastic 
lesions is an infrequent event, they are often associated with devel-
opment of lung SCC at other sites. In fact, high-grade dysplasia 
and CIS are an indication of elevated risk of cancer in the entire 
lung epithelium (24, 25).

Multifocal development of breast cancer is also frequent, and 
it is not clear whether these lesions are monoclonally derived (13, 
27). Recurrences can also appear around the site of surgical resec-
tion and at more distal sites, including the contralateral breast 
(27). A major disease management decision facing patients with 
early-stage breast cancer (stage 0–II) is between conservative lim-
ited excisions (lumpectomy) and drastic mastectomy. The risk of 
local or relatively distant recurrences after lumpectomy is signifi-
cant (5%–22%; ref. 28), and minimal residual disease is a generally 
accepted explanation. Alternatively, recent experimental evidence 
discussed below suggests that de novo cancer cell development 
triggered by primary stromal alterations may take place.

In prostate cancer, multifocal lesions occur frequently, with 
>90% of patients diagnosed with the disease carrying two or more 
cancerous foci (29). There is great heterogeneity of these lesions 
and different rates of progression, each evolving independently of 
the other. This poses major clinical problems in terms of diagno-
sis, prognosis, and treatment (30). Systematic multiple biopsies 
of the prostate (“saturation biopsies”) are necessary to minimize 
chances that microscopic but highly aggressive lesions remain 
undetected (false-negative diagnosis). On the other hand, accurate 
prognostic and treatment decisions are hampered by the inability 

to predict behavior of apparently indolent lesions, with the result-
ing problem of overtreatment of patients (31).

In addition to the cancer types mentioned above, field cancer-
ization plays an important role in the development of esophageal 
(32), gastric (33), colon (34), bladder (35), and cervical cancer (36). 
The association of this process with pancreatic and ovarian cancer 
is less appreciated but probably equally important (5). Field effects 
have also been implicated in nonepithelial cancer types, such as 
melanoma (37) and brain tumors (38). Further, bone marrow field 
effects have been invoked to explain the development of secondary 
myelodysplastic syndrome and/or acute leukemia in patients ini-
tially diagnosed with severe aplastic anemia (39, 40).

Epithelial precursor changes
Substantial attention has been devoted to genetic and/or epige-
netic changes in epithelial cells as primary culprits in field can-
cerization leading to epithelial cancer. Such changes can occur in 
the absence of any histological abnormalities and at a significant 
distance (hundreds/thousands of cells) from tumors. They have 
been interpreted in the context of the multistep model of carcino-
genesis, as established by classical experimental studies and clin-
ical analysis of specific cancer types with well-defined sequential 
steps, like carcinoma of the colon (41).

According to this view, cancer fields result from the clonal expan-
sion and spreading of epithelial cells with genetic alterations that 
have a role in cancer initiation and evolution (41). Brash and col-
leagues originally found that normal human skin, especially sun-
exposed areas in aging individuals, contain a significant number 
of epidermal cells with pro-oncogenic p53 mutations (42). These 
cells are present as clusters that can increase in size over time. Cell 
populations with p53 mutations in apparently normal tissues 
have also been found in a number of other organs, including oral 
(43, 44), bronchial (45, 46), bladder (35), and esophageal (32, 47) 
epithelium. In concert with p53, its cousin p63 is also involved in 
epithelial stem cell potential and/or cell-cell adhesion (48–50). The 
functional implications of loss of normal p53 and/or altered p53/
p63 balance seem obvious; however, the possibility that p53 muta-
tions can be a marker of expanding clones of cells, rather than an 
initial or obligate cancer-triggering event, should also be consid-
ered. Consistent with this possibility is the finding that, in patients 
with primary oral SCCs, the presence of cells with p53 mutations 
in the normal epithelium is not associated with increased risk of 
secondary tumors (51). Additionally, discordant p53 mutations 
can be found in multiple cancer lesions in the same patients (52). 
Besides p53 mutations, other genetic events, specifically loss of het-
erozygosity (LOH) of common chromosomal regions, have been 
demonstrated in multiple lesions of the same patients and inter-
vening normal epithelium in a number of organs, including breast 
(27), bronchial (53), and oral mucosa (54). LOH may contribute to 
clonal expansion and/or subsequent cancer development but also 
reflects genetic alterations that can randomly occur in a significant 
fraction of somatic cells, as recently reported for copy number vari-
ations in dermal fibroblasts from adults (55).

Another of the distinguishing features of cancer fields are the 
frequent epigenetic alterations that occur in the apparently nor-
mal cancer-surrounding epithelium (56–58). Increased DNA 
methylation at the promoter region of known or putative tumor-
suppressing genes can lead to downregulation of their expres-
sion and function (59, 60), which may contribute to subsequent 
tumor development. A similar mechanism of epigenetic silencing 

Figure 1
Potential determinants of multifocal and recurrent epithelial cancer and 
field cancerization. Aging and environmental insults, such as UV irra-
diation or smoke, can target both epithelial and stromal compartments 
of organs, leading to stable genetic and epigenetic changes. Cross-talk 
between these two compartments can induce further pro-oncogenic 
alterations, such as secretion of growth factors and proteases, altera-
tions in the extracellular matrix, and recruitment of inflammatory cells. 
These spreading alterations in both the epithelium and stroma are a 
phenomenon known as field cancerization.
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has been found for microRNAs with putative tumor-suppres-
sive function in gastric cancer fields (61, 62). A link has been 
established between Helicobacter pylori infection and epigenetic 
silencing of tumor-suppressing genes and miRNAs in apparently 
normal gastric mucosa (58). A possibly primary role of chronic 
inflammation and associated production of highly reactive oxy-
gen species (ROS) in field cancerization will be considered fur-
ther below. In responding epithelia, increased DNA methylation 
at critical transcription regulatory regions can occur as a conse-
quence of induced DNMT1 expression (63) through a variety of 
mechanisms, including p53- or AP1-dependent gene transcrip-
tion (64). An early consequence of increased ROS levels is also 
recruitment of the DNMT1 enzyme to key growth-regulatory 
genes like p16, thereby silencing their transcription (65). Besides 
DNA methylation, increased methylation of lysine 27 in the tail of 
histone 3 (H3K27me3) at a specific set of cell regulatory genes has 
also been recently reported to be a consequence of inflammation 
in a mouse model of colon carcinogenesis (66).

Genes involved in DNA damage repair can also be epigeneti-
cally silenced in epithelial cancer fields (67). DNA instability, with 
increased microsatellite variability and telomere shortening, is 
not limited to tumors but occurs in the surrounding epithelial 
tissue (68–73). Mitochondrial DNA mutations are also a hallmark 
of cancer found in neighboring epithelia and, to an even greater 
extent, underlying stroma (74, 75). As both epigenetic gene silenc-
ing and mitochondrial dysfunction are trademarks of aging (76), 
they likely provide an important link between the age-related 
increase in cancer risk and field cancerization events.

Inflammation: a primary or secondary determinant?
The determining role of inflammation in cancer development has 
been postulated since the 1850s (77) and is a subject of intense 
investigation. Many premalignant and malignant lesions are 
associated with an inflammatory reaction, which can have both 
cancer-promoting and -suppressing effects. This is clinically 
illustrated in the skin, in which development of actinic keratosis 
lesions, very common precursors of SCC and/or in situ SCC, is 
intimately connected with chronic inflammation. On the other 
hand, these lesions can be effectively reversed by treatment with 
TLR agonists that trigger a potent acute inflammatory reaction 
(78). Many studies have been dedicated to understanding how a 
cancer-promoting inflammatory environment can be “reeducated” 
to become cancer suppressing (79).

Macrophages and T cells are the primary determinants of 
inflammatory processes. The behavior of macrophages is very 
plastic and fulfills substantially different functions in acute versus 
chronic inflammation. These cells can be polarized into a “kill-
ing” M1 phenotype for microbe and cancer cell elimination and a 
permissive M2 phenotype aimed at resolving or containing acute 
toxic inflammation (80). It is tempting to equate M1 macrophages 
with an acute inflammatory reaction that can eradicate incipient 
tumor formation, while M2 cells can be linked with “smoldering” 
chronic inflammation, which promotes the carcinogenic process. 
This categorization is most likely an oversimplification, as M1 
cytokines can have tumor-promoting effects, while M2 cytokines, 
such as IL-10, can be tumor suppressive (79).

Strong epidemiological and experimental evidence points to 
an important role for inflammation in the initial stages of cancer 
development. However, an important distinction needs to be made 
between a permissive/promoting function in expansion of “ini-

tiated” (i.e., mutated) cancer cells and a primary cancer trigger. In 
human skin, risk of SCC is substantially increased in clinical condi-
tions associated with chronic inflammation (81). In mouse skin, sus-
ceptibility to chemically induced carcinogenesis is greatly influenced 
by transgenic expression or deletion of proinflammatory cytokines, 
like IL-1α (82), or enzymes, like COX-2 (83–85). However, few or no 
tumors developed in all these cases without prior treatment with 
a mutagenic carcinogen. Similarly, in classical chemical skin car-
cinogenesis studies, repeated treatments with proinflammatory but 
nonmutagenic agents, such as the tumor-promoting phorbol esters, 
are not sufficient for tumor initiation (81).

In contrast to the studies described above, studies in the gastro-
intestinal system suggest that inflammation alone can trigger can-
cer development. Patients with inflammatory bowel disease have a 
highly increased risk of colon cancer and colitis-associated cancer; 
a similar condition can be experimentally induced in mice by oral 
administration of proinflammatory tissue-damaging agents, like 
dextran sodium sulfate (86–89). A strong causative link exists also 
between H. pylori infection and stomach cancer, in which inflam-
mation has been implicated as an underlying cause (90). Direct 
evidence in support of this possibility was provided by the finding 
that transgenic overexpression of a proinflammatory cytokine, 
IL-1β, in the gastric mucosa was sufficient to elicit cancer develop-
ment through a cascade of NF-κB–activating cytokines and asso-
ciated recruitment of immune modulatory cells (91). Interestingly, 
increased expression of IL-1β resulted, not only in increased pro-
liferation and transformation of the gastric epithelium, but also 
in atrophy of the underlying stroma. As discussed below, stromal 
atrophy and associated fibroblast senescence can contribute sig-
nificantly to the field cancerization process and can even have a 
primary determining function.

Mesenchymal stromal alterations
Epithelial cells covering the surface of organs are primary sensors 
of exogenous insults that trigger an inflammatory reaction. Resi-
dent cells of the stromal compartment are usually assumed to play 
a more secondary reactive role; however, a number of stimuli can 
directly affect the stroma, inducing changes that promote or even 
initiate the carcinogenic process. Long-wave UV (UVA) is thought 
to be a major cause of UV-induced skin cancer. It accounts for 
about 95% of total UV light exposure and, because of its greater 
penetration power, can directly affect the dermal compartment 
(92). Chronic UVA exposure leads to solar elastosis, a condition 
characterized by dermal atrophy and cellular and extracellular 
matrix alterations that, in the clinic (93) as well as a mouse model 
of skin field cancerization (94), precede keratinocyte tumor devel-
opment. Smoking is another major cause of cancer, leading to a 
substantially increased risk, not only in lung, but in other organs, 
such as oral mucosa (22), bladder (95), and breast (96). A recent 
report has raised the possibility that chemicals in smoke can diffuse 
through the surface lung epithelium, directly targeting stromal 
cells of various organs (97). Interestingly, metabolites produced by 
the obesity-associated microbiome were recently implicated in liver 
cancer (98). In each of these cases, stromal cell senescence in the tar-
get organ is a putative tumor-promoting or -triggering mechanism.

Fibroblast senescence induces a program of gene expression, over-
lapping with that of cancer-associated fibroblasts (CAFs), includ-
ing production of several diffusible growth factors and cytokines, 
like IL-6 (99, 100), whose increased expression can promote inflam-
mation and proliferation of neighboring epithelial cancer cells 
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(101). Stromal cell senescence may be more important in the initial 
stages of epithelial cancer than at later times, as increased rather 
than decreased fibroblast density, so called “tumor-associated des-
moplasia,” is frequently seen around tumors, like pancreatic cancer 
(102). Senescent cells can be removed in vivo through a number 
of mechanisms, including macrophage activation (103–105), and 
there can be in vivo selective pressure for stromal cells with CAF 
properties that have escaped senescence. In fact, stromal changes 
coevolve with cancer development and result from a variety of epi-
genetic events (106–110). Chromosomal and/or genetic alterations, 
including loss of P53 (111–117), have also been reported to occur in 
the tumor stroma, although the significance of these findings has 
been questioned (107, 110).

To understand the complex role of stromal fibroblasts in the ini-
tiation of epithelial cancer, it is important to consider their intrin-
sic heterogeneity (118). Fibroblast populations from various body 
parts and within individual organs can have significantly different 
properties, including susceptibility to CAF phenotype acquisition 
and interactions with neighboring epithelial cells and cells of the 
immune/inflammatory system (119–123). These differences, and/
or underlying gene expression signature, are rather stable and 
maintained with cultivation (124–127).

The role of mesenchymal stroma alterations in cancer initiation 
was proposed several years ago in the context of colon (128) and 
prostate (129) cancers. An important distinction needs to be made 
between mesenchymal outgrowths as a primary consequence of 
genetic alterations and secondarily increased risk of epithelial can-
cer and less evident stromal changes, resulting from aging and/
or exogenous insults, whose main consequences are epithelial 
dysplastic and neoplastic lesions. Examples of genetically deter-
mined mesenchymal outgrowths with consequently increased risk 
of epithelial cancer are intestinal polyposis syndromes, which are 
characterized by multiple hamartomas and associated inflamma-

tion (130). For example, Peutz-Jeghers syndrome (PJS) results from 
inactivating mutations of the serine/threonine kinase 11 (LKB1) 
gene (131). Available evidence suggests that LKB1 plays an impor-
tant function in both stromal mesenchyme and the overlying 
epithelium (132–134). In fact, while loss of homozygosity occurs 
in the adenocarcinomas that develop in patients with PJS (130), 
LKB1 mutations are haplosufficient for polyp formation and are 
found equally in mice with global myofibroblast-specific haploin-
sufficiency (134). While LKB1 is best known for control of AMPK/
mTOR signaling (132), its role in the colonic mesenchyme is con-
nected to decreased TGF-β expression and function (134, 135).

TGF-β signaling is a key regulator of fibroblast behavior and, 
depending on conditions, can induce fibrosis and/or CAF acti-
vation (136). To genetically probe the role of this pathway in the 
stromal mesenchyme, TGF-β type II receptor (Tgfr2) was ablated in 
this compartment (137). The resulting phenotype is noteworthy 
for both observed alterations and those that were not found. Mice 
developed epithelial tumors in stomach and prostate that were 
associated with increased proliferation and density of surrounding 
fibroblasts (137). Loss of Tgfr2 in gastric and/or prostate fibrob-
lasts resulted in increased expression of hepatocyte growth factor, 
Wnts, and a number of proinflammatory genes that are associated 
with paracrine mechanisms for cancer development (137–140). In 
contrast to stomach and prostate, all other examined organs were 
normal in this mouse model, including the skin, in which effective 
and dermal fibroblast-specific deletion of Tgfr2 was also demon-
strated (137). Given the important role of TGF-β in mesenchymal 
compartments of skin and other organs, this lack of effect is very 
surprising and may reflect the already mentioned differences of 
stromal fibroblasts at various body sites.

Developmental fields play a key role in tissue and organ mor-
phogenesis. Their establishment depends on various forms of 
direct and indirect cell-cell communication and gradients of 

Figure 2
Converging control of CAF activation by multiple signaling pathways. 
Activation of a CAF phenotype results in the increased stromal expres-
sion of a battery of molecules (representative ones are indicated in 
the center circle) that enhance epithelial cancer development and 
progression. These changes can be the combined result of several 
extracellular signals triggered by direct exogenous insults (smoke prod-
ucts, UV) or indirectly by a battery of growth factors and cytokines pro-
duced by neighboring cells (incipient epithelial cancer cells, immune/
inflammatory cells). Signal amplification can then take place through 
a number of intermediate cytoplasmic events, like activation of kinase 
cascade pathways and production of ROS. Finally, establishment of a 
CAF phenotype is critically dependent on control of gene expression 
through a battery of transcription factors and epigenetic changes func-
tioning in either a positive or negative manner. As discussed in the text, 
two of these pathways, linking extracellular signals to control of gene 
transcription, have been implicated so far in primary stromal altera-
tions leading to epithelial cancer development. Mesenchymal loss or 
alterations of TGF-β/Smad signaling lead to gastric and prostate can-
cerous lesions (137), while compromised Notch/CSL signaling results 
in multiple keratinocyte tumors and skin field cancerization (94). The 
surprising organ-selective effects remain to be understood but could 
be due to heterogeneity of CAF cells of origin.
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diffusible morphogens that instruct initially equivalent cells to 
assume different cell fates (141, 142). Selective adhesion of cells 
and physical force can also be a driving force in the morpho-
genetic process (143). Besides organ morphogenesis, these mech-
anisms may be implicated in maintenance and repair of already 
formed organs, for what has been termed “organ morphostats” 
(144). Notch/CSL signaling is an important developmental path-
way and form of direct cell-cell communication (145). In the skin, 
a substantial body of evidence has shown that the Notch pathway 
promotes keratinocyte differentiation and suppresses tumor for-
mation (146, 147). In contrast to that in the epidermis, the role 
of this pathway in the mesenchymal compartment of the skin has 
not been investigated until recently. Mice with mesenchymal dele-
tion of CSL, the key effector of canonical Notch signaling, exhib-
ited hair follicle abnormalities (148) and a skin phenotype with 
features of field cancerization, including early and widespread der-
mal atrophy, followed by expanding areas of inflammation and, 
by 2 to 4 months, multifocal keratinocyte tumors with features 

of actinic keratosis or in situ SCCs that eventually progressed 
into invasive cancer (94). Development of neoplastic lesions was 
significantly delayed by inhibition of inflammation, indicating 
that this process is an important mediator of the mesenchyme- 
induced epithelial lesions (94).

Further studies showed that compromised Notch/CSL signaling 
is likely to play a central role in intrinsic control of CAF activa-
tion, as deletion or silencing of CSL in dermal fibroblasts of either 
murine or human origin was sufficient to induce expression of 
many CAF effector proteins and transcription factors of the AP1 
family (94), major determinants of skin photo-aging and cancer 
(149–151). The CSL protein exerts an intrinsic transcription- 
repressing function and binds to specific target genes in a dynamic 
manner (152, 153). As a result, expression of genes to which CSL 
binds with high affinity can be induced by either of two possible 
mechanisms: (a) transcriptional or posttranscriptional downreg-
ulation of CSL expression and function; (b) conversion of CSL 
from a transcriptional repressor into a transcriptional activator 

Figure 3
The seed and soil hypothesis in multifocal and recurrent epithelial cancer. Multifocal and recurrent epithelial cancer may be analogous to a difficult 
to eradicate weed. (A) The theory of seed implantation suggests that multifocal recurrent tumors may be due to the ability of monoclonal cancer 
cells (seeds) to root deeply into the terrain and spread locally as well as disseminate to distant sites. Much like weeds, these tumor cells can grow 
under many conditions. (B) In contrast, the bad soil hypothesis suggests that insults and alterations in the stroma generate highly permissible 
soil that allows for the growth of multiple tumors of monoclonal or polyclonal origin (field cancerization). According to this latter view, unless the 
soil is corrected, various forms of prevention or intervention would be of little use in treating such cancers.
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by activated Notch receptors. Consistent with this mode of action, 
similarly to loss of CSL function, Notch activation has also been 
implicated in CAF activation as well as fibrosis, in concert with 
other pathways and signals from the external cellular environment 
(refs. 102, 136, 154, 155, and Figure 2).

Conclusions and future directions
While metastatic spread is the principal cause of cancer-related 
deaths, field cancerization, with multifocal and recurrent tumors, 
is another clinical condition of major morbidity and lethality. As 
discussed above, multiplicity of lesions not amenable to surgi-
cal treatment and recurrent cancer after excision of the primary 
tumor are problems of foremost significance. Using a metaphor 
from the botanical garden, the situation can be analogous to that 
of a bad plant that is difficult to eradicate, because of the many 
roots deeply embedded in the terrain or the spreading of multi-
ple bad seeds (Figure 3A). There is, however, another possibility 
— that of a bad soil that could corrupt properties of otherwise 
perfectly good plants (Figure 3B). In this case, unless the soil is 
corrected, various forms of intervention are of little or no use. 
Two main challenges need to be addressed. There is an urgent 
need to identify markers of stromal as well as epithelial altera-
tions to guide the surgeon in tissue excision procedures and the 
clinician in decisions of therapeutic intervention. In this context, 
new in vivo imaging approaches for detection of stromal tissue 
alterations, including inflammation, abnormal matrix compo-
sition, proteolytic activity, fibroblast senescence, and/or altered 
density, could lead to important breakthroughs.

A second important goal is the elucidation of signaling path-
ways more closely connected with field cancerization as a necessary 
step to devise novel preventive and therapeutic treatments. In this 

respect, use of antiinflammatory agents is a promising venue to 
retard the process, even if it is probably not sufficient to totally pre-
vent it. Targeting specific developmental signaling pathways pro-
vides another possible approach to counteract the spread of cancer 
fields. Equally attractive is the possibility of interfering with CAF 
activation (102) and, at an earlier stage, tissue aging and associated 
stromal cell senescence (156). In this respect, we note the complex 
relation between metabolism and aging (76) and the significantly 
increased cancer risk associated with obesity and diabetes (157, 
158). One possibility is that a number of metabolism-modulatory 
drugs used to ameliorate these conditions could also be of substan-
tial benefit for prevention and even reversal of field cancerization. 
Finally, a number of treatment regimens are already used for can-
cer field therapy in skin (159), and a better understanding of their 
mechanism of action may be instrumental in extending such treat-
ments to other organs in which field cancerization takes place.
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